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Abstract 
 
Equations are derived for the non-linear bending of cantilever and 3-point bending of beams (with a non 
uniform moment distribution along its length) made of materials described according to Ramberg-Osgood 
behaviour (including and elastic and a plastic term with a hardening exponent). Moment for plastic collapse 
is also computed. 
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1. Introduction 
 
In a previous paper the non-linear bending of beams with 
a simple Hollomon material behaviour was obtained 
[1,2]. With this very simple material behaviour, it is pos-
sible to obtain analytic solutions. A more realistic mate-
rial will be studied in this paper, including two terms for 
the deformation: elastic and plastic. The material behav-
iour follows a Ramberg-Osgood [3] law: 
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ε is the strain, σ  represents the stress, 0σ  is the yield 
stress (that corresponding to a plastic strain of 0.2%). E, 
the modulus of elasticity (Young’s modulus) and n, the 
hardening exponent, are material constants. The first 
term usually represents the elastic strain and the second, 
the plastic part of the deformation. That is the usual case 
for most ductile metals in which unloads result in a 
straight line parallel to the elastic load [4]. But it may be 
thought as an elastic non-linear material, and then both 
terms, in Equation (1) are elastic; loading and unloading 
follow the same trace. As far as no unloading is produced 
(for example, using a proportional loading) no difference 
will be observed between both cases: elasto-plastic and 
non-linear elastic. 

Figure 1 shows three materials with the same Young’s 
modulus and yield stress but different hardening expo-
nents. These curves are plotted to different maximum 
strains that will be explained later. Although it is not 
explicit in Equation (1), the material behaviour will be 

assumed symmetric i.e. identical in tension and com-
pression (most metals behave symmetrically, and—as a 
particular case of—all isotropic materials, which behave 
identically also in all directions). 
 
1.1. Plastic Hinge 
 
Plastic collapse will take place whenever the strain is 
localized and not uniformly distributed. Considère’s cri-
terion [5] is used and sketched in Figure 2. That is the 
reason why the stresses versus strain plots, in Figure 1, 
are limited to different maximum strains, for the different 
hardening exponent. From Figure 1 it is clear that plastic 
instability take place for large plastic strains (for the ex-
ponent being considered). If the elastic contribution is 
neglected, the maximum uniform strain is limited to 1/n. 
 
1.2. Non-Linear Bending 

For a given bending moment, M, the stresses in the lon-
gitudinal direction, σ, distribute in the section replicating 
the stress versus strain plots (shown in Figure 1). Bend-
ing moment is 
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Or, because the identical material behaviour assumed 
for tension and compression 
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For a non-linear material, it is still valid to assume that  
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Figure 1. Stress versus strain plot for three materials behaving according to Ramberg-Osgood, Equation (1). 
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Figure 2. Considère’s condition (limit of the uniform deformation) is satisfied at ε = 0.104 and/or σ = 887 MPa (for the mate-
rial constants: E = 210 GPa, σ 0 = 600 MPa, n = 10). 
 
the originally flat cross-sections will remain flat after 
bending (Euler-Bernoulli’s assumption on plane-sections 
[6-8], and neglecting the effect of the shear stresses in 
wrapping the cross-sections [7]), then the longitudinal 
strain distributes linearly for the neutral plane to the top 
and bottom of the section [1]. 

max
2y
h

ε ε= −               (4) 

εmax is the maximum strain produced at the cross sec-
tion. In most cases, it will not be valid to consider that 
the neutral plane still passes through the cross-section 
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centroid (an iterative procedure to locate its position will 
be required), but, if the cross section has a double sym-
metry along the horizontal and vertical axis, then the 
neutral plane will not change its position. 

Recasting Equation (3) into strain terms  
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But in Equation (1) the strain is given as a function of 
the stress (and not vice versa), then Equation (5) can be 
expressed in stress terms as 
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After making the integral of Equation (6), the follow ing equation for M is obtained 
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Equation (7) allows computing de maximum stress in 

a section once the applied bending moment at this sec-
tion is known. The applied bending moment depends on 
the geometry of the beam, loads… but not of the material 
that the beam is made of. This Equation (7) is not linear, 

so an iterative, numerical procedure should be used. If, 
for example, a Newton-Raphson is to be used, it is con-
venient to have an explicit expression for its derivative 
with respect to the maximum stress in the section [9, 
Press et al.] 
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Figure 3 shows a 3-dimensional plot of the evolution 
of the maximum bending moment (vertical axis) for a 
square cross section (12.5 × 12.5 mm) in steel (E = 210 
GPa, n = 10) with a yield strength (εp = 0.2%) of 600 
MPa. Square symbols are plotted at increments of the 
maximum stress of 10 MPa until fulfilling Considère’s 
condition (plastic instability, 890 MPa). 
 
1.3. Of a Cantilever Beam 
 
For a horizontal cantilever beam of length L, that support 
a vertical load at its free end F, the applied bending mo-

ment varies along its length as 
( )M F L x= −                 (11) 

x represents the position along its length. For example, 
the maximum moment occurs at its fixed end, x = 0, Mmax 
= FL. For a particular beam of length L = 1 m and an 
applied load F = 10 kN, the maximum moment is 10 
kN⋅m. For a rectangular cross section of width b = 40 
mm and depth h = 40 mm, it is possible to solve itera-
tively Equation (7) for the maximum stress at this section. 
The initial guess might be obtained neglecting the elastic 
contribution in Equation (7) (introducing E = ∞): 

( )
max 2
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In the example case, it results in 656 MPa. Introducing 
this first guess into Equation (7) a bending moment is 
obtained (9.367 kN⋅m, smaller than the imposed one). 
Now the derivative in Equation (8) (dM/dσ = 2.243 ×10-5 
m3) can be used to refine the solution (σ max = 685.7 
MPa). 
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Figure 3. Evolution of the bending moment versus the max. stress and max. strain in steel plate having 12.5 mm × 12.5 mm 
cross section, E = 210 GPa, σ0 = 600 MPa, n = 10. Dots correspond to maximum stress increments of 10 MPa, from 0 to 890 
MPa. 
 

Introducing this maximum stress in the material con-
stitutive Equation (1), the maximum strain at this section 
(at the top or its bottom is obtained) is obtained: εmax = 
0.01086. 

Temporarily we shall introduce the moment that will 
produce the same maximum strain for an elastic material 
of identical cross section is 

2

max6eqe
bh EM ε=              (13) 

We shall call it elastic-equivalent-bending moment. 
For the example, Meqe = 24.3 kN⋅m. 

Summarizing, at the fixed end of the beam the actual 
bending moment is 10 kN⋅m. This moment produces a 
maximum strain of 0.01086 at the top (or bottom) of this 
cross section. Identical maximum strain is produced for 
an elastic beam (of the same geometry and modulus of 
elasticity), but with a larger moment: Meqe = 24.3 kN⋅m. 

The bending moment, M, is a function of the position 
along the cantilever beam, x (see Equation (11)). So, the 
elastic-equivalent moment, Meqe, can be derived for all 
along the cantilever beam sections. Figure 4 compares 
the actual and the elastic-equivalent moments for the 
proposed cantilever beam. 

If the strains all along the top and bottom of both 
beams: the one built of a Ramberg-Osgood material and 
the elastic one, are identical, so are displacements, angles, 
maximum deflection… From this point all the computa-

tions can be carried out for the elastic beam under the 
Meqe distribution. For example, the slope (derivative of 
the vertical displacements, v, with respect to the longitu-
dinal position, x) 

max
0 0

d 2d d
d

x x
eqeMv x x

x EI h
ε= =∫ ∫             (14) 

For the example, at the free end it results in an angle 
of 0.149 rad.  

The beam vertical deflections  
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2d d d d
x x x x
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ε= ⋅ = ⋅∫ ∫ ∫ ∫       (15) 

Any numeric integration procedure can be used to 
compute Equation (15). In the proposed example, the 
maximum deflection (at the loaded free end, x = L) is 
vmax = 108 mm. From Equations (14,15) it is clear that 
the equivalent elastic moment was a convenient concep-
tual scaffold, but are not actually required; only the 
maximum strains are needed. 

1.4. Circular Rod 

A similar analysis can be carried out for a circular solid 
cross-section. The bending moment is 

/2
2 2

0

4
h
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Recasting the vertical position into strains, that dis- 
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Figure 4. Bending moment for a cantilever beam with a vertical load at its free end (thin line). Distribution along the beam 
length of the elastic-equivalent bending moment (thick line). 
 
tributes linearly from top to bottom of the section 
(Euler-Bernoulli’s assumption on plane-sections), 
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But Ramberg-Osgood equation provides the strain as a 
function of stress, so, in stress terms (see Equation (18)). 

That should be solved numerically. Figure 5 shows 
the evolution of the maximum strain and maximum 
stress at the solid circular section and the resulting bend-
ing moment. For comparison with the previous square 
section, the diameter is chosen to obtain the same area in 
the cross section as used in Figure 3 for the square cross 
section. If both figures are compared (3 and 5, for the 
square and circular cross sections), the square section 
supports slightly larger bending moment than the circular 
one (413 vs. 389 N⋅m), for a given area and the specified 
hardening material exponent (n = 10). 

1.5. Cantilever Rod 

If a rod is used as a cantilever beam, as explained for the 
rectangular beam, the applied bending moment varies 
along its length x, see Equation (11). To compute the 
maximum stress in the different positions along its length, 

a first numeric estimation can be obtained neglecting the 
elastic contribution [1]. 
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For the proposed example, F = 10 kN, L = 1 m, the 
maximum moment is 10 kN⋅m, at the fixed cantilever 
end. If the same cross section, used for the square beam, 
is distributed in a solid circular geometry, it result in a 
radius, R = 22.57 mm. Using Equation (19) the first 
guess for the maximum stress is σmax = 694.7 MPa. Us-
ing Equation (1) the maximum strain is εmax = 0.01197. If 
these estimations are introduced in the Equation (18) for 
the moment produced by the longitudinal stresses within 
the section is 9.469 kN⋅m, smaller than the applied one 
(10 kN⋅m). Any numerical procedure should be used to 
solve Equation (18). For example, a Newton-Raphson’s; 
the derivative of the bending moment with respect to the 
maximum stress is numerically estimated in 2.072 × 10-5 
m3. Per forming iterations it results in a maximum stress 
σmax = 721.5 MPa and the corresponding maximum 
strain is εmax= 0.01607. 
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Figure 5. Evolution of the bending moment versus the max. stress and max. strain for a steel rod having a circular 14.105 mm 
diameter cross section (the same area as for the square section in Figure 3). (E = 210 GPa, σ0 = 600 MPa, n = 10). Dots corre-
spond to max stress increments of 10 MPa, from 0 to 890 MPa. 
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Figure 6. Distribution for the maximum strain along the beam length, from the fixed end to the free and vertically loaded end. 
Solid circular cross-section. The thin line represents linear elastic case (n = 1). 
 

In the same way, Equation (18) can be solved for the 
maximum strains along the different cross sections of the 
beam, as shown in Figure 6. 

The beam slopes along its length is computed from 

max
0

1 xdv dx
dx R

ε= ∫                 (20) 

And deflections  

max
0 0 0

1x dx dxdvv dx dx dx
dx R

ε= = ⋅∫ ∫ ∫      (21) 

Figure 7 represents the beam vertical deflections for 
the proposed cantilever beam. Note that if the load is 
positive (upwards), so are the deflections. (Most fre- 
quently loads are downwards because of gravity.) 

Figure 7 also represents one half of a three point 
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Figure 7. Beam deflections for a cantilever beam, loaded at its free end, with a vertical load of 10 kN (upwards), for a solid cir-
cular rod of 45.14 mm diameter (E = 210 GPa, σ0 = 600 MPa, n = 10). The thin line represents the linear elastic solution (n = 1). 
 
bending test-piece loaded at its centre with a double load, 
20 kN, of identical circular rod (45.14 mm φ). These 
deflections correspond to the displacement observed at 
the mid-plane and they do not account for probable roll 
indentations. Note that these indentations are not elastic 
(but in the case of n = 1) and Hertz’s equations [10,11] 
are strictly not applicable at the contacts with the rolls. 

2. Conclusions 

• Non-linear bending of material with a stress-strain 
behaviour described by Ramberg-Osgood’s equation 
is described. The maximum bending moments are 
provided for rectangular and circular solid sections. 
Equations are derived and a computations procedure 
is described to obtain beam slopes and deflections. 

• Close form, explicit equations are given for the 
bending moment as a function of the maximum stress 
in the section, and its derivative with respect to the 
maximum stress (that is useful for the computer im-
plementation of numerical solutions in a fast and effi-
cient way). 

• Two examples are fully described, as close as possi-
ble to real tests, under three-point bending; and 
bending of a cantilever beam with a fixed end, loaded 
at its free end. 
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