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Abstract 
One great surprise discovered in modern physics is that all elementary particles exhibit the prop-
erty of wave-particle duality. We investigated this problem recently and found a simple way to ex-
plain this puzzle. We proposed that all particles, including massless particles such as photon and 
massive particles such as electron, can be treated as excitation waves in the vacuum, which be-
haves like a physical medium. Using such a model, the phenomenon of wave-particle duality can 
be explained naturally. The key question now is to find out what kind of physical properties this 
vacuum medium may have. In this paper, we investigate if the vacuum can be modeled as an elas-
tic solid or a dielectric medium as envisioned in the Maxwell theory of electricity and magnetism. 
We show that a similar form of wave equation can be derived in three cases: (1) By modelling the 
vacuum medium as an elastic solid; (2) By constructing a simple Lagrangian density that is a 3-D 
extension of a stretched string or a vibrating membrane; (3) By assuming that the vacuum is a di-
electric medium, from which the wave equation can be derived directly from Maxwell’s equations. 
Similarity between results of these three systems suggests that the vacuum can be modelled as a 
mechanical continuum, and the excitation wave in the vacuum behaves like some of the excitation 
waves in a physical medium. 
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1. Introduction 
It is well known that all particles in nature have a peculiar property called the wave-particle duality [1] [2]. That 
is, a particle (such as a photon) can behave like a wave and also like a corpuscular object. More than three hun-
dred years ago, there was a debate between Newton and Huygens about the behavior of light. Newton thought 
that light behaved like a particle [3], while Huygens thought that light is a wave [4]. Later in the 19th century, 
Maxwell and Hertz demonstrated that light is indeed an electromagnetic wave [5]. This was a monumental dis-
covery. However, Einstein in 1905 studied the photoelectric effect [6] and showed that light behaves more like a 
particle. So, we can only accept that light has both particle properties and wave properties. This is called “wave- 
particle duality”. 

Interestingly, it was later discovered that not only light exhibits wave-particle duality, other particles, such as 
electrons, also show wave-particle duality [7] [8]. In fact, it was shown by Louis de Broglie that the momentum 
of an electron is inversely proportional of its wavelength [9]. One can even take advantage of the wave property 
of electrons to make an electron microscope. Later, it was discovered experimentally that particles other than 
electrons, such as neutrons, also exhibit wave-particle duality [10]. More surprisingly, it was found that even 
atoms [11] and molecules [12], which make up matters, also possess properties of wave in diffraction experi-
ments. These results strongly suggested that matter is made up by waves. 

The question then is: Is the wave making up matter a physical wave or a probability wave? In the convention-
al theory of quantum mechanics, particles are treated as pointed objects. The wave property is only related to 
probability. That is, the quantum wave function gives the probability of finding a particle at a particular space 
and time. This interpretation is called “the Copenhagen Interpretation” [13], which had been the standard teach-
ing of quantum mechanics for a long time. Nevertheless, some well-known physicists still had reservations 
about this interpretation. For example, Einstein had expressed his disapproval in a famous comment: “God does 
not play dice!” [14] 

We think it is more natural to regard the particle as a physical wave, more exactly, the excitation wave of the 
vacuum medium. This excitation looks like a wave in a microscopic view; but in a macroscopic view, it looks 
like a particle. This phenomenon is well known to physicists studying condensed matter. For example, the pho-
non is a vibrational excitation wave in a mechanical medium; but it can be treated as a quasi-particle in a ma-
croscopic view. We know at least one particle, i.e., the photon, is indeed an excitation wave. In fact, we know it 
is an electromagnetic wave in the microscopic view. But it can also exhibit the property of a particle in a ma-
croscopic view, such as in the case of the photo-electric effect. 

We showed previously that this physical wave hypothesis can give remarkable results [15]-[17]. The basic 
assumptions of our model are:  

(a) The particle is a physical wave rather than a probability wave; it behaves just like a quasi-particle. 
(b) The vacuum is a continuous medium, which can be excited by an energetic stimulation. The excitation 

wave can travel within this medium in long distance without energy loss (just like electrons in a superconductor 
or phonons in a superfluid). 

(c) Different excitation waves of the vacuum medium make up different types of particles observed in the 
physical world. Both fermions and bosons are excitation waves of the same vacuum medium. 

Based on these assumptions, one can explain a large number of quantum observations [15]-[17]. The key 
question now is how to determine the physical properties of the vacuum medium. This question had been ex-
plored before. In the 19th century, many scientists believed that the empty space between matters was filled with 
a medium called “aether”. They assumed that aether is the medium that carries the electro-magnetic wave. This 
hypothesis, however, became disfavored later with the development of the special theory of relativity. The major 
reason for this disfavoring is because the aether model failed to explain the results of the Michelson-Morely ex-
periment, which did not detect any relative movement between aether and the planet Earth. 

Here, we would like to point out the difference between our model and the aether hypothesis. The aether was 
hypothesized to fill in the space between matters: it is a medium for the propagation of light only [18]. The 
aether had nothing to do with matter itself. In our model, not only electromagnetic waves (photons), but all par-
ticles, including sub-atomic particles that make up matters in the universe, are excitation waves of the vacuum 
medium. Thus, when matters (such as a planet) move through the vacuum medium, there is no resistance. There 
is no wonder that any attempt to detect the Earth’s movement through the vacuum medium will fail. This ex-
plains the null results of experiments like those conducted by Michelson and Morely [19]. 
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In order to make our model convincing, we need to address two basic questions: (1) What are the properties 
of the vacuum medium? (2) Can we derive the wave equation for the particle based on the physical properties of 
the vacuum? The purpose of this paper is trying to answer these questions. Here, we will consider three cases: 
First, we will show that, the vacuum can be modelled conceptually as an elastic solid, based on which the wave 
equation for its excitation waves can be derived. Second, we will treat the vacuum as a 3-dimensional mechani-
cal medium which is an extension from a 1-D (stretched string) and 2-D (rubber membrane) systems. We show 
that we can derive the proper wave equation by constructing a Lagrangian density generalized from the Lagran-
gian densities of the 1-D and 2-D systems. Third, we will model the vacuum as a dielectric system as envisioned 
by Maxwell. The wave equation obtained in this case has very similar form as that of an elastic solid. Results of 
our investigation suggest that the vacuum indeed behave like a continuous mechanical medium. Implications of 
these findings will be discussed in details. 

2. Modelling the Vacuum as an Elastic Solid 
Here we will model the vacuum conceptually as an elastic solid. It is well known that many different types of 
excitation waves can be excited in such a medium. Some of these excitation waves behave similarly to that of a 
photon. In the following, we will show how such photon-like wave equations can be derived if one regards the 
vacuum medium as an elastic solid. 

For an elastic solid body, the displacement and velocity fields of the differential solid element, dV (=dxdydz), 
are denoted as ri and ui (i = 1, 2, 3) (see Figure 1). The time derivative of the momentum (density ρ × velocity 
vector ui) is equal to the summation of the surface/traction force Ti and the body force fi applied. The traction 
force Ti is known to be related to the second-order stress tensor σij [20]: 

i ij jT nσ=                                              (1) 

where n = {ni} is the normal unit vector with respect to the solid element. As shown in Appendix A, the move-
ment of this solid element can be described by the following equation: 

iji i
k i

k j

u u
u f

t x x
σ

ρ ρ ρ
∂∂ ∂

+ = +
∂ ∂ ∂

                              (2) 

Here we use the convention of summing over repeated indices when they occur once as subscript and once as 
superscript. If the deformation of the elastic body is small, we can neglect the second-order terms. Recall that 
the velocity vector ui is the time derivative of the displacement ri, we have 

2

2
ij i i

i
j

u r
f

x t t
σ

ρ ρ ρ
∂ ∂ ∂

+ = =
∂ ∂ ∂

                               (3) 

If the material in the solid is linear, isotropic and the deformation is small, the strain tensor eij can be related 
to the average of the deformation gradient ri,j [21], 
 

 
Figure 1. An elastic solid body with a volume 
of V and a surface of S.                           
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( ), ,
1
2ij i j j ie r r= +                                       (4) 

where ,
i

i j
j

r
r

x
∂

=
∂

. In addition, the stress tensor for isotropic material is known to be related to the strain tensor 

according to the generalized Hook’s law with only two constants [20] [21]: 

( ), , ,2ij kk ij ij k k ij i j j ie e r r rσ λ δ µ λ δ µ= + = + +                          (5) 

where λ and µ are Lamé’s first parameter and Lamé’s second parameter. μ is also called the “shear modulus” 
[22]. Substituting Equation (5) into Equation (3), we can obtain the following equation (called the “Navier equa-
tion”), which is the fundamental governing equations for wave propagation in solid mechanics [21]: 

( ) , ,j ji i jj i ir r f rλ µ µ ρ ρ+ + + =                                     (6) 

Since there is no external force applied to the vacuum, the body force fi is zero here. Using the vector notation 
of the gradient and divergence operators, we can re-write the tensor equation of Equation (6) as the following: 

( ) ( )
2

2
2t

λ µ µ ρ ∂
+ ∇ ∇⋅ + ∇ =

∂
rr r                                  (7) 

Based on Helmholtz decomposition theorem [23], a vector r can be decomposed into a curl-free component φ 
and a divergence-free component ψ: 

ϕ= ∇ +∇×r ψ ,                                           (8) 

where 0∇⋅ =ψ . Substituting Equation (8) into Equation (7), we have 

( ) [ ]( ) [ ] [ ]
2

2
2t

λ µ ϕ µ ϕ ρ ϕ∂
+ ∇ ∇⋅ ∇ +∇× + ∇ ∇ +∇× = ∇ +∇×

∂
ψ ψ ψ  

This equation can be rearranged to become 

( )
2 2

2 2
2 22 0

t t
ϕλ µ ϕ ρ µ ρ

   ∂ ∂
∇ + ∇ − +∇× ∇ − =   

∂ ∂   

ψψ                        (9) 

Equation (9) will be satisfied if each bracketed term is equal to zero. Therefore, we can get two uncoupled wave 
equations: 

( )
2

2
2

2
2

2

2 0 (10)

0 (11)

t

t

ϕλ µ ϕ ρ

µ ρ

 ∂
+ ∇ − = ∂


∂ ∇ − = ∂
ψψ

 

Re-arranging the coefficients of Equations (10) and (11), we have 
2

2
2 2

2
2

2 2

1 0 (12)

1 0 (13)

p

s

c t

c t

ϕϕ
 ∂
∇ − = ∂


∂∇ − = ∂

ψψ
 

where ( )2pc λ µ ρ= +  is the velocity of the dilational wave (also called “primary wave/P wave”) and  

sc µ ρ=  is the velocity of the transverse wave (also called “distortional wave/secondary wave/S wave/shear 
wave”). 

These wave equations have the identical form as that of the wave equation of light. We know that light is a 
transverse wave, so is the shear wave ψ described in Equation (13). These similarities suggest that it is a good 
analogy for modelling the motion of the excitation wave in the vacuum as a transverse wave propagating in an 
elastic solid. Furthermore, Equation (13) clearly suggests that the value of the wave speed is associated with the 
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physical properties of the medium. 

3. Modelling the Vacuum as a 3-Dimensional Continuous Mechanical System 
The wave equation as shown in Equation (13) or Equation (12) may be called the “four-dimensional Laplace 
equation”. We can derive the same wave equation if we assume that the vacuum is a 3-dimensional isotropic 
medium. The key is to construct a proper Lagrangian density for the system. Then, we can apply the Euler- 
Lagrange equation based on Hamilton’s principle. In order to determine what would be a proper Lagrangian 
density for the vacuum, we will examine what will happen in a 1-D system first. Then, we will extend the same 
analysis to a 2-D system. Finally, following the same extension method, we will obtain the generalized Lagran-
gian density for the 3-D continuum. 

3.1. Wave Motion in a 1-D System 
A good example of the 1-D continuum system can be a stretched string. Thus, in order to analyze the wave mo-
tion in a 1-D system, let us examine the propagation of wave along a string. For the string showed in the Figure 
2, the distance on the string is marked by the parameter x. The string has a total length of l. From classical me-
chanics, it is well known that the Lagrangian (L) equals the kinetic energy (T) minus the potential energy (V). 
For a 1-D continuum, L is an integration of the Lagrangian density (L) along the string, 

0

d
l

L T V x= − = ∫                                     (14) 

Let us denote the mass density of the string as ρ. The kinetic energy (ΔT) for a very small segment of the 
string (length of Δx) is 

( )
21

2
T x

t
φρ ∂ ∆ = ∆  ∂ 

 

For the entire string, the kinetic energy is 
2

0

1 d
2

l

T x
t
φρ ∂ =  ∂ ∫                                    (15) 

What about the potential energy V? Again, we will look at a small segment Δx of the string, and determine the 
potential energy in this segment (ΔV). The string is stretched under tension F1 between two points. For any parts 
of the string, the deviation from the equilibrium position is very small. As shown in Figure 2, the length of the-
string over Δx is stretched during the wave motion. This stretching length is denoted as Δs. Thus, the potentia-
lenergy for this segment of the string is 

( )1V F s x∆ = ∆ −∆  
 

 
Figure 2. Wave propagation in a 1-D continuum system (a stretched 
string).                                                         
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From the inset in Figure 2, we can see 
1

22 2
2 2

2

11 1
2

s x x x
xx

φ φφ
  ∆ ∆ ∆ = ∆ + ∆ = ∆ + = ∆ + +    ∆∆      

  

When Δϕ is small, we can ignore the higher terms. So, 
2

1

2
FV x

x
φ∂ ∆  ∂ 

∆=  

and 
2

1

0

d
2

l FV x
x
φ∂ =  ∂ ∫                                    (16) 

Substituting Equations (15) and (16) into Equation (14), we have 
2 2

1

0

1 d
2 2

l FL x
t x
φ φρ

 ∂ ∂   = −    ∂ ∂     
∫  

This implies 
2 2

1
1 1
2 2

F
t x
φ φρ ∂ ∂   = −   ∂ ∂   

                                 (17) 

Applying the Euler-Lagrange equation for 1-D system,  

0
t x φφ
   ∂ ∂ ∂

′
∂

+ =   ∂ ∂ ∂∂   
                                     (18) 

where 
t
φ φ∂
=

∂
 , 

x
φ φ∂
=

∂
′ . We can obtain the wave equation, 

2 2

1 2 2 0F
x t
φ φρ∂ ∂
− =

∂ ∂
                                       (19) 

or 
2 2

2 2 2
1

1 0
x c t
φ φ∂ ∂
− =

∂ ∂
                                       (19A) 

where 1 1c F ρ= . Equation (19A) is the wave equation for a 1-D system. 

3.2. Wave Equation in a 2-D System 
Now one can extend the 1-D system into a 2-D system, an example of which can be a stretched rubber mem-
brane. We can follow the same procedure as that of the 1-dimensional string, except that the element to be con-
sidered is an area segment defined by ΔxΔy. The Lagrangian for the 2-D system is 

d dL T V x y= − = ∫∫                                   (20) 

Similar to the 1-D system, it can be shown that the kinetic energy (ΔT) and the potential energy (ΔV) over the 
area segment ΔxΔy are 

( )
21

2
T x y

t
φρ ∂ ∆ = ∆ ∆  ∂ 

 

and 
22

2

2
FV x y

x y
φ φ  ∂ ∂ ∆ =  +  ∆ ∆  ∂ ∂    
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where ρ is the density of the membrane per unit area. Substituting the above equations into Equation (20), we 
have 

22 2
21d d d d

2 2
FL x y T V x y

t x y
φ φ φρ

   ∂ ∂ ∂    = = − = −  +      ∂ ∂ ∂        
∫∫ ∫∫  

Then, 
22 2

2
1 1
2 2

F
t x y
φ φ φρ

  ∂ ∂ ∂   = −  +     ∂ ∂ ∂      
                             (21) 

Applying the generalized Euler-Lagrange equation [24], we can obtain 
2 2 2

2 2 2 2 0F
x y t
φ φ φρ

 ∂ ∂ ∂
+ − = 

∂ ∂ ∂ 
                                      (22) 

or 
2 2 2

2 2 2 2
2

1 0
x y c t
φ φ φ ∂ ∂ ∂
+ − = 

∂ ∂ ∂ 
                                     (22A) 

where 2 2c F ρ= . This is the wave equation of the 2-D continuum system. 

3.3. Wave Equation in a 3-D System 
Now, by applying same procedures as the last two sub-sections, we can extend the 2-D system into the 3-D sys-
tem. For a 3-D system, the Lagrangian density is defined as 

d d dL T V x y z= − = ∫∫∫                                        (23) 

By generalization of the 1-D and 2-D systems, it can be shown that 
22 2 2

31 d d d
2 2

F
L x y z

t x y z
φ φ φ φρ

   ∂ ∂ ∂ ∂      = −  + +        ∂ ∂ ∂ ∂          
∫∫∫  

Thus, 
22 2 2

3
1 1
2 2

F
t x y z
φ φ φ φρ

  ∂ ∂ ∂ ∂     = −  + +       ∂ ∂ ∂ ∂        
                            (24) 

Once we know the Lagrangian density of the 3-D system, we can apply the generalized Euler-Lagrange equa-
tion to obtain the equation of motion, 

2 2 2 2

3 2 2 2 2 0F
x y z t
φ φ φ φρ

 ∂ ∂ ∂ ∂
+ + − = ∂ ∂ ∂ ∂ 

 

or,  
2

2
2 2
3

1 0
c t

φφ ∂
∇ − =

∂
                                     (25) 

where the coefficient 3 3c F ρ=  is the speed of the wave. This is the general equation describing the motion 
of excitation waves in the 3-dimentional medium. If the vacuum can be modelled as such a medium and a free 
particle is an excitation wave of the vacuum, then Equation (25) will become the wave equation for the free par-
ticle. 

4. Modelling the Vacuum as a Dielectric Medium 
In Sections 2 and 3, we derived the wave equation by modelling the vacuum as an elastic solid or a 3-D mechanical 
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continuum. They yield wave equations very similar to the wave equation of light. These results suggest that the 
vacuum medium could be treated as an elastic solid, and the propagating wave is just an excitation of the me-
dium. However, there is a problem in regarding the vacuum as a true solid, since there is no rest mass in the va-
cuum. Thus, we cannot apply Newton’s law to calculate the kinetic energy of the vacuum. This means that, the 
Lagrangian density of the vacuum cannot be the same as that of the elastic solid. Therefore, the discussions in 
Section 2 and Section 3 can only serve as an analogy to demonstrate how a wave can be generated in a conti-
nuous mechanical medium. To study the wave propagation in the vacuum system, one needs to use a more rea-
listic model. 

We think the vacuum is more like a dielectric medium, which is responsible for giving rise to the electro- 
magnetic field. The physical nature of such a medium can be investigated by examining the assumptions behind 
the derivation of Maxwell’s equations. In the 19th century, there had been extensive studies on the physical na-
tures of the electro-magnetic fields. It was strongly believed that the propagation of the electro-magnetic waves 
require a dielectric medium. We should take note from these classical studies. 

In 1861-1862, Maxwell published his famous equations on electric and magnetic fields based on the earlier 
works of Coulomb, Ampère, Faraday and others. The early versions of Maxwell’s equations [5] were as the fol-
lowing: 

( )

Faraday s Law (26)

Amp re s Law (27)
Coulomb s Law or Gausss Law (28)

Gauss Law for Magnetism (2 )0 9
e

t

ε ρ

∂∇× = − ∂∇× =
∇ ⋅ =

∇ ⋅ =

BE

H J
E

B

’

’
’

’

è  

Here, E is electric field; J is electric current density; B is magnetic flux density, H is magnetic field, and ε is the 
permittivity. It is known that 

µ=B H                                           (30) 

where μ is the permeability. In free space, the permittivity is ε0 and the permeability is μ0. 
This original set of Maxwell equations has a problem. In order to satisfy the condition of conservation of 

charge, the system should obey the continuity equation 

e

t
ρ∂

∇ ⋅ = −
∂

J                                       (31) 

But from Equation (27), 

( )∇ ⋅ ∇× = ∇ ⋅H J  

which implies 
0∇⋅ =J  

This means that Equation (27) did not satisfy the continuity equation. Thus, Maxwell was not satisfied with it. 
To correct this problem, Maxwell thought an additional term t∂ ∂D  must be added into the right hand-side of 
Equation (27) [5]. The justification for adding this new term was that, in a dielectric material, there are both pos-
itive and negative charges embedded within the medium. So, when the dielectric medium is exposed to an elec-
tric field, it will induce a displacement of the dielectric charges (this is called D). A time variation of the dis-
placed charge should produce a displacement current ( dJ ), which can also affect the magnetic field. So that in 
Equation (27), one should consider not only the externally applied current J, but also the internally induced dis-
placement current dJ . That is 

total d t
∂

= + = +
∂
DJ J J J  

Then, Equation (27) now becomes 

t
∂

∇× = +
∂
DH J                                     (27A) 
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Taking the divergence of both sides of Equation (27A), 

( ) ( )
t

∂ ∇ ⋅
∇ ⋅ ∇× = ∇ ⋅ +

∂
D

H J  

It is known that ε=D E .Using Equation (28), the above equation becomes 

0e

t
ρ∂

∇ ⋅ + =
∂

J                                          (31) 

This agrees exactly with the continuity equation. 
With the addition of the displacement current, the final form of the Maxwell’s equations becomes: 

(26)

(27B)

(28)
0 (29)

e

t

t
µε

ε ρ

∂∇× = − ∂
∂∇× = + ∂

∇ ⋅ =
∇ ⋅ =

BE

EB J

E
B

 

From Equation (29), it is implied  
= ∇×B A                                               (32) 

One may notice that the vector potential A in Equation (32) is not unique. One can replace A with A + ∇X, 
(where X is any scalar function) and B will remain the same. This freedom is an example of “gauge transforma-
tion”. 

At this point, we can write down Maxwell’s equations in the vacuum. In a free space, 0=J , and 0eρ = ; 
also 0 0,µ µ ε ε= = . Thus, Maxwell’s equations in the free space now become: 

0 0

(26)

(27C)

0 (28A)
0 (29)

t

t
µ ε

ε0

∂∇× = − ∂
∂∇× = ∂

∇ ⋅ =
∇ ⋅ =

BE

EB

E
B

 

From the above Maxwell’s equations, we can derive the wave equation of the electro-magnetic wave in a free 
space. It turns out that this wave equation is the same as that describing the propagation of light. This remarka-
ble result allowed Maxwell to identify light as a kind of electro-magnetic wave. This conclusion was later con-
firmed in experiments conducted by Hertz.  

We must point out that, the above Maxwell’s equations was based on the implicit assumption that the vacuum 
behaves like a dielectric medium. By comparing Equation (27C) with Equation (27A), it is clear that the right 
hand-side of Equation (27C) is originated from the displacement current in Equation (27A). That means al-
though the current J has vanished in free space, the displacement current still remains. This is justifiable only if 
Maxwell’s assumption that the vacuum behaves like a dielectric medium is correct. If the vacuum does not be-
have like a dielectric medium, one cannot explain the presence of the displacement current term in the right hand- 
side of Equation (27C)! 

Now let us consider that: What is the Lagrangian density in the electro-magnetic system as described by 
Maxwell’s equations? Previously, L is defined as T V−  in a mechanical system. This definition does not ap-
ply directly for the vacuum medium, since the vacuum has no rest mass and thus it is difficult to define its ki-
netic energy (T). However, one can still construct a proper Lagrangian density that will give rise to the correct 
form of Maxwell’s equations. In fact, the Lagrangian density for the electro-magnetic field in the free space [25] 
is known to be 

( )2 2–1
2

= E B                                      (33) 
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( )( )1
4

A A A Aµ υ υ µ
µ υ υ µ

µ υ
= − ∂ − ∂ ∂ − ∂∑∑                    (33A) 

Here we use the covariant-contravariant four vector convention, the index  and 0,1,2,3µ υ = ;  
1 , , ,
c t x y zµ

 ∂ ∂ ∂ ∂
∂ =  ∂ ∂ ∂ ∂ 

, 1 , , ,
c t x y z

µ  ∂ ∂ ∂ ∂
∂ = − − − ∂ ∂ ∂ ∂ 

, ( ), , ,x y zA A A Aυ φ= , ( ), , ,x y zA A A Aυ φ= − − − , where  

φ  is the scalar potential and A is the vector potential. One can show that this Lagrangian density can give rise 
to the complete set of Maxwell’s equations using Hamilton’s principle [25]. 

From Maxwell’s equations in the free space, one can show that both the electric field and the magnetic field 
can propagate as an oscillating transverse wave in the vacuum [5]. Also, using Maxwell’s equations in the free 
space, one can derive a general wave equation in terms of the vector potential A: 

2
2

2 2

1 0
c t

∂
∇ − =

∂
AA                                     (34) 

where 0 01c µ ε=  is equal to the speed of light. At this point, one can easily see that there are certain com-
mon features between the mechanical systems discussed in Section 3 and the electro-magnetic field system dis-
cussed here. First, we know that the Lagrangian density for a mechanical system is consisted of quadratic terms 
of the first derivative of the field parameter ( )µφ∂ . Here in Equation (33), we see that the Lagrangian density 
for the electro-magnetic system is also consisted of “quadratic terms” of the first derivative of the vector poten-
tial ( )Aµ υ∂ . Second, if we use ψ to represent the spatial components of the vector potential A, i.e., Aµ ψ→ . 
Equation (34) would become 

2
2

2 2

1 0
c t

ψψ ∂
∇ − =

∂
                                     (35) 

This looks exactly like the wave equations (Equation (25)) derived for a 3-D continuum in Section 3. (In fact, 
ψ can be any linear combination of Aμ, and Equation (35) will still hold.) So, there is strong similarity between 
wave propagation in the vacuum and wave propagation in a continuous mechanical system. 

5. Discussions 
In this work, we conducted a comparative study of the motion of excitation waves in three different systems: (a) 
the vacuum is modelled as an elastic solid (discussed in Section 2); (b) the vacuum is modelled as a general 3-D 
continuum (discussed in Section 3); and (c) the vacuum is modelled as a dielectric medium as envisioned by 
Maxwell. The results are remarkably alike. The forms of their wave equations are identical (see Equations (13), 
(25), (35)). This similarity strongly suggests that the vacuum behaves like a continuous mechanical system, and 
the excitation wave in the vacuum follows similar rules as the excitation waves in a physical medium. 

It is known in condense matter physics that the excitation wave in a solid can behave like a particle (called 
“phonon”). Such particle-like excitations are classified as “quasi-particles”. Light, as an excitation wave in the 
vacuum, can be regarded as a real particle (called “photon”). The particle properties of photon were clearly 
demonstrated in the studies of photo-electric effect and Compton scattering. In our previous papers, we showed 
it is well justified to hypothesize that all particles in nature are different excitation modes of the vacuum medium. 
They all obey the same wave equation; different solutions can represent different particles. One can identify the 
key particle properties, including energy, momentum, and rest mass (m), from the parameters of their wave 
functions. (For details, see Ref. [15]). Furthermore, one can naturally derive the Klein-Gordon equation (for a 
scalar particle of specific m) from the wave equation of the vacuum. We show that it is a simplified wave equa-
tion which describes only the variation of the excitation wave in the longitudinal direction (i.e., parallel to the 
particle’s trajectory) [15]. Once the Klein-Gordon equation is derived, one can then easily obtain the Dirac equ-
ation to describe the motion of a fermion, such as electron [26]. Then, the Schrödinger equation can be derived 
from the Dirac equation under the condition when the Coulomb potential energy and kinetic energy are small in 
comparison to the rest mass of the particle [27]. 

Results of this work suggest that a free particle travelling through the vacuum is similar to an excitation wave 
propagating through a physical medium. Our work suggests that the physical meaning of the wave function is 
not just related to the probability of finding a particle; it can represent a real physical quantity. In fact, from 
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Equations (13), (25), (35), one can see that the wave functions in all three model systems are closely related with 
the perturbation of the “field potential”, which is connected with the “strain” of the medium, (i.e., a very tiny 
displacement of the medium elements from its equilibrium position) (See Equation (8)). As we have shown in 
the elastic solid, this strain is related to a stress tensor of the medium. Similarly, in the study of classical elec-
trodynamics, it is well known that the electro-magnetic field also possesses a stress tensor (called the “Maxwell 
stress tensor”) [28]. So, there is a close analogy between the wave motion in the vacuum and the wave motion in 
the elastic solid. 

We would like to add that our hypothesis regarding the vacuum as a physical medium is not without basis. 
Investigation on the properties of the vacuum has a very long history [18]. Although the word “vacuum” implies 
that the space is filled with emptiness, many well-known physicists (including: Isaac Newton, Robert Boyle, 
Christiaan Huygens, Augustin-Louis Cauchy, James Maxwell, George Stokes, and Hendrik Lorentz) did not be-
lieve this is true [18]. Before the end of the 19th century, most scientists thought the space between matters is 
filled with a magical dielectric medium called “aether”. Many experiments were designed to verify the existence 
of this hypothetical aether. These experiments, however, all failed. This failure caused scientists in the early 20th 
century to reject the aether hypothsis. So for a while, the vacuum was regarded as pure empty space. But later as 
quantum field theory was developed, people discovered that the vacuum can no longer be treated as emptiness. 
Instead, the vacuum was found to be very complicated. For example, according to the Dirac theory, there were 
an infinite number of negative-energy electrons at any point of the space [29] [30]. Before excitation, all energy 
levels for such negative-energy electrons are completely filled up. When the system is excited, some of the neg-
ative-energy electron will gain energy and become positive-energy electron. The hole left in the sea of negative- 
energy electron then behaves like an anti-particle of the electron (i.e., positron). 

Later, it was discovered in experiments using particle accelerators that many new particles can be created 
from collision. In order to explain these observations, it was assumed that the vacuum is full of all sorts of vir-
tual particle & anti-particle pairs [31]. Upon excitation, these virtual particles will become real particles. So 
again, the vacuum is very complicated. 

The above problems can be avoided if we assume that particles are excitations of the vacuum medium and the 
wave function represents a real physical wave. In this way, it is easy to see that excitation waves can be created 
or annihilated in any location of the medium. There is no need to assume an infinite sea of negative-energy elec-
trons. We can completely remove the assumption of the existence of unlimited amount of virtual particle pairs in 
the vacuum. 
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Appendix A: Wave Motion in an Elastic Solid 
For an elastic solid body with a volume of V and a surface of S as shown in Figure 1, the displacement and ve-
locity fields of the differential solid element, dV (=dxdydz), are denoted as ri and ui (i = 1, 2, 3). The time deriva-
tive of the momentum (density ρ × velocity vector ui) is equal to the summation of all the surface/traction force 
Ti and all the body force fi applied [20] [32]: 

d d di i i
V S V

D u V T s f V
Dt

ρ ρ= +∫ ∫ ∫                               (A1) 

(where D
Dt

 is the “material derivative”). The traction force Ti can be related to the second-order stress tensor 

σij [20]: 
i ij jT nσ=                                         (A2) 

where n = {ni} is the normal unit vector with respect to the surface S. Here we have adopted the convention of 
summing over repeated indices when they occur once as subscript and once as superscript. Substitute Equation 
(A2) into Equation (A1), 

d d di ij j i
V S V

D u V n s f V
Dt

ρ σ ρ= +∫ ∫ ∫                             (A3) 

Using the divergence theorem (Green’s theorem) [23], we can convert the surface integral for the first term on 
the right hand side into the volume integral. Assuming the volume of the system will not change in the wave 
propagation, we have 

( )d d d d
d

ij
i i

jV V V

u V V f V
t x

σ
ρ ρ

∂
= +

∂∫ ∫ ∫                           (A4) 

Recall that d
d k

k

u
t t x

∂ ∂
= +
∂ ∂

 and apply the condition of incompressibility, 0u∇⋅ = , we have 

( ) ( ) d dij
i i k i

k jV V

u u u V f V
t x x

σ
ρ ρ ρ

 ∂ ∂ ∂
+ = +  ∂ ∂ ∂    

∫ ∫  

Move all the terms to the left hand side 

( ) ( ) d 0ij
i i k

k jV

u u u f V
t x x

σ
ρ ρ ρ

 ∂∂ ∂
+ − − = 

∂ ∂ ∂  
∫  

The above equation can be satisfied if the bracketed term is zero, 

( ) ( ) ij
i i k i

k j

u u u f
t x x

σ
ρ ρ ρ

∂∂ ∂
+ = +

∂ ∂ ∂
                           (A5) 

Applying the differentiation to the two terms on the left hand side of Equation (A5), and doing a simple rear-
rangement: 

( ) iji i
i k k i

k k j

u u
u u u f

t t x x x
σρρ ρ ρ ρ
∂ ∂ ∂∂ ∂

+ + + = + ∂ ∂ ∂ ∂ ∂ 
                  (A6) 

The bracket in the left hand side of Equation (A6) should be zero because it is the equation of continuity: 

( ) 0k
k

u
t x
ρ ρ∂ ∂
+ =

∂ ∂
. Therefore, Equation (A6) can be simplified as follows: 

iji i
k i

k j

u u
u f

t x x
σ

ρ ρ ρ
∂∂ ∂

+ = +
∂ ∂ ∂

                               (A7) 

This is Equation (2) in the main text. 
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