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ABSTRACT 
It is well known that viral load of the hepatitis C 
virus (HCV) is related to the efficacy of interferon 
therapy. The complex biological parameters that 
impact on viral load are essentially unknown. 
The current knowledge of the hepatitis C virus 
does not provide a mathematical model for viral 
load dynamics within untreated patients. We car-
ried out an empirical modelling to investigate 
whether different fluctuation patterns exist and 
how these patterns (if exist) are related to host-
specific factors. Data was prospectively col-
lected from 147 untreated patients chronically 
infected with hepatitis C, each contributing be-
tween 2 to 10 years of measurements. We pro-
pose to use a three parameter logistic model to 
describe the overall pattern of viral load fluctua-
tion based on an exploratory analysis of the data. 
To incorporate the correlation feature of longitu-
dinal data and patient to patient variation, we 
introduced random effects components into the 
model. On the basis of this nonlinear mixed ef-
fects modelling, we investigated effects of host-
specific factors on viral load fluctuation by in-
corporating covariates into the model. The pro-
posed model provided a good fit for describing 
fluctuations of viral load measured with varying 
frequency over different time intervals. The aver-
age viral load growth time was significantly dif-
ferent between infection sources. There was a 
large patient to patient variation in viral load as-
ymptote.  
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1. INTRODUCTION 
Approximately 3% of the world population is infected by 
the hepatitis C virus (HCV). This virus is a single 
stranded positive sense RNA virus and does not exist as a 

single clonotype. It is found as a complex mixture of 
similar but non-identical isolates, hence, quasispecies. 
There are seven different genotypes of HCV each with a 
unique population of subtypes. The nomenclature used to 
describe these genotypes is numerical, while subtypes are 
described alphabetically. The amount of virus present in 
serum at any one time is referred to as the viral load, 
which can be measured in serum by RT-PCR (a method 
based on amplification of genomic RNA [1]). A wide 
range of viral load fluctuation over time was observed 
within some untreated patients [2].  Treatment efficacy is 
reduced when viraemia is greater than 5.7-6.0 log10 
IU/mL [3]. Knowledge of viral load fluctuations could 
lead to a more optimised treatment initiation time point.  
To date several studies have attempted to elucidate viral 
load fluctuation within untreated patients. Halfon et al. [2] 
showed that viral load fluctuation within untreated pa-
tients was significant. Arase et al. [4] illustrated the ratio 
of the maximum viral load to the minimum viral load was 
related to acute exacerbation. Pontisso et al. [5] demon-
strated that the mean difference between the maximum 
viral load and minimum viral load was significantly dif-
ferent between normal transaminases and fluctuating 
transaminases. Our previous studies [6, 7] have showed 
that viral load does change over time in some patients and 
exhibits periods of apparent stability in others.   

The complex biological parameters that impact on 
HCV viral load are essentially unknown. However, what 
is known is that the magnitude of the viral load at any one 
time represents the output of the equilibrium between 
viral production and host mediated viral clearance. The 
phenomenon of replicative homeostasis may explain viral 
load fluctuation over time within an untreated patient [8]. 
Replicative homeostasis consists of a series of autoregula-
tory feedback epicycles that link RNA polymerase func-
tion, RNA replication and viral production and presents a 
model which may rationalize why viraemia modulates 
over time. Replicative homeostasis results dynamic equi-
librium controlled by the specificity of the interactions 
between mutant or wild type envelope proteins and the 
replicas, the RNA dependant RNA polymerase (RDRP). 
In other words, a highly progressive RDRP exhibits a low 

Sc
iR

es
 C

op
yr

ig
ht

 ©
 2

00
8 



86                            J. Huang  et al. / J. Biomedical Science and Engineering 1 (2008) 85-90 

SciRes Copyright © 2008                                                                                                                          JBiSE 

fidelity of replication yielding a high intracellular concen-
tration of mutant type envelope proteins. This mutant 
population competes with wild type forms, resulting in a 
progressive increase in fidelity and a shift in the dynamic 
equilibrium which results in the generation of a dominant 
viral quasispecies and which may be reflected in a change 
in the absolute magnitude of the viral load. The rate of 
oscillation between high and low fidelity is likely to be 
influenced, in a unique way within each viral-host pairing 
by the visibility of the antigenic quasispecies to immune 
enhanced viral clearance. Low quasispecies complex is 
associated with increased antigen concentration, if the 
threshold of immune activation is passed, immune po-
tency is increased and active clearance of particular viral 
isolates can take place. The removal of the dominant qua-
sispecies may be followed by a parallel temporally mis-
matched decrease in viral load. 

Based on interaction of HIV with cells of the immune 
system, various mathematical models have been devel-
oped to fit HIV viral load data [9, 10]. These models were 
developed to describe viral dynamics during antiviral 
treatment. Thus, they cannot be used for long term inves-
tigations of viral load progression in untreated patients. 
The current knowledge of HCV does not provide a 
mathematical model for describing long term HCV dy-
namics within an untreated patient. We carried out an 
empirical modelling analysis to investigate whether dif-
ferent fluctuation patterns exist and how these patterns (if 
exist) are related to host-specific factors. The analysis 
comprised a two-step approach: first, a statistical model 
was developed for describing overall viral load fluctua-
tion as a function of time, taking individualization into 
account. Then, we examined effects of host-specific fac-
tors on viral load fluctuation by incorporating covariates 
into the model.  

A mixed effects logistic model for viral load fluctua-
tion is developed in Section 2. By sequential modelling, 
the effects of host-specific factors (covariates) on viral 
load fluctuation are investigated in Section 3. The results 
are discussed in Section 4. 
 
2. MODELLING VIRAL LOAD FLUCTUA-
TION 
2.1. Data 
The data used consisted of 147 untreated patients chroni-
cally infected with hepatitis C, each contributing between 
2 to 10 years of measurements. The study population was 
divided according to likely source of infection. Group A 
consisted of 85 individuals whose sole risk factor for ac-
quisition of hepatitis C was iatrogenic infection 
throughreceipt of HCV genotype 1 subtype b (HCV 1) 
contaminated Anti-D immunoglobulin [11]. Group B 
consisted of 62 individuals whose risk factors for acquisi-
tion of hepatitis C infection likely to be one or more of 
the followings: intravenous drug use, receipt of  
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Figure 1. For each patient viral load is plotted against time from 
the first viral load sampling. 

contaminated blood, or blood products other than Anti-D 
immunoglobulin or infection was of undefined aetiology 
(sexual). The genotype composition of Group B is 1 and 
3. 

2.2. Models for viral load fluctuation 
Plotting viral load against time post infection is a natural 
way for visualising viral load fluctuation. However, due 
to the asymptomatic nature of HCV, the exact time of 
when  infection occurred is not available for patients in 
group B. Figure 1 shows the profiles of the viral load of 
the 147 available patients against time from the first viral 
load sampling. The study duration time ranged from 24 to 
120 months (25% percentile, median, 75% percentile: 60, 
84, 108 months). The mean intervals of blood sampling 
from each patient varied from 3 to 23 months (25% per-
centile, median, 75% percentile: 9, 10, 13 months). Figure 
1 shows a wide range of viral load fluctuation in 
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Figure 2. Scatter plot of viral load overlaid with the LOWESS, 
logistic and quadratic fitted curves. 

some untreated patients. In addition, the viral load pro-
files vary between patients. To identify an appropriate 
model to describe the overall fluctuation of viral load as a 
function of time, the locally-weighted polynomial regres-
sion smoothing (the R function LOWESS) was performed 
on the data (Figure 2). The pattern obtained from the 
LOWESS shows that viral load increase over some time 
period, followed by a period of the more stabilized viral 
load. Such patterns can be described by logistic models 
[12] 

,))/)81ln()(exp(1/( ijijij ty εγβα +−−+=    (1) 
where ijy  is the logarithm (base 10) of the measurement 

of viral load for the ith patient at the jth measurement time 
(from the first viral load sampling) ijt  and the model er-

ror ijε  is assumed to be i.i.d. N (0, 2σ ). The parameter 

α is the asymptote (the limit of viral load growth), β  is 
the midpoint, the time when the most rapid viral load 
growth occurs. The scale parameter γ  is the growth time, 
time interval during which growth progresses from 10% 
to 90% of the asymptote [12]. )81ln(  is introduced into 
model (1) to facilitate interpretation of γ .  

As a comparison we fed the quadratic polynomial 
model to data as well. The fitted curves corresponding to 
the quadratic polynomial model (AIC=2896.37) and lo-
gistic model (AIC=2896.01) are also shown in Figure 2. 
As can be seen from Figure 2 both models captured the 
basic structure of the LOWESS smooth with the logistic 
one performing better at the tail.   Having a smaller AIC 
value the logistic model was selected to describe the 
overall pattern of viral load fluctuation.    

It is also evident from Figure 1 that there exists a large 
patient to patient variation in viral load fluctuation. To 
account for this patient to patient variation random com-
ponents were introduced into model (1) yielding the fol-
lowing mixed effects model 
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where ),,( iii rba  are assumed to be the i.i.d random vec-
tor, independent of the model errors and follow the nor-
mal distribution N(0,Σ ). α is replaced by ia+α  to ac-
count for patient to patient variation in the viral load as-

ymptote. α is called the fixed effect and represents the 
mean level of the viral load asymptote for the population. 

ia  is called the random effect and represents the individ-
ual patient departure from the mean level. Similarly, the 
fixed effects β  and γ  represent the mean levels of the 
midpoint and growth time for the population, respectively. 
The random effects ib and ir are the individual patient 
departures from the mean levels of the midpoint and 
growth time, respectively. 

The R package nlme [13] was used to fit nonlinear 
mixed effects models. In model (2), all three parameters 
consisted of a fixed effect term and a random effect term. 
Such models might be over parameterized. In these cases, 
the variance-covariance matrix of random effects become 
seriously ill-conditioned, making convergence difficult or 
impossible. We adopted model building strategies sug-
gested in [13] to determine an adequate but parsimonious 
model.  

We began with fitting model (2) to data. Convergence 
was achieved. However, convergence was sensitive to 
changes in the initial values and the algorithm failed to 
converge using values slightly different from the fitted 
values. Checking the fitted model we found that the esti-
mated covariance matrix Σ

)
 has off diagonal terms of 

zero. Hence, we refitted model (2) with a diagonal co-
variance matrixΣ . Then the possibility of eliminating one 
or more random effects from the model was investigated.  
First, we compared models generated by eliminating one 
of the three random effects from model (2) and found that 
the model with random components in α and β  had the 
largest likelihood value, termed as model A. Then we 
considered models generated by removing two of the 
three random effects from model (2) and found that the 
model with a random effect in α  had the largest likeli-
hood value, termed as model B. To establish the signifi-
cance of random effects, we followed the procedure de-
scribed by Verbeke and Molenberghs [14], who provide 
an outline for testing the need for random effects by com-
paring the log-likelihood between the nested models with 
and without random effects. The asymptotic null distribu-
tion of the test statistics is a mixture of Chi-squares. The 
results are summarised in Table 1. As can be seen from 
the table there are significant random effects in 
α (P<0.0001) and β  (P<0.0001). Model B was preferred. 
Hence we re-parameterized model (2) as follows 

ij

iijiij bty
εγ

βαα
+×

+−−++=
))/)81ln(

))((exp(1/()(
  (3) 

When fitting model (3) to data, we estimate the stan-
dard deviations of the random effects as 0.63 (log10IU/mL) 
and 1.32 (year) for the asymptote and midpoint of growth 
time, respectively. 

The time variable used in the model is the time from 
the first viral load sampling. It may not be related to the 
time since onset of infection. A patient can enter the study 
at any time since onset of infection. For example, some 
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Table 1. Comparisons of nested models to establish significance 
of random effects. 

Random effects   LR test P-Value 
  a  Model (1) vs Model B <0.001 
  b  Model A vs Model  A <0.001 
  c  Model A vs Model (2) Nonsignificant 

may present two months after the time of infection; others 
may present one year later. Such time differences can be 
accounted for in the model by random effects in β . Ran-
dom effects in β allow the logistic growth curve to fit 
viral load profiles measured at different time spans from 
onset of infection. Significant patient to patient variation 
in β  (P<0.001) may reflect that patients may have en-
tered the study at different time from the times of infec-
tion. The significant random effects in α (P<0.001) indi-
cates that there exist large patient to patient variation in 
the asymptote. However, from a clinical perspective our 
current understanding of hepatitis C disease is such that 
this variation is difficult to interpret with certainty. 

3. ANALYSIS OF COVARIATES 
In this section, we examined the effects of covariates on 
the viral load fluctuation by sequentially incorporating 
them into model (3). A similar approach has been used in 
[15]. The covariates considered are viral genotype, gender, 
infection source (Group A and Group B) and age (< 45 
years verses ≥ 45 years). In model (3) there are three 
fixed effects terms ,α  β and .γ  Any given covariate may 
have a significant effect on at least one of the terms. For 
example, gender had significant a effect on γ  (P<0.05) 
but not onα and .β  When a covariate was incorporated 
into the model only were significant terms retained. Inter-
actions were considered only if a fixed term was signifi-
cantly affected by at least two covariates. Initially, one 
covariate was incorporated into model (3). Incorporating 
age into model (3) failed to produce any significant term. 
Hence, three one-covariate models were produced. The 
one-covariate model with the maximum likelihood was 
selected as the optimum one-covariate model. Subse-
quently, one of the remaining covariates was incorporated 
into this model and yielded no significant term. The selec-
tion process was stopped. The process is summarized in 
Table 2. The final model selected to fit the viral load data 
is model (4) with γ  influenced by infection source and 
can be expressed as follows 

,)))/()81ln(
))((exp(1/()(

ijr

iijiij btay
εγγ

βα
=+×

+−−++=
   (4) 

where rγ represents infection source effect on the growth 
time γ .  The significance of this term was assessed using 
the F-tests (P<0.0001). 

As an alternative approach we incorporated covariates 
into model (3) using the backward elimination approach. 
The selection process began with incorporating all the  

Table 2. Sequentially incorporating covariates into model (3) to 
determine important covariates. Significant term is indicated in the 
bracket. 

Models P-value Log-
likelihood 

Time (model (3))  -946.40 
Time + gender ( γ ) <0.001 -931.34 
Time + infection source ( γ )  <0.001 -925.63 
Time + genotype  ( γ ) <0.001 -946.01 

covariates into model (3). Then non significant terms 
were removed from the model recursively. Using a 
significance level of 0.05, this approach also selected 
model (4) as the final model. 
A likelihood ratio test was used to test the difference be-
tween the fixed effects represented by model (3) and(4). 
The result favors model (4) with P<0.0001. 

Plotting the standardized residuals against the fitted 
values of model (4) and the Normal plot of the residuals 
(not shown) did not illustrate any concerns about the 
model assumptions. The individual fitted curves (Figure 
3) indicate good fits to the data, keeping in mind that the 
data were irregularly and sparsely sampled.  

The fitting of model (4) to the data is summarised in 
Table 3. The results show that the mean viral load as-
ymptote for the population was 6.44 (log10IU/mL). The 
most rapid viral load growth occurred, on average, 3.29 
years before patients entered the study. The mean growth 
time for the population was 11.04 years. The patients in 
Group A experienced, on average, significantly longer 
growth time (delta = 3.80 year) compared to those in 
Group B. 

Since all patients in Group A are female and have vi-
ral genotype 1, to separate the gender and genotype ef-
fects from the infection source effect, the previous ap-
proach to evaluating the effects of covariates by sequen-
tially incorporating them into model (3) was applied to 
Group B. No significant one-covariate model was pro-
duced. This finding is very different from the results de-
scribed earlier. Using the full data we found that all co-
variates except age had a significant effect on viral load 
growth pattern (see Table 2). One possible explanation is 
that the gender and genotype significance found in the 
previous analysis may be due to the significance of infec-
tion source. Another possibility is that number of patient 
in Group B was small and there may have not been suffi-
cient power to identify gender and genotype significance. 
 
4. CONCLUSIONS AND DISCUSSIONS 
We have developed a mixed effects logistic model for 
describing the viral load fluctuation within untreated pa-
tients with chronically infected HCV. The model’s diag-
nostic analysis indicated that the proposed model pro-
vided a good fit to the data. Due to the asymptomatic na-
ture of HCV, it is impossible to determine the exact time 
when a patient was infected. Hence the time variable used 
in the model is the time since an individual patient pre-
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sented.  
Table 3. The results of fitting model (4) to the data. 

Terms                          Value   Std.errors p-Value
α : Grand mean 6.44 0.068 <0.0001
β : Grand mean -3.29 0.223 <0.0001
γ : Grand mean 11.04 0.750 <0.0001
γ :Group B- Group A -3.80 0.444 <0.0001
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Figure 3. Viral load is ploted against time from the first viral load 
sampling, overplayed with the individual fitted curve (solid line), 
for each of 147 patients. 

Random effects in β  allow the model to fit viral load 
profiles beginning at different time from the time of in-
fection. As shown in Figure 3, partially measured viral 
load profile can be fitted by the corresponding section of 
the logistic growth curve. 

Recently, Gray et al. [15] conducted an empirical mod-
elling of HIV-RNA viral load in vertically infected chil-
dren. They chose a linear model to represent the overall 
pattern of HIV-RNA viral load among conventional poly-
nomials, change point models, and fractional models.  
They compared various algorithms to fit the linear model.  
Based on exploratory analysis of data we chose a nonlin-
ear model to describe the overall pattern of HCV viral 

load within untreated patients. We investigated effects of 
host-specific factors based on nonlinear mixed effects 
models.  

The quantification of viraemia is a snap shot in time of 
the amount of virus present. The diurnal variation in viral 
load is unknown; however, the amount of virus present at 
any one time is the outcome of the equilibrium between 
viral production (replication of genomic RNA and pro-
duction of infectious virions) and destruction of infected 
hepatocytes. Although, there is considerable patient to 
patient variation in viral load asymptote, from a clinical 
perspective our current understanding of hepatitis C dis-
ease is such that these variations are difficult to interpret 
with certainty. What is of interest is the difference in viral 
load growth time. The growth time determines the 
“speed” at which the asymptote is reached. A clinically 
important parameter is the pre-treatment viral load. Viral 
load has been established by numerous studies as an in-
dependent variable which determines outcome while on 
anti-viral treatment. Patients with a viral load value below 
6 log10 IU/mL are known to respond with higher efficacy 
to therapy [3,16]. The difference in the growth time be-
tween groups A and B would indicate that more time 
could  be afforded to the pre-treatment assessment period 
for group A while viral load remained within the range of 
optimum efficacy.  
The distinguishing feature of data presented here is the 

longitudinal nature of the viral load measurement. Group 
A represents a globally unique homogeneous cohort with 
respect to the investigation of the natural history of hepa-
titis C infection. The empirical model proposed here is the 
first attempt to describe long term viral load fluctuation in 
untreated patients. 
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