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Abstract 
 
We consider a time independent one dimensional finite range and repulsive constant potential barrier be-
tween two impenetrable walls. For a nonrelativistic massive particle projected towards the potential with en-
ergies less than the barrier and irrespective of the spatial positioning of the potential allowing for quantum 
tunneling, analytically we solve the corresponding Schrodinger equation. For a set of suitable parameters 
utilizing Mathematica we display the wave functions along with their associated probabilities for the entire 
region. We investigate the sensitivity of the probability distributions as a function of the potential range and 
display a gallery of our analysis. We extend our analysis for bound state particles confined within constant 
attractive potentials. 
 
Keywords: Quantum Tunnel Effect, Asymmetric Quantum Double-Well Potential, Quantum Standing Waves, 

Mathematica 

1. Introduction and Motivation 
 
Quantum tunneling through a finite range potential bar-
rier is a classic quantum mechanical phenomenon. The 
driving interest and the thrust studying one such scenario 
in quantum physics is the controversial incomparable 
situation vs. classical physics where particles with ener-
gies less than the potential are allowed to penetrate 
through the barrier. A well known application of quan-
tum tunneling is the successful explanation of the spon-
taneous  particle emission by certain unstable radioac-
tive nuclei [1]. Examples of the tunneling effect in scien-
tific literature are limited. The scope of the coverage of 
this phenomenon in standard quantum mechanics text-
books frequently are confined to one dimensional single 
potential barrier with initial and final free particle states 
[2-8]. Recent online resources [6] are also confined such 
that they analyze the same traditional issues addressed in 
[2-8]. One of the objectives of our investigation is to 
expand on the tunneling effect and give an extended 
example rarely discussed in mathematical quantum 
physics. In our investigation we confine our focus on one 
dimensional single potential barrier; however, we con-
sider a different set of boundary conditions describing 
the initial and final states. Analysis of the problem yields 
expressing analytically the probability distributions of 

the particle throughout the entire region. As a secondary 
objective we adopt a Computer Algebra System (CAS), 
such as Mathematica to further our analysis [9]. Mathe-
matica’s unique capability to intertwine the numeric and 
graphic modules allows us to display the results of our 
analysis investigating the “what-if” scenarios at ease. 
Ironically, a text written entirely in Mathematica on 
Quantum Mechanics completely has ignored discussing 
the quantum tunneling [7]. 

With these objectives we craft our investigation as fol-
lows. In addition to the Introduction and Motivation, in 
Section 2 we present the physics and mathematics of the 
problem leading to analytic formulations; in this section 
we also address a few issues of interest such as the im-
pact of the asymmetric potential. In order to gain physi-
cal insight, in Section 3, Numeric Analysis, utilizing 
Mathematica’s graphic and for a set of parameters we 
display the wave functions along with their associated 
probabilities for the entire region between the two walls. 
In this section also we investigate the sensitivity of the 
wave functions as a function of the potential range. In 
subsection 3, we extend our search to the bound state 
particles confined within an attractive constant finite 
range potential. In this section we also analyze the im-
pact of the asymmetric potential. We also graph the out-
put of our analysis yielding to a gallery of displays. We 
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wall at x = 0 with its  potential requires the wave func-
tion to vanish, Equation (2) yields, 

close our work with a few concluding remarks.  
 
2. Fundamentals and the Physics of the 

Problem 
 

The question that we are interested to address is posed as: 
“Situate a constant rectangular potential barrier of value 
V and a range (thickness) b at a random position between 
two impenetrable walls separated with a distance a + b + c; 
see Figure 1. Project a massive nonrelativistic particle of 
mass m with energies E < V towards the barrier and al-
low quantum tunneling. Given the scenario, evaluate the 
probability of locating the particle between the walls”. 

For the assumed parameters, a non-quantum mechani-
cal particle will bounce back and forth between the wall 
and the potential barrier; penetration is not allowed. 
However, considering the quantum mechanical phe-
nomenon, we view the scenario from a particle-wave du-
ality point of view. Allowing for tunneling, “intuitively”, 
one expects to locate the “particle” somewhere between 
the walls including the barrier. For a particle projected 
along the x-axis, the probability of locating the particle 
within and to the right edge of the barrier should depend 
on the range (thickness) of the potential. The longer the 
range the less chance of detecting the particle within and 
beyond the barrier. To quantify our expectation one needs 
to assume a set of parameters such as mass, energy and 
specification of the potential namely, {m,E,a,b,c,V}. 
Having these parameters at hand, we describe the wave 
functions according to Schrodinger equation.  

   1 sinx A kx  ; with * .A A        (3) 

Solving Equation (1) for region 2 and according to the 
case of interest, namely, E < V yields,  

 2
x xx Ce De               (4) 

where  has the dimension of the inverse length and  is 

 2

2m
= V E 


. Now we apply the required continuity 

condition across the potential boundary interface, namely, 

   1 2x a x  a   . This gives, 

 sin x xA ka Ce De                 (5) 

Also since the slopes of the wave functions across the 
boundary should match, we require  

 1 ' x a    2 ' x a  . This yields, 

   cos aAk ka Ce De    a           (6) 

Manipulating Equations (5) and (6) gives, 

 

 
2 a

tan
D=Ce

tan

k
ka

k
ka

 



  
 
 
 

               (7) 

Furthermore manipulating Equations (5) and (7) yields,  

1
sin( ) cos( )

2
a k

C A e ka ka


       

     (8) 

     2

2
'' 0

m
x E V x   


       (1) 

Similarly utilizing Equations (7) and (8) yields, 

   1
sin cos

2
a k

D A e ka ka


       

Solving Equation (1) for region 1 in Figure 1 gives,       (9) 
 1 1 1

ikx ikxx A e B e               (2) 
Now we focus on region 3 shown in Figure 1. The 

wave function is,  
2

2m
k 


Ewhere the wave number is . Since the left 

 3 3 3
ikx ikxx E e F e               (10) 

 
Here again we set ; this 

gives
3 0x a b c    

2 ( )
3 3

ik a b cE F e    . Utilizing Equation (10) yields,   

   3 sinx F k a b c x        with F*F  (11) 

Matching the wave functions across the right edge of 
the potential requires,    2 3x a b x a b      . 
This is, 

 ( ) ( ) sina b a bCe De F kc            (12) 

Combining Equations (8), (9) and (12) gives,  

     1
sin( )cosh cos( )sinh

sin

F

k
A ka b ka

kc
 


b



        

 
Figure 1. Display of a two-impenetrable walls separated 
with a distance a + b + c, and a constant potential barrier V 
with thickness b situated at an arbitrary distance a from 
one of the walls. 

 

(13) 
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In short,  
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 (14) 

where C(A), D(A) and F(A) are given by Equations (8), 
(9) and (13).  

On the other hand the wave function (x) is normal-
ized throughout the entire region. In other words, 

  2

0

| |
a b c

x dx
 

 1  

Substituting for the wave functions according to Equa-
tion (14) yields the value of the amplitude, A,   
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 
 

where {i1,i2,i3} are, 
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(15) 

Thus far we have addressed the coefficient issue; how-
ever, we may further our investigation. Matching the 
slopes of the wave functions across the right edge of the 
potential requires,    2 3' 'x a b x a b      . Im-
plementing the latter along with Equation (12) gives,  

 

 
2 ( )
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 
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             (16) 

And finally from Equations (7) and (16) we get,  

     

   

2

tan tan coth

tan tan 0

k
ka kc b

ka kc



        



k




    (17) 

Equation (17) is an equation free of amplitudes. It im-

plicitly intertwines the relevant geometric parameters of 
the potential, namely {a, b, c} to the energy of the parti-
cle, E and to the strength of the potential, V. Equation 
(17) may also be arranged as,  

     

   
2

tan tan
tanh 0

tan tan

ka kck
b

k
ka kc






 
   
    

  

   (18) 

Simply put, utilizing either Equation (17) or (18) 
evaluates the permissible, “allowed” energies, E, com-
patible with the rest of the parameters. At a first glance it 
may appear that Equation (18) which is a manifestation 
of the Equation (17) provides the same information. 
However, in Section 3 we’ll prove otherwise.  

Literature search reveals a simplified version of the 
proposed problem for a symmetrically positioned poten-
tial, namely c = a, has been somewhat analyzed [10]. 
However, the analysis of the latter is purely numeric and 
the author’s objectives of those analyses deviate from 
our own. Our analysis is purely analytical and the de-
tailed steps are conducive to final explicit results. In 
other words, having the symbolic generalized formula-
tion at hand allows us to analytically investigate sym-
metric cases as well. In short, setting c = a in Equation 
(14) gives the wave functions and the needed coefficients 
for the symmetrical potential; these are missing in [10].  
 
3. Numeric Analysis 

This section is composed of three subsections. The first 
subsection deals with the symmetric potential barrier. 
The second subsection deals with an asymmetrically po-
sitioned barrier and the last subsection is the presentation 
of the information in regards to the bound state attractive 
constant potential.  

3.1. Case 1, Symmetric Positive Potential 

In this subsection we consider a symmetrically posi-
tioned potential barrier. We set c = a; this positions the 
barrier symmetrically between the two walls. The equa-
tion describing the wave function in region 3, i.e.  3 x , 
changes accordingly. The last row of Equation (14) be-
comes     3 sin 2 x F A k a b x       and its am-
plitude according to Equation (13) changes to  

       cosh cot sinh
k

F A A a ka b 


    
 

Also the quantity i3 given in Equation (15) changes ap-
propriately. With this wave function at hand we consider 
reasonable parameters to evaluate the probability distri-
butions. We consider an electron, m·c2 = 0.5 MeV, and 
for the geometric parameters we take {a, b, c}={4, 2, 4} 
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angstrom, and we set V = 10 eV. Substituting for 197c   
Mev fm, the wave number k and the quantity  in the 
units of 1/Å become,  

 

 

2 2100. 100.
, 2 , 2

0.50764 ,0.50764

k mc E mc V
c c

E V E

    E 
 



 


 

In these quantities the energy, E, is to be entered in eV 
units.  

The chosen set of parameters is intertwined via either 
Equation (17) or Equation (18). To evaluate the permis-
sible values of energy E one may graph the left hand side 
of Equation (18) and hunt for compatible energies within 
the range 0 < E < V. Alternatively one may plot Equation 
(17) and look for its intersecting coordinates with the E 
axis. Equation (18), however, is a second order algebraic 
equation with two distinct roots. Therefore, we solve 
Equation (17) and plot functions associated with its roots 
along with the plot of the left hand side of Equation (18). 
This gives two separate graphs shown in Figure 2. 

This analysis is critical for appropriately grouping the 
roots of the equations. Without this analysis one may 
apply the unsorted roots of Equation (18) achieving un-
sightly conclusions. Overlaid plots of Equation (18) 
along with the plots of the root equations of Equation (17) 
provide the natural sorting. The red curve of top graph of 
Figure 2 is the positive root of Equation (17) while the 
green curve is the plot of Equation (18). This clearly 
shows the red curve intersects with the smaller values of 
the paired green intercepts. On the contrary, as shown on 
the bottom graph the plot of the other root of Equation 
(17) intersects at the larger values of the paired green 
intercepts. In short, with this learned insight one would 
be better off seeking the roots of Equation (17) sepa-
rately rather than seeking the roots of Equation (18). Al-
ternatively, if one chooses to utilize Equation (18) one 
would need to be cautious sorting the roots conducive the 
same previous conclusions. Having said all this, now we 
pursue evaluating the sorted roots of Equation (17). 
These are tabulated in Table 1. 

In Table 1, the first row, “Plus”, corresponds to the 
positive roots of Equation (17), and the second row, 
“Minus”, is the corresponding roots of the negative root 
equation. With these values of permissible energies we 
plot the wave functions and their associated probability 
distributions; these are shown in Figure 3. There are two 
permissible energies; their ordered list is n = {1, 2}. It is 
notable that the lower energies of each set are associated 
with the even wave functions. These are the first plots of 
graphs of each row. The wave functions are symmetrical 
about the center of the potential barrier. For a visual un-
derstanding three different colors are used to show the 
wave functions in different regions. The continuity of the  

2 4 6 8 10

2.0

E eV

0.5

1.0

1.5

 

2 4 6 8 10

E eV

2.0

E eV

0.5

1.0

1.5

 
E eV

Figure 2. The green curve is the plot of left hand side of 
Equation (18). The red curve on the left graph is the plot of 
the positive root of Equation (17), while the blue curve of 
the right plot is the display of the negative root of Equation 
(17). 
 
Table 1. The entries in the first row are the roots of Equa-
tion (17) associated with its positive root. The second row is 
the repeat of the same scenario for the negative roots. 

 Root 1 Root 2 

Plus 1.72966 6.56287 

Minus 1.82285 7.19653 

 
wave functions across the edges of the potential barrier 
clearly is depicted. The wave functions associated with 
the higher permissible energy set are depicted in the 
middle column. These wave functions are asymmetric 
and three different colors are used to show the associated 
wave functions in their respective regions. The author is 
pleased to point out that color coding concept of the re-
gional wave functions is novel and unique to this project. 

As required the wave functions are clamped at both 
ends. The lowest permissible energy is associated with 
the simplest configuration of the even wave function and 
is represented by the top graph. The latter wave function 
is a symmetrical function with respect to the center of the 
potential barrier and it does not cross the horizontal axis. 
On the contrary, the energy of the odd wave function is 
higher than the corresponding even wave function and it 
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crosses the horizontal axis; the odd wave function is rep-
resented by the middle graph. The same observations are 
true for the graphs on the second row.  

Utilizing the wave functions displayed in Figure 3 we 
display also the probability distribution associated with 
each case; these distributions are depicted in Figure 4. 
One notices that the probability distributions are distin-

guishable only for the higher permissible energies asso-
ciated with n = 2. 

To form a comprehensible opinion about the relation-
ship of the probability distributions and their associated 
potential barrier, selectively in Figure 5 we display the  
potential barrier and the probability function for one case, 
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Figure 3. From top to bottom, the first row is the even wave function associated with the lower permissible 
energy. The second row is the odd wave function associate with the higher permissible energy. The third row is 
the overlay of the first and the second rows. The parameters of the potential are {a, b, c}={4, 2, 4}.
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e.g. n = 2. 

We further our search by analyzing the sensitivity of the 
wave functions as a function of the thickness, or scientifi-
cally speaking, the range of the constant potential. For 
three cases namely for thicknesses b = 4, 1, and 0.01 ang-

strom we display the respective wave functions. At the 
outset one knows that altering the parameters of the prob-
lem, namely the thickness b would require solving the 
Equation (17) and/or (18) all over again. For instance, and 
for the sake of guidance we provide Table 2. This table 
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Figure 4. From top to bottom, the first row is the even wave function associated with the lower permissible 
energy. The second row is the odd wave function associate with the higher permissible energy. The third row is 
the overlay of the first and the second rows. 
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n,E eV 2, 7.19653{n, E (eV) = {2, 7.19653} 
2

 
Figure 5. Display of the potential barrier and the probability distributions for n = 2. The first row of graphs corresponds to 
the even wave function, and the second row of graphs corresponds to the odd wave function. 
 
Table 2. This table is similar to Table 1, and corresponds to 
the roots of Equation (17) for the barrier thickness b =4 Å. 

 Root 1 Root 2 

Plus 1.7742 6.78903 

Minus 1.77927 6.89066 

 
contains the roots of Equation (17) for b =4. 

The general features of the wave functions displayed 
in Figure 6 are somewhat the same as the corresponding 
wave functions in Figure 3. Noticeably, the wider poten-
tial hampers the tunneling effect, reducing the probabil-
ity of locating the particle in the 2nd region.  

The next two set of graphs are associated with the  
b = 1.0 and 0.01 Å, respectively. 

Here again the general features of the wave functions 
are somewhat similar to the corresponding graphs of 
Figure 3. Noticeably, the narrower potential enhances 
the tunneling, promoting the probability of locating the 
particle. 

As expected a very narrow potential barrier totally ig-
nores the tunneling. The continuity of the wave function 
for such a potential naturally is enforced. 

Analyzing these sets of plots shown in Figures 3, 4, 6, 
and 7 reveals that irrespective of the thickness of the 
barrier, the continuity of the wave functions are pre-
served. As a general observation we realize depending on 
the values of the permissible energy the number of the 
crossings of the wave functions with the x-axis increases; 
the higher the energy the larger the number of crossings. 
Also it appears the plots of Figure 8 are the only ones 
that are intuitive. These plots are corresponding to an 
almost zero barrier thickness and directly connect the 

wave functions of region 1 to region 3.   
 
3.2. Case 2, Asymmetric Positive Potential 
 
In this subsection we consider an asymmetrical potential. 
Positioning the potential barrier asymmetrically breaks 
the symmetry of the wave functions. However, it is not 
intuitive what to expect. To show the impact of the 
asymmetric potential we consider a case such as, {a, b, c} 
= {4, 2, 6}. Comparing the parameters of this case to the 
parameters of the compatible symmetrical potential 
namely {a, b, c} = {4, 2, 4} one naively expects minor 
differences. However, solving Equation (17) provides a 
set of six paired roots; these are entered in Table 3. As 
shown earlier, each set of energy corresponds to a dif-
ferent set of even and odd wave functions. Therefore, 
according to Table 3 there are six sets of wave functions. 
However, for the sake of managing the length of our 
manuscript we display only one set of wave functions; 
these are corresponding to n = 6. 

Here again for the asymmetrical potential we notice 
the wave functions are continuous across the potential 
barrier. The color codes facilitate our ability to relate the 
wave functions to the corresponding regions. The second 
column of plots is the magnified version of the same 
wave functions plotted in the first column. The last row 
is the cap stone graph; this compares the “even” and the 
“odd” wave functions. The author patiently also analyzed 
the sensitivity of the wave functions as a function of 
various geometric parameters of the potential. These are 
not reported here, but are compiled in a lengthy graphic 
atlas.  
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Figure 6. Description of these figures is the same as Figure 3. In this figure, the graphs are associated with b = 4.0 Å. 
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Figure 7. Description of these figures is the same as Figure 3. In this figure, the graphs are associated with b = 1.0 Å. 
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Figure 8. Description of these figures is the same as Figure 3. In this figure, the graphs are associated with b = 0.01 Å. 
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Table 3. Description of this table is the same as Table 1. 
However, the geometric parameters of the potential are {a, 
b, c} = {4, 2, 6}. 

 Root 1 Root 2 Root 3 Root 4 Root 5 Root 6
Plus 0.869 2.393 2.393 5.386 5.386 6.777 

Minus 0.598 1.775 3.448 6.649 6.649 7.702 

 
3.3. Case 3, Symmetric and Asymmetric  

Negative Potentials 

In this subsection we extend our analysis considering a 
bound state electron within an attractive constant finite 
range potential. Similar to what we already discussed in 
the previous subsections we consider symmetrical as 
well as asymmetrical potentials.  

For the sake of comparison we consider a double sym-
metrical potential well with geometric specifications {a, b, 
c} = {4, 2, 4}, Å and {V, h} = {−10, 5} eV, where h is the 
height of the potential barrier from the bottom of the well. 
For the chosen scenario solving Equation (17) and/or 

Equation (18) leads to only one permissible energy for the 
even and the odd wave functions. These wave functions 
along with the potential are shown in Figure 10. 

Comparing these to their counterparts of positive en-
ergy barrier in Figure 3, one realizes: first, the number 
of allowed energies are reduced form two to one, and 
second, although the energies are quite different, their 
corresponding wave functions are somewhat similar. For 
the chosen specifications of the potential namely the V 
and h by varying the thickness b we analyze its impact 
on the probability distribution. We also investigate the 
impact of the height of the potential h on the probability 
distributions as well. These results are not reported here. 
However, it is worthwhile mentioning that by deepening 
the potential V the number of the allowed bound states 
wave functions increase accordingly.  
For the asymmetrical potential and for the sake of com-
parison between the positive potential case shown in 
Figure 9, we consider a potential with geometric char-  

 

2 4 6 8 10 12 x A　°　

0

2

4

8

10

12

　　x　 n,E eV 6, 6.77752{n, E (eV) = {6, 6.77752}     x

x Å 

 
 

2 4 6 8 10 12

n,E eV 6, 6.77752{n, E (eV) = {6, 6.77752} 

x A
°　　

　0.6

　0.4

　0.2

0.2

0.4

0.6
　　x    x

x Å 

 

Copyright © 2011 SciRes.                                                                              JMP 



H. SARAFIAN 692
 

 

2 4 6 8 10 12 x　A°　

0

2

4

6

8

10

12

　　x　　 　n,E eV 6, 7.70263263n, E ev 

  
  

2 4 6 8 10 12 x A　°　
　0.4

　0.2

0.2

0.4

　　x　　 n,E eV 6, 7.70263

 
 

2 4 6 8 10 12 x A
°　　

　0.6

　0.4

　0.2

0.2

0.4

0.6
　　

n,E eV 6, 6.77752

 
 

 

n, E ev 

x Å 

x Å 

x Å 

{n, E (eV) = {6, 7.70263} 

{n, E (eV) = {6, 7.70263}  x   

 x   

   {n, E (eV) = {6, 6.77752} 

Copyright © 2011 SciRes.                                                                              JMP 



H. SARAFIAN 693 
 

2 4 6 8 10 12

　n,E eV 6, 7.70263{n, E (eV) = {6, 7.70263} 
　　   

x　A°　
　0.4

　0.2

0.2

0.4

x Å 

 
n 6

2 4 6 8 10 12 x A
°　　

　0.6

　0.4

　0.2

0.2

0.4

0.6
　　

 

Figure 9. De ption of these figu s is the same as Figure 3. The difference is {a, b, c}={4, 2, 6}. scri re
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Figure 10. Description of these figures is the same as Figure 3. The differences are, V < 0 and h = 5 eV. 
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acteristic {a, b, c} = {4, 2, 6} 

0

A . We also apply {V, h} 
={−10,5} eV. According to our result the asymmetry of 
thepotential not only breaks the symmetry of the wave 
functions but it also changes the pairing of the associated 
allowed energies. For the case under consideration the 
number of the allowed energies for the even wave func-
tions is three, where for the odd wave functions is four. 
We had no such situation for the positive asymmetrical 
potential. For the sake of visual understanding in Figure 
11 we display the wave functions along with the poten-
tial for the lowest allowed energy. 

Here again the author patiently exhausted analyzing 
the sensitivity of the wave functions and their associated 
probability distributions b arying parameters such as 

the thickness of the potential wall, b, and the height of 
the potential h. These all are compiled in a massive atlas. 
 
4. Conclusions 
 
Quantum tunneling is a curious phenomenon. It has no 
equivalent footing in classical physics. In the micro 
world it is assumed that particles with energies less than 
the potential are allowed to penetrate in the potential 
barrier gaining complex speed. Aside from trying to 
comprehend the phenomenon its detailed analysis inter 
twines with mathematical challenges. In current literature 
tunneling has been considered in one dimensional space 
with a given scenario such as free waves to describe the y v
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Figure 11. Description of these figures is the same as Figure 10. The difference is {a, b, c} = {4, 2, 6}. 
 
 

5. Acknowledgements initial and final states of a particle. In our analysis we 
consider different initial and final states revealing fresh 
features in conjunction with tunneling. Also by deploy-
ing a Computer Algebra System (CAS), such as Mathe-
matica we analyze the problem beyond its traditional 
limits. From a CAS point of view composing a single file 
containing the needed various numeric and graphic mod-
ules is an advantage especially when one needs to test 
the “what-if” scenarios. The most labor intensive analy-
sis such as searching for the sensitivity of the wave func-
tions with respect to the thickness of the potential wall, 
the height and the depth of the potential has been com-
piled at ease. In addition, having the analytic formulation 
of the problem helps to form an informed opinion about 
the mathematical issues of quantum tunneling. 
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carefully reading over the manuscript and making useful 
editorial comments. 
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