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Abstract

Equations are derived for the non-linear bending of cantilever and 3-point bending of beams (with a non
uniform moment distribution along its length) made of materials described according to Ramberg-Osgood
behaviour (including and elastic and a plastic term with a hardening exponent). Moment for plastic collapse

is also computed.
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1. Introduction

In a previous paper the non-linear bending of beams with
a simple Hollomon material behaviour was obtained
[1,2]. With this very simple material behaviour, it is pos-
sible to obtain analytic solutions. A more realistic mate-
rial will be studied in this paper, including two terms for
the deformation: elastic and plastic. The material behav-
iour follows a Ramberg-Osgood [3] law:
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e =—+0.002¢c— = 1
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eSog
eisthedrain, s representsthe stress, s, istheyield

stress (that corresponding to a plastic strain of 0.2%). E,
the modulus of easticity (Young’s modulus) and n, the
hardening exponent, are material constants. The first
term usually represents the elagtic strain and the second,
the plagtic part of the deformation. That is the usual case
for most ductile metals in which unloads result in a
straight line parallel to the elastic load [4]. But it may be
thought as an dagtic non-linear material, and then both
terms, in Equation (1) are dastic; loading and unloading
follow the sametrace. Asfar asno unloading is produced
(for example, using a proportiona loading) no difference
will be observed between both cases. dasto-plagic and
non-linear elastic.

Figure 1 shows three materials with the same Young’s
modulus and yield stress but different hardening expo-
nents. These curves are plotted to different maximum
strains that will be explained later. Although it is not
explicit in Equation (1), the material behaviour will be
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assumed symmetric i.e. identical in tension and com-
pression (most metas behave symmetrically, and—as a
particular case of—all isotropic materials, which behave
identically also in all directions).

1.1. Plastic Hinge

Plastic collapse will take place whenever the drain is
localized and not uniformly distributed. Considére’s cri-
terion [5] is used and sketched in Figure 2. That is the
reason why the stresses versus strain plots, in Figure 1,
are limited to different maximum strains, for the different
hardening exponent. From Figure 1 it is clear that plastic
instability take place for large plagtic strains (for the ex-
ponent being considered). If the elagtic contribution is
neglected, the maximum uniform strain islimited to 1/n.

1.2. Non-Linear Bending

For a given bending moment, M, the stresses in the lon-
gitudinal direction, s, distribute in the section replicating
the stress versus strain plots (shown in Figure 1). Bend-
ing moment is

h/2

M =-b ¢ ys »dy 2

-h/2
Or, because the identical material behaviour assumed
for tension and compression
h/2

M =-2b §ys >dy 3

For anon-linear materid, it is still valid to assume that
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Ramberg-Osgood, E = 210 GPa, s o = 600 MPa, n =5, 10, 20
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Figurel. Stressversusstrain plot for three materials behaving accor ding to Ramber g-Osgood, Equation (1).
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Figure 2. Considére’s condition (limit of the uniform deformation) is satisfied at e=0.104 and/or s = 887 MPa (for the mate-

rial constants. E = 210 GPa, s ( = 600 MPa, n = 10).

the originadly flat cross-sections will remain flat after
bending (Euler-Bernoulli’s assumption on plane-sections
[6-8], and neglecting the effect of the shear stresses in
wrapping the cross-sections [7]), then the longitudinal
strain distributes linearly for the neutral plane to the top
and bottom of the section [1].
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2
e=- Tyemax (4)
€mnax 1S the maximum strain produced at the cross sec-
tion. In most cases, it will not be valid to consider that

the neutral plane still passes through the cross-section
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centroid (an iterative procedure to locate its position will
be required), but, if the cross section has a double sym-

metry along the horizontal and vertical axis, then the

neutral plane will not change its position.
Recasting Equation (3) into strain terms

2 max
= e= 2b2h oes xde (5

maxO

M=-20gn &g N

0 max

But in Equation (1) the strain is given as a function of
the stress (and not vice versa), then Equation (5) can be
expressed in stressterms as

- 2 S max n-1t')
M= Ss —+ooozs—oeel—+ooozn =ds 6)
2e? 9 _9 S
max O 0o g

After making the integral of Equation (6), the follow

ing equation for M is obtained

_-bh? s, 0002°ms 2t 0.002(n+1)s U
M Gt " 2 "y
max @ (2n+1)so (n+2)ES u
_ - bh? €5 he , 000218 207 0.002(n +1)s 720 (7
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Equation (7) allows computing de maximum stress in
a section once the applied bending moment at this sec-
tion is known. The applied bending moment depends on
the geometry of the beam, loads... but not of the material
that the beam is made of. This Equation (7) isnot linear,

SO an iterative, numerical procedure should be used. If,
for example, a Newton-Raphson is to be used, it is con-
venient to have an explicit expression for its derivative
with respect to the maximum stress in the section [9,
Presset al.]

dM__-bh*sg, , 0.002°ns 7y 2>0.002(n+1)s pot oooz(n+1) -
ds e 2 + E? son (n+2)Esg (n+2)Es”e2
€3, . 0.002°ns 20 0.002(n+1)s 2ue’ i
e ®
83k (2n+1)s; (n+2)sg  gemm {;
where ment varies along itslength as
M =F(L- x 11
e = m +0.002€\s max 9) -~ (L-x) | (11)
E €So g X represents the position along its length. For example,
d the maximum moment occurs at its fixed end, X = 0, Myux
an . = FL. For a particular beam of length L = 1 m and an
o =1, 0002s . (10)  @pplied load F = 10 kN, the maximum moment is 10
m™CE s kN>m. For a rectangular cross section of width b = 40

Figure 3 shows a 3-dimensional plot of the evolution
of the maximum bending moment (vertical axis) for a
square cross section (12,5 x 125 mm) in sted (E = 210
GPa, n = 10) with a yield strength (g, = 0.2%) of 600
MPa. Square symbols are plotted at increments of the
maximum stress of 10 MPa until fulfilling Considere’s
condition (plagtic instability, 890 MPa).

1.3. Of a Cantilever Beam

For a horizontal cantilever beam of length L, that support
avertical load at its free end F, the applied bending mo-
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mm and depth h = 40 mm, it is possible to solve itera-
tively Equation (7) for the maximum stress at this section.
The initial guess might be obtained neglecting the dastic
contribution in Equation (7) (introducing E = ¥):
2(1+2n)M
max > (12)
In the example case, it resultsin 656 MPa. Introducing
this first guess into Equation (7) a bending moment is
obtained (9.367 kN>m, smaller than the imposed one).
Now the derivative in Equation (8) (dM/ds = 2.243 x10°
m°®) can be used to refine the solution (S mex = 685.7
MPa).

WIM



74 J. L. LANZAGORTA ET AL.

b =12.5mm, h=12.5 mm, Ds ax = 10 MPa
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Figure 3. Evolution of the bending moment versus the max. stress and max. strain in sted plate having 12.5 mm x 12.5 mm
cross section, E = 210 GPa, sq = 600 MPa, n = 10. Dots correspond to maximum stress increments of 10 MPa, from 0 to 890

MPa.

Introducing this maximum stress in the material con-
gtitutive Equation (1), the maximum strain at this section
(at the top or its bottom is obtained) is obtained: €na =
0.01086.

Temporarily we shall introduce the moment that will
produce the same maximum strain for an elastic material
of identical cross section is

_ bh’E

e max
“ 6

M

(13)

We shall call it dastic-equivalent-bending moment.
For the example, Mege = 24.3 KN>m.

Summarizing, at the fixed end of the beam the actual
bending moment is 10 kN>m. This moment produces a
maximum strain of 0.01086 at the top (or bottom) of this
cross section. Identical maximum strain is produced for
an eastic beam (of the same geometry and modulus of
elasticity), but with alarger moment: Mg = 24.3 KN>m.

The bending moment, M, is a function of the position
along the cantilever beam, X (see Equation (11)). So, the
elastic-equivalent moment, Mg, can be derived for all
along the cantilever beam sections. Figure 4 compares
the actua and the eastic-equivaent moments for the
proposed cantilever beam.

If the drains all aong the top and bottom of both
beams:. the one built of a Ramberg-Osgood material and
the dlastic one, areidentical, so are displacements, angles,
maximum deflection... From this point all the computa-
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tions can be carried out for the elagtic beam under the
Mege distribution. For example, the slope (derivative of
the vertical displacements, v, with respect to the longitu-
dina position, X)

dV xMeqe 2><
_:O—‘ dx=—=¢ dx 14
dx , El hoC?max (14)

For the example, at the free end it results in an angle
of 0.149rad.
The beam vertical deflections

XXM X X
V= 00— dxodx :g(‘x‘ymaxdxxjx (15)
00 El hOO

Any numeric integration procedure can be used to
compute Equation (15). In the proposed example, the
maximum deflection (at the loaded free end, x = L) is
Vmax = 108 mm. From Equations (14,15) it is clear that
the equivalent eastic moment was a convenient concep-
tual scaffold, but are not actualy required; only the
maximum strains are needed.

1.4. Circular Rod

A similar analysis can be carried out for a circular solid
cross-section. The bending moment is
h/2

M =-4 s xyy/R? - y’dy (16)
0
Recasting the vertical position into strains, that dis-
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Cantilever, L=1m, F =10 KN
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Figure 4. Bending moment for a cantilever beam with a vertical load at its free end (thin line). Distribution along the beam

length of the eagtic-equivalent bending moment (thick line).

tributes linearly from top to bottom of the section
(Euler-Bernoulli’s assumption on plane-sections),

-4 3 €max
M =—— s e/el, - e’de (17)
max 0

But Ramberg-Osgood equation provides the strain as a
function of stress, so, in stress terms (see Equation (18)).

That should be solved numerically. Figure 5 shows
the evolution of the maximum strain and maximum
stress at the solid circular section and the resulting bend-
ing moment. For comparison with the previous square
section, the diameter is chosen to obtain the same areain
the cross section as used in Figur e 3 for the square cross
section. If both figures are compared (3 and 5, for the
square and circular cross sections), the square section
supports dightly larger bending moment than the circular
one (413 vs. 389 N>m), for a given area and the specified
hardening materia exponent (n = 10).

1.5. Cantilever Rod

If arod is used as a cantilever beam, as explained for the
rectangular beam, the applied bending moment varies
along its length x, see Equation (11). To compute the
maximum gtress in the different positions along its length,

a first numeric estimation can be obtained neglecting the
elastic contribution [1].

5, 16
§2 2ng

S » 2 (19
PR &+ =2
2ng

For the proposed example, F = 10 kN, L = 1 m, the
maximum moment is 10 kN>m, at the fixed cantilever
end. If the same cross section, used for the square beam,
is distributed in a solid circular geometry, it result in a
radius, R = 22.57 mm. Using Equation (19) the first
guess for the maximum stress is Sy = 694.7 MPa. Us-
ing Equation (1) the maximum strain is e = 0.01197. If
these estimations are introduced in the Equation (18) for
the moment produced by the longitudinal stresses within
the section is 9.469 kN>m, smaller than the applied one
(10 kN>m). Any numerical procedure should be used to
solve Equation (18). For example, a Newton-Raphson’s;
the derivative of the bending moment with respect to the
maximum stress is numerically estimated in 2.072 x 10
m®. Per forming iterations it results in a maximum stress
Smax = 721.5 MPa and the corresponding maximum
strain is €pa= 0.01607.

4R 3

€ 0@d

max 0
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D = 14.105 mm, DS hax = 10 MPa
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Figure 5. Evolution of the bending moment ver susthe max. stressand max. strain for a steel rod having a circular 14.105 mm
diameter cross section (the same area asfor the square section in Figure 3). (E = 210 GPa, so = 600 MPa, n = 10). Dotscorre-

spond to max stressincrements of 10 MPa, from 0to 890 M Pa.
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Figure 6. Digtribution for the maximum strain along the beam length, from the fixed end to the free and vertically loaded end.
Solid circular cross-section. Thethin linerepresentslinear elagtic case (n = 1).

In the same way, Equation (18) can be solved for the
maximum strains along the different cross sections of the
beam, as shown in Figure 6.

The beam dopes adong its length is computed from

dv 17~

— = A dx 20

I Rocﬁmax (20)
And deflections
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X dx dx
N

V= dx== Q0 dx >dx
O 7 'R 00 max

0

(21)

Figure 7 represents the beam vertica deflections for
the proposed cantilever beam. Note that if the load is
positive (upwards), so are the deflections. (Most fre-
guently loads are downwards because of gravity.)

Figure 7 aso represents one half of a three point
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Figure 7. Beam deflections for a cantilever beam, loaded at its free end, with a vertical load of 10 kN (upwards), for a solid cir-
cular rod of 45.14 mm diameter (E = 210 GPa, s = 600 MPa, n = 10). Thethin line representsthelinear dagtic solution (n = 1).

bending test-piece |oaded at its centre with a double load,
20 kN, of identica circular rod (45.14 mm f). These
deflections correspond to the displacement observed at
the mid-plane and they do not account for probable rall
indentations. Note that these indentations are not elastic
(but in the case of n = 1) and Hertz’s equations [10,11]
are strictly not applicable at the contacts with theralls.

2. Conclusions

Non-linear bending of material with a stress-dtrain
behaviour described by Ramberg-Osgood’s equation
is described. The maximum bending moments are
provided for rectangular and circular solid sections.
Equations are derived and a computations procedure
is described to obtain beam slopes and deflections.
Close form, explicit equations are given for the
bending moment as a function of the maximum stress
in the section, and its derivative with respect to the
maximum stress (that is useful for the computer im-
plementation of numerical solutionsin afast and effi-
cient way).

Two examples are fully described, as close as possi-
ble to real tests, under three-point bending; and
bending of a cantilever beam with a fixed end, loaded
at itsfreeend.
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