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Abstract 
 
The electromagnetic waves are considered in this article as the mediators of interaction in the Meissner Ef-
fect or the diamagnetic property of the superconductors. During the cooling of a superconductor electro-
magnetic waves may be released when the electrons occupy lower states of the energy. These electromag-
netic waves may combine in circularly, elliptically and spherically rotating ways, being called in this article 
the rounded electromagnetic fields. The application of the Lorentz transformation of the Special Theory of 
Relativity to the magnetic vectors of the mediating electromagnetic fields implies the magnetic orthogoni-
opedic effect inside the bulk of a superconductor in the Meissner Effect. 
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1. The Electromagnetic Waves as Mediators 
in the Interaction inside a Superconductor 

 
The existing models which have tried to explain the 
phenomenon of superconductivity, amongst which be-
longs the B.C.S. theory [1,2], consider mainly the pho-
nons or the quanta of the elastic vibrations for the inte-
raction of the superconducting particles known as the 
Cooper pairs. The present article considers a contribution 
of the electromagnetic waves [3,4] as the interaction me-
diators in the Meissner Effect [2,3]. For the scientists 
who are specialized in the theory of electromagnetic 
waves this may seem evident, since electric and magnetic 
interactions between charged particles are, according to 
the standard models of interactions, mediated by elec-
tromagnetic fields. However, this electromagnetic wave 
mediation may not have already been much considered 
by the scientists of superconductivity in the solid state 
physics. When the superconductor is cooled below its 
critical temperature, the orbital electrons may release 
electromagnetic fields, when the orbital electrons are 
going to occupy lower states of energy [5]. However, the 
released electromagnetic fields are confined to the space 
in and close to the bulk of the superconductor if their 
magnetic fields are combined, for instance, (in the 3 di-
mensional Euclidean space) in an arbitrary Cartesian 
coordinate system ( ), ,x y z    as  
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with the following conditions   
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and ( )3 1 2

1
2

ω ω ω= +        (2) 

Analogous to Equation (1) one can write an equation 
for the electric field in which the roles of the directions x 
and y are interchanged. Equation (1) is the three dimen-
sional analogous to the two dimensional case where one 
sees a circle on the screen of the oscilloscope when on 
the x-axis the signal of “ ( )cosV tω ” and on the y-axis the 
signal of “𝑉𝑉 sin(𝜔𝜔𝜔𝜔)” are brought.  

One may recall that the parametric representation of a 
circle [6] is  

cosx R θ=  and siny R θ=         (3) 
which is equivalent to 

2 2 2x y R+ =                 (4) 
And the parametric representation of an ellipse [6] is 

cosx a θ=  and siny b θ=        (5) 
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which is equivalent to 
2 2

2 2 1x y
a b

+ =                 (6) 

And the parametric representation of a sphere [7] is 
cos cosx R u v=  

and sin cosy R u v=  
and sinz R v=               (7) 

which is equivalent to 
2 2 2 2x y z R+ + =               (8) 

The result of Equation (1) shows a field, which if it is 
time-averaged, it obeys an equation analogous to an equ-
ation of a sphere. Let us call this combination of the 
electromagnetic fields in Equation (1) and its analogous 
counterpart for the electric field the rounded electro-
magnetic fields. The Equation (1) uses the expressions 
for harmonic functions of plane waves [4], since accord-
ing to the Fourier [8] analysis, a wave or a periodic os- 

cillation can be decomposed into harmonic functions. In 
the case of the combination of the electromagnetic waves 
described by Equation (1), these combined electromag-
netic waves are becoming confined in space instead of 
propagating. 

If 3ω  and 1 2ω ω+   are commensurable, that is if 
[ ( )3 1 2ω ω ω+   ] is a rational fraction, still a space con-
tained as a box with the side-lengths as long as the am-
plitude of the magnetic field 2B is effective and extended 
will be filled with a Lissajous surface (which is an exten-
sion of the notion of Lissajous curve [9] to three dimen-
sions) confining the magnetic field. 

Also while a magnet levitates above a superconductor 
when the magnet is tapped the magnet starts to rotate. 
This rotary motion of the levitating magnet can be ex-
plained by the electromagnetic waves and by the Fourier 
[8] theorem again which says that every periodic func-
tion can be described as a sum of the sine and cosine 
functions. Let us consider the following Fourier series 
for the magnetic parts of two electromagnetic waves 
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The coefficients nA  and nB are proportionally related 

to the radii of the rotary circles. Further the following  
relations [8] would hold 
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If one had two electromagnetic waves the magnetic  parts of which are as follows: 

( ) ( ) ( )0
3 1 cos sin

2 n nn

C
k t C n k t D n kz z tz ω ω ω∞

=
 − = + − + − ∑x xB

x x
 







 

 



                 (16) 

( ) ( ) ( )0
4 1 cos sin

2 n nn

C
k t C n k t D n kz z tz ω ω ω∞

=
 − = + − + − ∑y yB

y y
 







 

 



                 (17) 



M. RASHID 
 

Copyright © 2011 SciRes.                                                                              JMP 

660 

 
then ( ) ( )3 4zk zt k tω ω− + −B B 

 

  involves a summation of 
magnetic vectors performing elliptical rotations. 

The application of an external magnetic field, let us 
assume, in the z-direction of a Cartesian coordinate sys-
tem (x, y, z), in the 3 dimensional Euclidean space, to the 
superconducting material bulk works as a magnetomo-
tive force on the rounded electromagnetic fields. In the 
Equation (1) one does not observe in the 𝐳𝐳� direction a 
vector component of the magnetic field belonging to the 
released and mediating electromagnetic field.However, 
letting the direction of 𝐳𝐳� to be arbitrarily chosen by the 
combined electromagnetic waves described by Equation 
(1), but related to the z-direction of an applied external 
magnetic field, then by a linear transformation, such as 
Equation (18) (see the bottom of the page.) 
where the angles ( ), ,α β γ   are the Euler angles [8], one 
may allow a z-component of the magnetic field belong-
ing to the released and mediating electromagnetic field to 
exist in the Cartesian coordinate system (x, y, z).  

2. The Use of the Special Theory of  
Relativity for the Meissner Effect in a  
Superconductor 

For the Meissner effect the existing theory is the propor-
tionality of the electric current density j to the vector 
potential A of the externally applied magnetic field 
which leads to the London equation [1,2], however, the 
direction of the magnetization for a superconductor is not 
yet specified.  

Inside a superconductor on a scale of the elementary 
particles there are some parts of space not occupied by 
material particles which can be considered as vacuum, 
though a bulk of a superconductor is by itself not consi-
dered as vacuum. In a bulk of a superconducting material, 
the rounded electromagnetic fields may have interactions 
with the spin magnetic dipole moments of charged par-
ticles, amongst them the electrons, and the rounded elec-
tromagnetic fields may not move with the same speed as 
in vacuum. Let us consider the following situation: 

At time t = 0, an external magnetic field is applied 
above the superconducting bulk. The direction of this 
applied external magnetic field is taken here as the direc-
tion of the z-axis of the Cartesian coordinate system. The 
rounded electromagnetic fields are under the exertion of 
this magnetomotive force. The vectors of the rounded 
electromagnetic fields comply with the Lorentz trans- 

formation of the Special Theory of Relativity [9,10], 
while they are under the exertion of the magnetomotive 
force of the external magnetic field, and while the round- 
ed electromagnetic fields are moving with the speed v 
close to the speed c of light in vacuum, because the re-
striction of inertia is not applicable to the rounded elec-
tromagnetic fields here, since they are massless. De-
composing the vector radii of the rounded electromag-
netic fields into three components in the Cartesian coor-
dinate system and taking a general function f(r) for the 
amplitude of the magnetic vector, instead of restricting 
ourselves to the Coulomb law of the inverse of the 
square of the vector radius or the distance, one can write 
the expressions of the components of the magnetic vector 
of the rounded electromagnetic fields in their own rest 
frame or in the moving reference frame (with respect to 
an observer who is at rest and observes the motion of the 
rounded electromagnetic fields) in the z-direction with a 
speed v, using polar and Cartesian coordinates as follows  

𝐵𝐵�́�𝑥 = 𝑓𝑓(∆�́�𝐫) sin �́�𝜃 cos �́�𝜙 
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In the Expressions (19)-(21) the “∆” is the difference 
between the final and the initial Cartesian coordinates 
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(the Cartesian coordinates of two points which are de-
noted by the subscripts f and i which stand for the words 
final and initial, respectively, are used to indicate a di-
rection of a vector in the three dimensional spatial part of 
the Minkowski space [10]). For instance 

∆�́�𝑥 = 𝑥𝑥�́�𝑓 − 𝑥𝑥�́�𝑖              (22) 
Using the following Lorentz transformation to the ob-

server’s reference frame at rest by considering the direc-
tion of motion of the moving reference frame in the 
z-direction of the Cartesian coordinate system [9,10]  

�́�𝑥 = 𝑥𝑥    �́�𝑦 = 𝑦𝑦     �́�𝑧 = 𝛾𝛾𝑧𝑧 − 𝛾𝛾𝛾𝛾𝛾𝛾𝜔𝜔 
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The angle that the magnetic vector is having with the 
z-axis (or with the z-axis in the moving reference frame) 
can be found from its tangent function (using Equations 
(19), (20) and (21)) as follows  

tan �́�𝜃 =
��́�𝐵𝑥𝑥2 + �́�𝐵𝑦𝑦2

�́�𝐵𝑧𝑧
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2
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One can see here that the function ( )f ∆ŕ  cancels 
out. Therefore, the result (24) holds in general for mag-
netic fields which might not even satisfy the Coulomb 
law. Using the Lorentz transformation (23), one can 
write the tangent of the angle between the magnetic vec-
tor and the z-axis, found to the observer’s reference 
frame at rest, as follows  
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  (25) 
In Equation (24) all primed coordinates are measured 

at the same instant of the primed time, therefore  

�́�𝜔𝑓𝑓 = �́�𝜔𝑖𝑖       and  𝛾𝛾𝜔𝜔𝑓𝑓 − 𝛾𝛾 𝛾𝛾
𝛾𝛾
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𝛾𝛾
𝑧𝑧𝑖𝑖    (26) 

From Equation (26) we find the following  

( )f i f it t z z
c
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− = −             (27) 

Substituting the result of Equation (27) into Equation 
(25) one gets  
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Thus we have  
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θ γ
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=
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In the limit when the speed of motion of the rounded 
electromagnetic fields reaches a value close to the value 
of the speed of light in vacuum, one obtains the follow-
ing 

lim lim 1
v c v c

v
c

β
→ →

= =              (30) 

and the limit of Equation (29) is obtained as 
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{ } ( ) ( )2 2Integer Numbers  and 0n x y∈ ∆ + ∆ ≠  

and 0z∆ ≠  
 

3. Detecting the Magnetic Orthogoniopedic 
Effect  

 
Equation (31), as a result of the property of the Min-
kowski relativistic space shows that the magnetic field 
vectors of the rounded electromagnetic fields approach 
an angle of 90 degrees with respect to the direction of 
motion when the rounded electromagnetic fields move 
with a speed approaching the speed of light in vacuum 
(Figure 1). 

The concentration of the magnetic field vectors of the 
rounded electromagnetic fields inside the superconduct-
ing bulk perpendicular to their direction of motion and 
also perpendicular to the direction of the applied external 
magnetic field results in the alignment of the spin mag-
netic moments of the orbital electrons of the atoms or 
molecules or ions of the superconductor (therefore, not 
the resultant spins of the Cooper pairs [1] which are ac-
cording to the B.C.S. theory equal to zero [1]) in perpen-
dicular directions with respect to the external magnetic 
field and enforcing the expulsion of the external magnetic 
field. 

When the external applied magnetic field is expelled,  
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(a)                              (b) 

Figure 1. (a) Two opposite vectors which are equal in mag-
nitude cancel each other. (b) Each of the dashed vertical 
vectors added respectively with each of the square-dotted 
vectors result in respectively each of the solid-line resultant 
vectors.   
 
the rounded electromagnetic fields are not undergoing 
the exertion of the magnetomotive force. At that instant, 
the magnetic field vectors of the rounded electromagnet- 
ic fields have a state of comparatively diminished con-
straint due to the expulsion of the external applied mag-
netic field and the rounded electromagnetic fields try to 
restore the state when the constraint by the external ap-
plied magnetic field was absent. They do it by exerting 
forces, causing a motion opposite to the original direc-
tion of the applied external magnetic field again with a 
speed close to the speed of light in vacuum. For this op-
posite motion again Equation (31) holds and the external 
applied magnetic field is still expelled. When the original 
state is reached, at that short instant the rounded elec-
tromagnetic fields are not moving and the effect of Equ-
ation (31) is not present for a very short instant of time, 
until the external applied magnetic field assumes its role 
again as the magnetomotive force, and the steps men-
tioned above repeat themselves, causing an oscillatory 
(motion in the z direction) of the magnetic field the vec-
tors of which are perpendicular to the direction of the 
applied external magnetic field. For the time dependence 
of the velocity of motion of the rounded electromagnetic 
fields, one may write in this way the following function  

( ) ( )
0

1 0
1

Intgr t
L H tξ

 
  
 

 
 = −  
  

v

v v           (32) 

where “Intgr” indicates that only the integer part of the 
argument should be taken, H(t) is the Heaviside step 
function [8] and ξ is a fraction number taken as the 
length, traveled by a bunch of the rounded electromag-
netic fields in a bulk of a superconductor of length L 
along the direction of the applied external magnetic field, 
divided by L. If the equations written above theoretically 
(using among others the Lorentz transformation of the 
Special Theory of Relativity [9,10]), hold indeed in real-

ity, then the oscillatory motion of the magnetic field the 
vectors of which are perpendicular to the externally ap-
plied magnetic field should be detectable by equipments 
which are sensitive enough. Figure 2 shows a simplified 
version of such an experimental set-up. If the period of 
oscillation, which is given from Equation (32) as  

2 LT ξ
=

v
                 (33) 

is too short or equivalently the frequency of the oscilla-
tion is too high then the oscillatory effect of the motion 
of the magnetic field the vectors of which are perpendi-
cular to the externally applied magnetic field may not 
easily be detectable. However, by another experimental 
set-up, presumably one might be able to observe that 
there is indeed a perpendicular magnetic field with re-
spect to the direction of the external applied magnetic 
field by moving a planar conducting loop (Figure 2) in 
an oscillatory way (as a rotation), causing a change of the 
magnetic flux in time, which in its turn would induce an 
electric current in the planar loop, according to the 
well-known relation [11] 

1 d
d

I
R t

Φ = − 
 

                (34) 

where I is the current which might be measurable by an 
ammeter or an electric current meter, R the resistance of 
the conducting loop and Φ the magnetic flux enclosed by 
the conducting loop. The external magnetic field would  
have, in this configuration of the conducting loop (as in 
 

 
Figure 2. The Meissner Effect in which an applied external 
magnetic is expelled by a superconductor. The lines of the 
external magnetic vector field suggest a magnetization in-
side the superconductor with the directions perpendicular 
to the applied external magnetic field (comparing Figure 
1(b)). 
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Figure 2), no or negligible flux contribution to the elec-
tric current in the conducting loop, since the conducting 
loop would be parallel to the external magnetic field, and 
a current signal in the ammeter may indicate the exis-
tence of the internal (presumably oscillatory) magnetic 
field inside the bulk of the superconductor due and per-
pendicular to the externally applied magnetic field. Ety-
mologically the word “orthogoniopedic” is chosen for 
this theoretical effect, which is an abbreviated combina-
tion of three words “orthogonio” or perpendicular, refer-
ring to the result of the limit as π 2

 
radians from Equa-

tion (31) or the right angle of 90 degrees, and “pedio” 
being the Greek word for “field” and the adjective suffix 
“-ic”.  
 
4. Conclusions  
 
The article brought the electromagnetic waves as the 
plausible interaction mediators in the Meissner Effect or 
the diamagnetic property of the superconductors, based 
on the existing standard model of the interaction between 
charged particles [12]. During the cooling process of a 
superconductor below its critical temperature, the elec-
trons are occupying lower states of the energy possibly 
releasing the excess of energy in comparison with the 
original state as electromagnetic waves which can, by a 
combination of the harmonic functions (which are ac-
cording to Fourier’s analysis, the components of any 
periodic oscillation or any wave), remain inside the su-
perconductor. These electromagnetic fields may mediate 
the interaction of an externally applied magnetic field 
and the internal magnetization field [2] of a supercon-
ductor in the Meissner Effect. The Lorentz transforma-
tion of the Special Theory of Relativity applied to the 
mediating electromagnetic fields can explain the direc-
tion of the internal magnetization field [2] inside a su-
perconductor in a manner compatible with the published 
phenomenon in the scientific communities of the expul-

sion of the externally applied magnetic field by a super-
conductor which is already well known as the Meissner 
Effect. An experiment is proposed with the title of the 
Magnetic Orthogoniopedic Effect to detect more exactly 
the probable directions of the internal magnetization field 
inside a superconductor in the Meissner Effect. 
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