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Abstract 
 
A graph  is representable if there exists a word  over the alphabet  such that letters = ,G V E  W V x  
and  alternate in W  if and only if y  ,x y  is in E  for each x  not equal to . The motivation to 
study representable graphs came from algebra, but this subject is interesting from graph theoretical, com-
puter science, and combinatorics on words points of view. In this paper, we prove that for  greater than 3, 
the line graph of an -wheel is non-representable. This not only provides a new construction of non-repre- 
sentable graphs, but also answers an open question on representability of the line graph of the 5-wheel, the 
minimal non-representable graph. Moreover, we show that for  greater than 4, the line graph of the com-
plete graph is also non-representable. We then use these facts to prove that given a graph  which is not a 
cycle, a path or a claw graph, the graph obtained by taking the line graph of  -times is guaranteed to be 
non-representable for  greater than 3. 
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1. Introduction 
 
A graph  is representable if there exists a 
word  over the alphabet V  such that letters 

= ,G V E 
W x  and 

 alternate in W  if and only if y  ,x y E  for each 
x y
G

. Such a W  is called a  word-representant of 
. Note that in this paper we use the term graph to mean 

a finite, simple graph, even though the definition of 
representable is applicable to more general graphs. 

It was shown by Kitaev and Pyatkin, in [1], that if a 
graph is representable by , then one can assume that 

 is uniform, that is, it contains the same number of 
copies of each letter. If the number of copies of each 
letter in  is , we say that  is -uniform. For 
example, the graph to the left in Figure 1 can be 
represented by the 2-uniform word 12312434 (in this 
word every pair of letters alternate, except 1 and 4, and 2 
and 4), while the graph to the right, the Petersen graph, 

can be represented by the 3-uniform word  
 (the Petersen  

graph cannot be represented by a -uniform word as 
shown in [2]) 

W
W

W k W k

027618596382430172965749083451
2

The notion of a representable graph comes from 
algebra, where it was used by Kitaev and Seif to study 
the growth of the free spectrum of the well known  
Perkins semigroup [3]. There are also connections be- 
tween representable graphs and robotic scheduling as 
described by Graham and Zang in [4]. Moreover, re- 
presentable graphs are a generalization of circle graphs, 
which was shown by Halldórsson, Kitaev and Pyatkin in 
[5], and thus they are interesting from a graph theoretical 
point of view. Finally, representable graphs are inter- 
esting from a combinatorics on words point of view as 
they deal with the study of alternations in words. 

Not all graphs are representable. Examples of minimal 
(with respect to the number of nodes) non-representable 
graphs given by Kitaev and Pyatkin in [1] are presented 
in Figure 2. 
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090038012 from the Icelandic Research Fund. §Supported by grant no. 
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It was remarked in [5] that very little is known about 
the effect of the line graph operation on the repre- 
sentability of a graph. We attempt to shed some light on 
this subject by showing that the line graph of the smallest   
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Figure 1. A graph representable by a 2-uniform word and the Petersen graph. 
 

 

Figure 2. Minimal non-representable graphs. 
 
known non-representable graph, the wheel on five 
vertices, 5 , is in fact non-representable. In fact we 
prove a stronger result, which is that  (where 

 denotes the line graph of ) is non-repre- 
sentable for . From the non-representability of 

 we are led to a more general theorem regarding 
line graphs. Our main result is that , where  
is not a cycle, a path or the claw graph, is guaranteed to 
be non-representable for . 

W
 nL W

 L G





 L G

 4L W

G

k

4n 

G

4k 
Although almost all graphs are non-representable (as 

discussed in [1]) and even though a criteria in terms of  
semi-transitive orientations is given in [5] for a graph to 
be representable, essentially only two explicit construc- 
tions of non-representable graphs are known. Apart from 
the so-called  graph whose non-representability 
is proved in [2] in connection with solving an open 
problem in [1], the known constructions of non-re- 
presentable graphs can be described as follows. Note that 
the property of being representable is hereditary, i.e., it is 
inherited by all induced subgraphs, thus adding addi- 
tional nodes to a non-representable graph and connecting 
them in an arbitrary way to the original nodes will also 
result in a non-representable graph. 

 2-co T

 Adding an all-adjacent node to a non-comparability 
graph results in a non-representable graph (all of the 
graphs in Figure 2 are obtained in this way). This 
construction is discussed in [1].  

 Let H  be a 4-chromatic graph with girth (the length 
of the shortest cycle) at least 10 (such graphs exist by 
a theorem of Erdös). For every path of length 3 in H  
add a new edge connecting the ends of the path. The 

resulting graph will be non-representable as shown in 
[5]. This construction gives an example of triangle- 
free non-representable graphs whose existence was 
asked for in [1].  

Our results showing that , , and  nL W 4n   nL K , 
, are non-representable give two new constructions 

of non-representable graphs. 
5n 

Our main result about repeatedly taking the line graph, 
shown in Section 5, also gives a new method for con- 
structing non-representable graphs when starting with an 
arbitrary graph (excluding cycles, paths and the claw 
graph of course). Since we can start with an arbitrary 
graph this should also allow one to construct non-re- 
presentable graphs with desired properties by careful 
selection of the original graph. 

Although we have answered some questions about the 
line graph operation, there are still open questions related 
to the representability of the line graph, and in Sect. 6 we 
list some of these problems. 
 
2. Preliminaries on Words and Basic  

Observations 
 
2.1. Introduction to Words 
 
We denote the set of finite words on an alphabet   by 

*  and the empty word by  . 
A morphism   is a mapping  that satisfies 

the property 

*  *

    = u v   uv  for all words u , . 
Clearly, the morphism is completely defined by its action 
on the letters of the alphabet. The erasing of a set 

v

\ S  
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*of symbols is a morphism  such that 
 if  and 

*:S   
  =S a a a S   =aS 

0 1=v v v 
v

m k

u
G

G

0 1= nu u u u

0 1=u u

u
u u

   0=
m

iu u u

u

   ,0u ui
u

u

iu

n

 otherwise. 
A word  occurs in a word  at the 

position  and is called a subword of  if  

1 m k   for some , . A subword that 
occurs at position 0 in some word is called a prefix of 
that word. A word is -uniform if each symbol occurs 
in it exactly  times. We say that a word is uniform if 
it is -uniform for some . 

u



nv
m

= m mu v v

m

 ,a b

u

=Cu u u 

Cu

   ,0u ui
Cu

iu

i iu u

i iu u

  ,0u ui
Cu

Cu

v

m

b
u

u

u

Cu

iu

 i iu u u

iu

m

m


G
u

b

 ,u ui

0



0u

Symbols , alternate in a word u  if both of 
them occur in  and after erasing all other letters in  
we get a subword of . 

a
u

abab
The alternating graph  of a word  is a graph on 

the symbols occurring in  such that  has an edge 
 if and only if ,  alternate in u . A graph  

is representable if it is the alternating graph of some 
word . We call  a representant of  in this case. 

a G

A key property of representable graphs was shown by 
Kitaev and Pyatkin in [1]:  

Theorem 1 Each representable graph has a uniform 
representant.  

Assuming uniformity makes dealing with the repre- 
sentant of a graph a much nicer task and plays a crucial 
role in some of our proofs. 
 
2.2. Basic Observations 
 
A cyclic shift of a word  is the word 

.  1 2 0n

Proposition 2 Uniform words  and 
 have the same alternating graph.  

u

nu u

Proof. Alternating relations of letters not equal to 0  
are not affected by the cyclic shift. Thus we need only to 
prove that 0u  has the same alternating relations with 
other symbols in  as it had in . 

u

Suppose ,  alternate in . Due to  being uni- 0u

form, it must be that , where  is 
0

 m

the uniform number of . In this case,  u
1

0=
m

u


 and hence the symbols ,  0u

 alternate in Cu . 
Suppose ,  do not alternate . Since  is uni-  0u u

form,  is a subword of . Also, we know  

that  cannot be the prefix of , so it must occur in  

  too. Hence, ,  do not alternate in  

.  
Taking into account this fact, we may consider 

representants as cyclic or infinite words in order not to 
treat differently the end of the word while considering a 
local part of it. 

Let us denote a clique on  vertices by nK . One 

can easily prove the following proposition. 
Proposition 3 An -uniform word that is a repre- 

sentant of n

m
K  is a word of the form  where v  is 

1-uniform word containing  letters.  

mv
n

Let us consider another simple case, the cycle  on 
 vertices. 

nC
n

Lemma 4 The word  is not a subword of 
any uniform representant of  with vertices labeled 
in consecutive order, where .  

0,1,2, ,n
1nC 

3n 
Proof. Suppose,  is a uniform representant of 1nu C   

and  is a subword of . Due to Pro- 
position 2 we may assume that  is a prefix of . 
Define i  to be the position of the -th instance of  
in  for 

= 0,1,2, ,v 

a
u

n u
v u

ai
 

< <i i

0,1a
b

, ,
a b

n . Now for all adjacent vertices 
 we have  for each . <a 1i

Vertices 0, 2 are not adjacent in 1n  and so do not 
alternate in . It follows that there is a  such that 

 or 

a  1i 
C

u 1k
0 > 2k k 12 > 0k k . 

Suppose k . Since 1 ,  and ,  are adjacent, 
we have i  and  for each . Then we have a 
contradiction . 

k

i2<

k 1<0

0<2 2 0 1

1 ii 1<0

<2<

i

kk

Suppose 1 k . Since all pairs  and the 
pair  are adjacent, we have inequalities 

k 0

0 < 2k ,j j 1
,0n  < 1j ji i

  
for each , , and  for each . 
Thus we get a contradiction  

.  

<j n 0i 

< < 0n

1< 0i in  0i 

u
1k k k

Here we introduce some notation. Let  be a 
representant of some graph  that contains a set of 
vertices 

2 < < 23 <k k 

G
 0 1=S S S a 

=
 such that  and 

0 1

0 1a S S 
S S 

nC u

S

n

. We use the notation  for the 
statement “Between every two consecutive occurrences 
of  in , for every , each symbol of 0 1  
occurs once and each symbol of 0  occurs before any 
symbol of 1 ” and the notation 0 1  for the 
statement “There are two consecutive occurrences of  
in , for at least one , such that each symbol of 

0 1  occurs between them and each symbol of  
occurs before any symbol of 1 ” Note that 

 0 1aS S a

aS S a





a

nC u
S S

n S S

a

0S

S


S  0 1S aaS  
implies  0 1aS S a  and is contrary for 1 0 . The 
quantifiers in these statements operate on pairs of 
consecutive occurrences of  in all cyclic shifts of the 
given representant. This notation may be generalized to 
an arbitrary number of sets  with the same 
interpretation. 

aS S a

a

iS

The following proposition illustrates the use of this 
notation. 

Proposition 5 Let a word  be a representant of 
some graph  containing vertices , where  
and  are adjacent. Then we have   

u
G , ,a b c ,a b

,a c
1)  being not adjacent implies that both of the 

statements 
,b c

 abca ,  acba  are true for ,  u
2)  being adjacent implies that exactly one of the 

statements 
,b c

 abca ,  acba  is true for u .  

Copyright © 2011 SciRes.                                                                                OJDM 



S. KITAEV  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                OJDM 

99






Proof. (Case 1) Since  and  alternate, at 
least one of ,  is true. If only one of 
them is true for , then  alternate in it, which is a 
contradiction with  being not adjacent. 

,a b
acba

,b c

,a c
 abca

u
,b c



(Case 2) the statement follows immediately from 
Proposition 3.  
 
3. Line Graphs of Wheels 
 
The wheel graph, denoted by n , is a graph we obtain 
from a cycle n  by adding one external vertex adjacent 
to every other vertex. 

W
C

A line graph  of a graph  is a graph on the 
set of edges of  such that in  there is an edge 

 if and only if edges  are adjacent in . 

 L G
G

G
L G

L W


 ,a b ,a b G

Theorem 6 The line graph  is not repre- 
sentable for each .  

1n

3n 
Proof. Let us describe  1nL W   first. Denote edges 

of the big (external) cycle of the wheel nW  by 

0 1  in consecutive order and internal edges that 
connect the inside vertex to the big cycle by 0 1  
so that an edge 

, , , ne e e
, ,i i , ni

ji  is adjacent to je  and 1je   for 
 and i  is adjacent to , . 0 <j n n n 0

In the line graph 1n  the vertices 0 1 n  
form a cycle where they occur consecutively and the 
vertices 0 1  form a clique. In addition, vertices 

e
 

e
L W  , ,e e ,e

, , , ni i i
ji  are adjacent to je , 1je 

 

 and  is adjacent to , 
. 

ni ne

0e
Suppose that 1n  is the alternating graph of 

some word that, due to Theorem 1, can be chosen to be 
uniform. Now we deduce a contradiction with Lemma 4. 

L W

Let  be the alphabet E  : 0je j  n , I  be the 
alphabet  and a word  on the alphabet 

 be the uniform representant of . Due to 
Proposition 2, we may assume . 

 : 0ji j   u
 nL W

=u i

n
E  I 1

0 0

As we know from Proposition 3, the word  I u

0 0=v i
  is 

of the form , where  is 1-uniform and . Let 
us prove that  is exactly  or 

. 

mv
v

v

0 1, , , ni i i

0 1, , , ,n ni i i i 

 

1

Suppose there are some  such that  , 2, ,k   n

 , , ,0 1
=

i i i ik
v i

 0 1 ki i i . Note, that  due to  being  v= k

1-uniform. The supposition implies that the statement 
 0 1 0ki i i i i 

i

 is true for . The vertex 1  is neither 
adjacent to  nor to . By Proposition 5 this implies 

u e

ki
 0 1 0i e i i   and  0 1 0k  are true for . Taking into 

account the previous “for all” statement, we conclude 
that both of 

i i e i u

 0 1 1 0  and 0 1 1 0  are true for u , 
which contradicts Proposition 5 applied to . So, 
there are only two possible cases, i.e.,  
and . 

i e i i

i

i i e i 
0 1 1, ,i i e

0 1 2, ,i v= ,v i nv



=v i v 0 1 1

Using the same reasoning on a triple ji , 1ji  , 1je  , 
by induction on , we get 0 1v i  for the 
first case and  for the second. 

1j 
= , ,n nv i i

= , ,i , ni

0 1 1

It is sufficient to prove the theorem only for the first 
case, since reversing a word preserves the alternating 
relation. 

, ,i i 

By Proposition 5 exactly one of the statements 
 0 0 1 0i e e i ,  0 1 0 0i e e i  is true for u . et us prove that 

it is the statement 
 L

 e i . 0 0e 1 0

Applying Proposition 5 to the clique   we 
have that exactly one of ,  is true. 
Applying Proposition 5 to  we have that both of 

i
0 1 1, ,i i e

 0 1 1 0i e i i 0 1 1 0i i e i
0 2 1, ,i i e



 0 1 2 0i e i i  and  1 0i0 2  are true. The statement i i e
 0 1 1 0i e i i  contradicts  0 2 1 0i i e i  since we have  
 0 1 2 0i i i i . Hence  e i0 1 1 0

Now applying Proposition 5 to 0i ,  and  we 
have 

i i  is true. 

0e i1
 0 0 1 0i e i i . Taking into account  and 

Proposition 5 applied to the clique  0 0 1  we 
conclude that 

 0 1 1i i e i
, ,i e e




0

 0 0 1 0i e e i  is true. In other words, 
between two consecutive  in  there is  that 
occurs before . 

0i u 0e

1

Using the same reasoning, one can prove that the 
statement 

e

 0n n ni e e i  and the statements  1j j j ji e e i  
for each  are true for . Let us denote this set of 
statements by (*). 

<j n u

 

 

Figure 3.The wheel graph W5 and its line graph. 
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The vertex 0  is not adjacent to the vertex 1ne i   but 
both of them are adjacent to , hence, by Proposition 5,  0i

somewhere in  the word  occurs.    0, ,0 1e i in
u


1 0 0ni e i

Taking into account what we have already proved for , 
this means that we found the structure  

0 1 1 0 0 1 n  in , where 
symbols of  do not occur in gaps denoted by “

v

n ni i i e i i i e        
I

 u
 ”. 

Now inductively applying the statements (*), we 
conclude that in  there is a structure  

1 0 1 1n n n  where no symbol 1n

u
  i e e e i    i   occurs 

in the gaps. Suppose the symbol 0  occurs somewhere 
in the gaps between 0  and ne . Since 0  and ne  are 
adjacent, that would mean that between two 0  another 

 also occurs and this contradicts the fact that n  and 

1n  are adjacent. One may prove that no symbol of  
occurs in the gaps between 0  and ne  in the structure 
we found, by using induction and arriving at a 
contradiction similar to the one above. In other words, 

0 1 n  occurs in the word E  representing the 
cycle. This results in a contradiction with Lemma 4 
which concludes the proof.  

e

u

e

ne
i 

e e e

e
e

e
E

e

 

 
4. Line Graphs of Cliques 
 
Theorem 7 The line graph  nL K  is not representable 
for each .  5n 

Proof. It is sufficient to prove the theorem for the case 
 since, as one can prove, any  contains 

an induced . 
= 5n  5nL K 







 5L K
Let  be a representant of 5  with its vertices 

labeled as shown in Figure 4. Vertices  make a 
clique in . By applying Propositions 3 and 5 to 
this clique we see that exactly one of the following 
statements is true: , ,  

u L K

 a ab

ba,0,1,

  0,1 a

 5L K

 0,1a b
axbxa  , where  and  0,1x x  is the negation of 

x . 
(Case 1) Suppose axbxa

adjacent to , , but not to 0, 1. Keeping in mind that 
 is also adjacent to 0 and 1, then applying Proposition 

5 we have that 

a b
a

  3 0,1a a a and  are 
true. But between 

  0,1 3a
x , x  there is , so we have a 

contradiction 
b

 a ba3 ,  3ab a  with Proposition 5. 
(Case 2a) Suppose  01aab  is true. The vertex  

is adjacent with , 0, but not with , 1. Applying 
Proposition 5 we have 

e
a b

 aeba  and . Taking 
into account the case condition, this implies 

 1a ea
 a0ae  

and  0a ea  which is a contradiction. 
(Case 2b) Suppose  10ab a  is true. The vertex 2 is 

adjacent with a , 1, but not with , 0. Applying 
Proposition 5 we have 

b
 2a ba  and . Again, 

taking into account the case condition this implies 
 02a a

 21a a  and  a12a , which gives a contradiction. 
(Case 3a) If  01a ba  is true, a contradiction 

follows analogously to Case 2b. 
(Case 3b) If  10a ba  is true, a contradiction 

follows analogously to Case 2a.  
 
5. Iterating the Line Graph Construction 
 
It was shown by van Rooji and Wilf [6] that iterating the 
line graph operator on most graphs results in a sequence 
of graphs which grow without bound. The exceptions are 
cycles, which stay as cycles of the same length, the claw 
graph 1,3 , which becomes a triangle after one iteration 
and then stays that way, and paths, which shrink to the 
empty graph. This unbounded growth results in graphs 
that are non-representable after a small number of 
iterations of the line graph operator since they contain 
the line graph of a large enough clique. A slight 
modification of this idea is used to prove our main result. 

K

Theorem 8 If a connected graph  is not a path, a 
cycle, or the claw graph 

G

1,3K , then  is not 
representable for .  

 nL G
4n 

Proof. Note that if H  appears as a subgraph of  
(not necessarily induced), then  is isomorphic to  

G
 nL H  is true. The vertex 3 is  

 

 

Figure 4. The clique K5 and its line graph, where edges mentioned in the proof of Theorem 4 are drawn thicker. 
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Figure 5. Iterating the line graph construction. 

 
an induced subgraph of  for all .  nL G 1n 

We first consider the sequence of graphs in Figure 5. 
All but the leftmost graph are obtained by applying the 
line graph operator to the previous graph. The last graph 
in the sequence is , and by Theorem 6, 4W  4L W  is 
non-representable. 

Now, let  be a graph that is not a star and 
that satisfies the conditions of the theorem.  contains 
as a subgraph an isomorphic copy of either the leftmost 
graph of Figure 5 or the second graph from the left. 
Thus , or respectively , is not repre- 
sentable, since it contains an induced line graph of the 
wheel . 

= ,G V E



S


G

3L G

W
G

 4L G

 L G
4

If  is a star 4k  then  is the clique kK  
and there is an isomorphic copy of the second from the 
left graph of Figure 5 in G , and  is not re- 
presentable again. 

 4L G

Note that there is an isomorphic copy of the second 
graph of Figure 5 inside the third one. Therefore the 
same reasoning can be used for  for each 

, which concludes the proof.  
 4 kL G

1k 
 
6. Some Open Problems 
 
We have the following open questions. 
 Is the line graph of a non-representable graph always 

non-representable?  
Our Theorem 8 shows that for any graph , that is 

not a path, a cycle, or the claw 1,3

G
K , the graph  nL G  

is non-representable for all . It might be possible 
to find a graph G  such that  is non-representable 
while 

4
G

n 

 L G  is. 
 How many graphs on n  vertices stay non-repre- 

sentable after at most i  iterations, ?  = 0,1,2,3, 4i
For a graph  define G  G  as the smallest integer 

such that  is non-representable for all  GkL  k G . 

Theorem 8 shows that  G  is at most 4, for a graph 
that is not a path, a cycle, nor the claw 1,3K , while paths, 
cycles and the claw have .  G = 
 Is there a finite classification of prohibited subgraphs 

in a graph G  determining whether  L G  is repre- 
sentable?  

There is a classification of prohibited induced 
subgraphs which determine whether a graph  is the 
line graph of some other graph 

G
H . It would be nice to 

have such a classification, if one exists, to determine if 
 L G  is representable. 
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