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Abstract 
Gravitational forces are explained as a result of energy exchange between baryonic matter having 
the property of mass and the Quantum Vacuum. The derivations are starting with a hypothesis 
that baryonic matter, particles, atoms and molecules exchange energy with the Quantum Vacuum 
with zero balance. It is assumed that in absence of an external gravitation field the emission pat-
tern is isotropic. There is no recoil force of radiation. The application of an external gravitation 
field induces an anisotropy which results in a recoil force of radiation. An ellipsoidal radiation 
pattern is applied. The eccentricity of the ellipsoid is defined using the maximum possible value of 
any gravitation field estimated to have the value about 5 × 1012 [m/s2]. A formula is derived for 
calculating the power of the isotropic radiation. It was shown that two masses attract due to the 
fact that gravitation field lowers the energy density of the Quantum Vacuum. Using the results of 
measurements of a binary neutron star by Taylor and Hulse (Nobel Prize in Physics 1993) it was 
shown that possibly gravitational waves carry negative energy. 
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1. Preliminaries 
For convenience, let us recall some basic definitions and notations used in this paper. We apply the SI system of 
units. The macroscopic Newtonian law defining the force of attraction of two bodies of mass M1 and M2 is 

[ ]1 2
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where 
3

11
2

m6.67384 10
kg s

G −  
= ×  ⋅ 

                                 (2) 

is the gravitational constant, M1 and M2 are masses of the bodies [kg] and R12 the distance between their center 
of mass. Using analogies between gravity and electromagnetism it is convenient to apply the reciprocal constant 

2
9

3

1 kg s1.92379 10
4π mG

γ
 ⋅

= = ×  
 

.                             (3) 

The gravitational field generated by a hypothetical point mass M1 is 

[ ]212 1 1 M
2 2

2

1 m s or N kg
4π

M MG r r r
M R R

ρ
γ γ

−−  = = − = =  
Fg                    (4) 

is called gravitational acceleration. R is the distance from the center of mass of M1, r  a unit vector indicating 
the direction of the field and ρM is the equivalent surface mass density. The minus sign indicates that accelera-
tion is directed towards the center of mass. 

Let us remind that: 
1) The gravitational field is a vector quantity. 
2) Two opposite gravitational fields of the same modulus cancel. Remark: This cancellation should not be in-

terpreted as annihilation The hypothetical gravitons propagating in opposite directions do not collide (see Fig-
ure 9 in Appendix B). 

3) Ordinary matter (baryonic matter) is transparent for gravitational fields. Differently to electrostatic fields 
gravitational screens are unknown. 

4) The energy density of the gravitational field is given by the equation 
2 3 2

QV 0.5 J m or N mGE E γ    = −    g ,                           (5) 

where EQV is the extremely high energy density of the Quantum Vacuum (QV) (see Appendix C). Note that 
gravity lowers the energy density of QV differently to the energy of electrostatic field and that energy densities 
and pressure have the same dimensions. 

2. Anisotropy of Energy Distribution around a Mass Induced by an External  
g-Field 

Consider a spherical body with the g-field defined by (B3) in the Appendix B. The self g-field is isotropic, i.e., 
the magnitude is equal for all directions. In the presence of an external g-field ext extg z= ×g  and writing the 
isotropic surface g-field in the form surf rg r= ×g , the resulting surface g-field is given by the formula 

ext surfg z g r= × − ×g .                                     (6) 

The modulus of this vector is 

( )2 2 2 2 cossurf ext surf extg g g g r z= + − ×g .                              (7) 

Evidently, the energy density at the surface of the sphere is anisotropic. For example, if ( )cos 1r z× = + , we 
have 

( )2
QV 0.5 ext selfE E g gγ= − −                                 (8) 

and if ( )cos 1r z× = − , 

( )2
QV 0.5 ext selfE E g gγ= − + .                                (9) 

This anisotropy is responsible for the existence of a recoil force described in next chapter (See Figure 1). 
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Figure 1. Cross-section of the spherical body (yellow). The self 
g-field (solid arrows) is spherically symmetric. The g-field of a 
far body (dotted line) penetrates the body with no change of 
sign. Therefore at the night side we have summation and at the 
day side subtraction of the fields. The gravitational energy den-
sity is lower at the night side w.r.t. the day side.                     

3. The Schwartzschild Radius and the Highest Value of a g-Field in Nature 
The Schwartzschild radius Rsch is defined as the radius of a sphere such that, if all of the mass of a body is com-
pressed within that sphere, the escape speed from the surface of the sphere would equal the speed of light. In this 
paper we try to apply this notion to calculate the maximum value of the modulus of any g-field. Schwartzschild, 
using equations of general relativity derived the following form 

[ ]sch 2

2  mGMR
c

= .                                       (10) 

For a sphere of radius Rsch the equivalent surface mass density ( )2
M sch4πM Rρ = . 

Therefore, the surface g-field is 
4

24π  m s
4M

cG
GM

ρ  = =  g .                                  (11) 

The gravitational part of the energy density at the surface (see (5) and (11)) is 
8

2 3
sch 3 2

1 J m
8π 128π

cE
G G M

 = =  g .                              (12) 

For comparison let us calculate the Einstein’s energy density 

( )
2 8

3
ein 3 3 2

sch

3 J m
4 3 π 32π

Mc cE
R G M

 = =   .                             (13) 

Note that the ratio (13)/(12) equals 12. Let us quote the neutron star PSRJ614-2230 with a radius 19,300 [m] 
and a mass M = 3. 978 × 1030 [kg] (two solar masses). The surface g-field of this star equals 7.13 × 1011 [m/s2]. 
Its Schwartzschild radius 5911 [m] is only 3.27 times smaller w.r.t. the physical value 19300 [m]. A neutron star 
with the diameter 5911 [m] and the mass equal to twice the mass of the Sun would have a g-field at the surface 
given by (11): 

12 2
max 7.59 10 m s = ×  g                                      (14) 

In this paper we apply this value as the largest possible value of any g-field. Note that the highest value of the 
g-field is defined macroscopically at the surface of a neutron star. Differently, the highest value of electrostatic 
field is defined microscopically at the surface of the electron (see [1]). 

4. Derivation of the Formula for Calculation of the Power of the Energy Exchange  
between a Mass M and the Quantum Vacuum 

We formulate a hypothesis that baryonic matter continuously exchange energy with the Quantum Vacuum with 
zero balance. Let us calculate the power of the emission. In absence of external fields we postulate an isotropic 

Night side Day side

gself + gfar - gself + gfar
lower energy density higher energy density
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absorption and emission pattern as illustrated in Figure 2. There is no recoil force of radiation. The external 
g-field induces anisotropy of radiation resulting in a recoil force. Our goal is the calculation of the power of the 
energy exchange. Our choice is the model of the radiation pattern defined by an ellipsoid 

( ) [ ]
2

max
1  W Steradian

1 cos
εσ σ

ε ϕΩ
−

=
+

,                             (15) 

where ε is the eccentricity of the ellipse. This formula uses the polar coordinates centered in the focus of the el-
lipsoid. The recoil force is given by the integral 

02
4π

dv
c

σΩ= Ω∫F n ,                                      (16) 

where v is the velocity of radiation, c the velocity of light in free space and 0n  a unit vector directed along the 
longer axis of the ellipse. The derivation of Appendix A yields for a small value of ε the following formula (v = 
c) 

[ ]N
3recoil

P
c

εF  .                                       (17) 

This recoil force should be equal to the gravitation force 

[ ]Ngrav M=F g .                                      (18) 

Equating the above formulae yields the following expression for the power P 

[ ]3
W

c M
P

ε
=

g
.                                       (19) 

Evidently, the calculation of the value of the power P requires the knowledge of the value of the eccentricity ε. 
Following the procedure of defining the eccentricity for electrostatic fields [2] let us define 

max

ε =
g
g

                                           (20) 

where 
maxg  is defined by (14). We get the following simple formula 

[ ]21
max3 6.82 10 WP c M M= ×g                               (21) 

For the model of two parallel planes covered with a mass density ρM/2 [kg/m2]t (21) takes the form 

21 2M
Pointing Mmax3 3.41 10  W m

2
P c ρ

ρ  = = ×  g                      (22) 

having the dimensions of the Pointing vector of electromagnetic theory. The Table 1 presents the value of P for 
selected bodies. 
 

 
Figure 2. Left. The cross-section of a circular radia-
tion pattern. Right. The cross-section of an elliptical 
radiation pattern. In examples the eccentricity is ex-
tremely small.                                     

Spherical pattern Elliptical pattern

No recoil force      Direction of recoil force
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Table 1. A list of the values calculated using (21).                                                       

Name Mass [kg] Power [W] 

Elektron 9.109 × 10−31 6.21 × 10−9 

Neutron 1.675 × 10−27 1.142 × 10−5 

Autor 88 6.00 × 1023 

Earth 5.973 × 1024 4.073 × 1046 

Moon 7.347 × 1022 5.07 × 1044 

Sun 1.989 × 1030 1.356 × 1052 

Planck mass 2.176 × 10-8 1.479 × 1014 

Neutron star 3.978 × 1930 2.713 × 1052 

5. Illustration of the Idea of the Recoil Nature of Gravitational Forces by a Model of  
a Binary Star 

The Nobel prize in physics in the year 1993 has been awarded to R.A. Hulse and J.H. Taylor for the discovery of 
a binary neutron PSR B1923+16 and precise measurements of the elongation of the orbital period giving the 
evidence of radiation gravitational waves [3]-[6]. In this chapter we indicate that possibly gravitational radiation 
carries negative energy. In the binary PSR B1923+16 the two neutron stars of nearly equal masses are orbiting 
each along a separate elliptical orbit around a common center of mass (Figure 3) The laureates measured the 
rate of decrease of the orbital period equal 76.5 [µs/year] and calculated the power of the emission of gravita-
tional waves [ ]247.35 10 WP = × . Our goal can be achieved presenting calculations for a simplified system of 
two neutron stars with equal masses and a common circular orbit (Figure 4). 

6. Kinetic Energy of the Neutron Stars on a Circular Orbit 
We investigate a model of a binary neutron star of equal masses M1 = M2 = M orbiting on the initial orbit of ra-
dius R. The presented theory is well known. We present a convenient version. Equating the gravitational force 
with the centripetal force 

2
2

2

MG M R
R

ω=                                      (23) 

yields the following radius of the circular orbit 

3
2orb

GMR
ω

= ,                                       (24) 

where G is the gravitational constant, 2π Tω =  is the initial angular velocity and T the initial orbital period. 
Note that if we assume a loss of energy due to the emission of gravitational waves, ω and T are functions of time. 
However, during one orbital period the change is negligible. The orbital (tangential) velocity is v Rω= . 

The initial kinetic energy of both stars is 
2

2 2 3
2

2π2 ;   ;   
2k

Mv GME M R R
T

ω ω
ω

= = = = .                        (25) 

The insertion yields 

( )
2

2 5 3
3 3

2
3

2π
kE G M

T
= .                                   (26) 

Note that multiplication of both sides of (23) by R yields the equality of the kinetic and potential energies The  

potential energy is 
2

p
ME G
R

= −  and the kinetic energy is 2 2
kE M Rω= , i.e., 0k pE E+ = . Both energies  
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Figure 3. Two elliptical orbits of binary neutron stars with a 
common center of mass. Adapted from [5].                  

 

 
Figure 4. A circular orbit of two neutron stars.                         

 
differ only by sign. The observations of PSR B1923+16 have shown a decrease of the orbital periods by  

[ ]57.65 10 sT −∆ = ×  per year [3]. Assuming that a similar decrease occurs also in our circular model we get an 
increase of the kinetic energy 

( )

( )

2
2 5 3
3 3

2
3

2π
kE G M

T T
′ =

− ∆
.                                 (27) 

The increase of the kinetic energy per year is 

( )
( )

2 5 2
3 3 3 year2 2

3 3

1 12πkE G M Pt
T T T

 
 ∆ = − = 

− ∆  

,                        (28) 

where P is the radiated power and [ ]7
year 3.15360 10 st = ×  is the duration of a year in seconds. 
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Remark: The kinetic energy and T are functions of time. However, we have no need to apply differential equ-
ations since the initial value of T∆  is very small. Note that for a given T∆  this equation uniquely defines the 
value of the power of the emitted gravitational waves. We observe that the emission of gravitational energy 
causes the increase of the kinetic energy. In consequence, if we assume that the lost of the kinetic energy is 
caused by the emission of gravitational waves the emitted energy should be classified as negative. This should 
be understood as periodic lowering of the positive energy of the Quantum Vacuum propagating with the speed 
of light. In the case of the system reported by Taylor and Hulse the kinetic orbital energy is a periodic function 
of time. Therefore, (27) and (28) should be replaced by the mean values. 

7. Selected Data for the Model of a Binary Star with a Circular Orbit 
The following data have been selected from data of the PSR B1913+16. The measured initial orbital period T = 
27906.97959 [s] and the calculated masses are M1 = 2.8764 × 1030 [kg], M2 = 2.72050 × 1030 [kg]. We applied 
for our model with the circular orbit the following data: 

Equal masses (mean value) 

[ ]302.74084 10 kgM = ×                                  (29) 
The radius of each star 

[ ]20000 mNR =                                         (30) 
The initial angular velocity 

[ ]42π 2π 2.255498196 10 1 s
27807.19557T

ω −= = = ×                         (31) 

The initial radius of the circular orbit 

[ ] [ ]93
2 1.4716 10 m 1471.6 kmorb

GMR
ω

= = × =                            (32) 

The initial tangential orbital velocity is 

[ ]331.818 km sorbv Rω= =                                  (33) 

The volume mass density of each star is 

16 3
3

3 8.3687 10 kg m
4πV

N

M
R

ρ  = = ×                             (34) 

corresponding to the equivalent surface mass density 

20 2
2 5.579 10 kg m

4πS
N

M
R

ρ  = = ×                              (35) 

The intensity of the self gravitational field at the surface is 

11 24π 4.57898 10 m sS
S SS g G

ρ
ρ

γ
 = = = = ×  g                      (36) 

The intensity of the g-field at the center of a single star induced by its companion 

( )
2

2 22

1 19.4394 m s
2

S

orb

g
R

ρ
γ

 = = =  g                            (37) 

(about twice of the Earth field). The Schwartzschild radius is 

[ ]2

2 4072.949 msch
GMR
c

= =                                  (38) 

yielding the value 
12 2

max 5.51329 10 m sg  = ×                                    (39) 
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The difference in comparison to (14) is small. The Einstein’s energy density of a single star is 
2 33 3

Einstein 9.7964 10 J mVu cρ  = = ×                             (40) 

The energy density at the surface of the star defined by the power 3 mazP cg M=  is 

33 3
2 9.01875 10 J m

4πP
N

Pu
R c

 = = ×                              (41) 

The energy density of the surface self g-field is 
2 32 30.5 1.2467 10 J ms su gγ  = = ×                               (42) 

8. Arguments in Favor of the Presented Hypothesis about the Physical Origin of  
Gravitation 
1) The existence of the Quantum Vacuum as a medium with extremely high energy density is confirmed by 

many experiments and is not questioned. Let us mention the experimental confirmation of the predicted Casimir 
force. 

2) Recently researchers have created electrons from “nothing” This nothing is the energy of QV. 
3) Recently the scientists from Berkeley University [7] have measured the difference of the Compton fre-

quencies for two groups of cesium atoms, a local group and a second group after a small journey. They con-
firmed experimentally the Einstein’s twilling effect (time dilation). Certainly, this gives the evidence, that ce-
sium atoms emit energy at Compton frequencies. 

4) The gravitation attraction force is not the result of the pressure of the gravitation field on the baryonic mat-
ter. For example, in the model of two parallel planes covered with a uniform mass density (see Figure 9 in the 
Appendix B) the pressure inside the plates is higher in comparison to the outside Since the two plates attract this 
cannot be the result of radiation pressure of the gravitational field. 

9. Conclusions 
Many experiments and phenomena confirm that the Quantum Vacuum is a medium with extremely high energy 
density. Let us mention the Casimir effect and the Lamb shift. A good confirmation gives the electron on the 
Bohr orbit. Due to the rules of electromagnetism it radiates energy. Without absorption of the energy from the 
QV it should decay in a short time. This makes the hypothesis that particles absorb and reemit energy from the 
QV highly probable. Using this hypothesis we derived a formula enabling the calculation of the power of the 
energy exchange. The value of this power is formidable. However, let us recall the formidable energy density of 
the QV. Our numerical results depend on the maximum possible value of the intensity of any gravitational field. 
The eventual application of another value of this constant will change only numerical results. Let us recall that 
the g-field lowers the energy density of the QV. Our results are valid for the Newton’s law of gravity. In frame 
of this law, the QV is a linear medium. However, we know that for high density g-fields nonlinear effects occur. 
For example, the speed of light in vacuum is lowered by gravitation. Gravitational deflection of light beams is 
well known. Assuming the validity of the statement that gravitational waves carry negative energy, any device 
constructed to detect gravitational waves should be able to measure periodic variations of the energy density of 
the Quantum Vacuum, for example, looking for periodic variations of the speed of light. Note the extremely 
small values of the eccentricity of the radiation pattern. In the worst case of the binary neutron stars, the eccen-
tricity is ( ) ( ) 1137 36 3.52 10ε −= ≈ × . The small g-field of the companion star controls the emission diagram of 
the large power defined by (21). We have a kind of amplification. 

This paper differs from the reference [8]. We presented the derivation of the formula for the power emitted by 
the mass M (see (21)) and have shown that possibly the gravitational waves carry negative energy in the sense of 
(5). The examples with neutron stars are new. 
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Appendix A. Derivation of the Recoil Force for an Ellipsoidal Power Radiation  
Pattern 
We assume, that the angular power radiation pattern (power density per unit solid angle) is given by the rotation 
around the longer axis of the ellipse 

( ) [ ]
2

max
1 W Ster

1 cos
εσ σ

ε ϕΩ
−

=
+

,                             (A1) 

where ε is the eccentricity of the ellipse. This formula uses the polar coordinates centered at the focus of the el-
lipsoid. The recoil force is given by the integral 

02
4π

dv
c

σΩ= Ω∫F n ,                                    (A2) 

where v is the velocity of radiation and 0n  a unit vector directed along the longer axis of the ellipse. 
The insertion of (A1) and using the projection of the radius centered in the focus on the longer axis ( ( )cos ϕ ) 

yields 

( ) ( )
( )

2

2
4π

1 cos
d

1 cos
v
c

ε ϕ

ε ϕ

−
= Ω

+∫F .                            (A3) 

We get inserting v = c. 

( ) ( ) ( )
( )

22π π
max

0 0

1 cos sin
d d

1 cosc

ε ϕ ϕσ
ϕ ψ

ε ϕ

−
=

+∫ ∫F .                      (A4) 

The evaluation of the integral yields 

( )max
1fc

σ
ε=F ,                                    (A5) 

where 

( ) ( ) ( ) ( )
2 2 1

2 2
1

1

1 log 1 1 2π
2 1

n

n
f

n n
ε εε ε ε
ε

−∞

=

 −
= − + − 

−  
∑ .                (A6) 

However, σmax should be normalized to keep the total power P independent on ε. The power gain of the ellip-
soid is given by the formula 

4πG
B

= ,                                         (A7) 

where B is the equivalent solid angle 

( ) ( ) ( )
2π π 2

2
0 0

1 sin d d
1 cos

B fε ϕ ϕ ψ ε
ε ϕ
−

= =
+∫ ∫ ,                      (A8) 

where 

( ) ( )2
2

11 log 2π
1

f εε ε
ε

 +  = −   −  
.                              (A9) 

Since max PGσ =  we get 

( )max
2

P
f

σ
ε

= .                                   (A10) 

The insertion of (A10) in (A5) yields 

( )
( )

1

2 3
fP

c f
ε

=F .                                   (A11) 
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If 1ε  , the ratio ( ) ( )1 2 3f fε ε ε≈ . 

Appendix B. Selected Simple Models of Gravitational Bodies 
Our discussions about the nature of gravitation apply the following simple idealized models of mass bodies. 

A sphere of radius R0 filled with a uniform volume mass density (Figure 5) 

31
3
0

3
kg m

4πv
M
R

ρ  =   .                                     (B1) 

The above sphere can be replaced by a hollow sphere with an equivalent surface mass density ρm [kg/m2]. 
(Figure 6) 

21
2
0

kg m
4πM
M

R
ρ  =   .                                  (B2) 

The surface and outside g-fields of both spheres are the same. For the first the g-field is 

( )

0
0

0

2
0

02

         

              

         

M

M

M

r r r R
R

r r r R

R
r r R

r

ρ
γ
ρ
γ

ρ
γ


− <

= − =


− >


g                             (B3) 

and for the second the inside g-field equals zero (Figure 7). 
An infinite plane covered with a surface mass density. 

 

 
Figure 5. Cross-section of a sphere with a uniform 
mass density ρv [kg/m3].                             

 

 
Figure 6. The sphere of Figure 5 can be replaced by 
a hollow sphere with a uniform surface mass density 
ρM. The external fields are the same.                      

xy

z

R0

( ) 2
m

sg r  
  



3
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Figure 7. The visualization of the g-field given by (B3).       

 
Consider the rectangular Cartesian coordinates (x,y,z) and the plane z = 0. We assume that the plane is cov-

ered with a surface mass density ρM [kg/m2]. This unphysical body could be interpreted as a limiting case of a 
disc of radius Rd situated between the planes z = −∇z and z = ∇z assuming Rd → ∝ and ∇z → 0. The g-field of 
this plane is (Figure 8) 

The g-field is 

( ) ( ) ( ) ( )

0

0 0 0 0

0

         

sgn sgn zero  in the range ,
2

      

M

M

M

z z z

z z z z z z z z

z z z

ρ
γ

ρ
γ

ρ
γ

 <
 = − + + − = − 

− >


g            (B4) 

Two parallel planes located at z = −z0 and z = z0 (Figure 9, Figure 10). 
The g-field is 

( ) ( ) ( ) ( )

0

0 0 0 0

0

       

sgn sgn zero  in the range ,
2

     

M

M

M

z z z

z z z z z z z z

z z z

ρ
γ

ρ
γ

ρ
γ

 <
 = − + + − = − 

− >


g             (B5) 

A single body of any shape or an ensemble of many bodies with a center of mass at the origin The asymptotic 
g-field at large distance from these bodies decay proportionally to 1/r2 independent of the direction. 

Evidence that the gravitational field lowers the energy density of the QV 
The evidence is presented in Figure 10. 

Appendix C. The Energy Density of the Quantum Vacuum 
Our goal is the derivation of formulae describing the gravitation force as a recoil force caused by anisotropic 
emission of radiation. We start with the hypothesis that baryonic matter having the property of a mass exists in a 
dynamic equilibrium with the Quantum Vacuum (QV). The QV is a medium with extremely high energy den-
sity. This can be shown starting with Planck’s formula 

( ) ( )
2

3
3

8π, J s m
exp 1 2

f hf hff T
hf kTc

ρ
 

 = + ⋅   −  
,                       (C1) 

which defines the frequency domain energy distribution of thermal radiation. h is the Planck constant, k—the 
Boltzman c., T—the absolute temperature and f the frequency of radiation. The term hf/2 represents the zero- 
point fluctuations of QV. For T = 0 we get 

( )
3

3
3

4π J s mhff
c

ρ  = ⋅  .                                  (C2) 

The total energy density in the frequency band from f1 to f2 is given by the integral 

r

Mρ
γ

( )g r

0r R=

( )2
0

1
r R
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Figure 8. An infinite plane covered with a uniform surface mass density 
ρm [kg/m2].                                                       

 

 
Figure 9. Two parallel planes of Figure 8. The two fields cancel inside but 
do not annihilate.                                                     

 

 
Figure 10. The shift of the left plane enlarges the volume without the 
g-field. The cancellation of the g-field requires an input of positive energy 
since the planes attract. Therefore the energy of the cancelled field is nega-
tive. The same evidence is given by calculation of the energy of the g-field 
of the spherical body of Figure 3. If for a mass 2M this energy equals E 
then for two bodies of a mass M this energy for each body equals E//4, i.e. 
one half of E is cancelled. The separation of these bodies shifting one body 
to infinity requires an input of positive energy. Evidently the cancelled 
energy is negative.                                                   
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( ) ( ) ( )
2

1 2
1

4 4 3
2 1, 3

πd J m
f

f f
f

hE f f f f
c

ρ  = = −  ∫ .                           (C3) 

Planck suggested that the highest frequency of the radiation is defined by the formula 

[ ]
5

42
max 2 5.235 10 Hz

2
cf f
hG

= = ≅ × .                           (C4) 

This value of f2 with f1 = 0 yields a formidable energy density of QV 
4

112 3
3

π
5.8 10 J mmaz

QV
hf

E
c

 = ≅ ×                                 (C5) 

This value applies for a pure vacuum. In case of an electrostatic field [ ]V mE  the energy of the vacuum is 
given by the formula 

2 3
00.5 J mV QVE E ε  = +  E                                  (C6) 

At the actual state of the art it is impossible to extract from the vacuum the energy EQV. Of course the energy 
of the electrostatic field can be used for any application. For example, charged capacitors can drive electric ma- 
chines. In the case of a gravitational field 2m s  g  the energy of the vacuum is given by the formula 

2 30.5 J mV QVE E γ  = −  g                                   (C7) 

The negative sign shows that the g-field lowers the energy density of QV. The evidence is simple. The en-
larging the distance between two parallel planes which cancels the g-field in certain volume requires an input of 
positive energy. 
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