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Abstract 
In diagnostic trials, clustered data are obtained when several subunits of the same patient are ob-
served. Within-cluster correlations need to be taken into account when analyzing such clustered 
data. A nonparametric method has been proposed by Obuchowski (1997) to estimate the Receiver 
Operating Characteristic curve area (AUC) for such clustered data. However, Obuchowski’s esti-
mator gives equal weight to all pairwise rankings within and between cluster. In this paper, we 
modify Obuchowski’s estimate by allowing weights for the pairwise rankings vary across clusters. 
We consider the optimal weights for estimating one AUC as well as two AUCs’ difference. Our re-
sults in this paper show that the optimal weights depends on not only the within-patient correla-
tion but also the proportion of patients that have both unaffected and affected units. More impor-
tantly, we show that the loss of efficiency using equal weight instead of our optimal weights can be 
severe when there is a large within-cluster correlation and the proportion of patients that have 
both unaffected and affected units is small. 
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1. Introduction 
In diagnostic trials, clustered data are obtained when several subunits of the same patient are observed. For 
example, in a study by Masaryk et al. (1991) [2], two radiologists evaluated 65 carotid arteries (left and right) in 
36 patients using three-dimensional Magnetic Resonance Angiography(MRA), a potential screeening tool for 
athe- rosclerosis of the carorid arteries. These patients also underwent intra-arterial digital subtraction 
angiography (DSA), which is considered the gold standard for characterizing the degree of stenosis. The goals 
of the study were to evaluate the performance of MRA according to each reader, and to compare the 
performance for the two radiologists. 

In the above example, each patient(cluster) contributes a number of unaffected and affected units. Correlation 
exists for outcomes between two unaffected units, between two affected units, and between an unaffected and an 
affected unit from the same cluster, and between the outcomes of the two diagnostic tests from the same cluster. 
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All these correlations need to be taken into account when analyzing such clustered data. 
An ROC curve is a plot of a diagnostic test’s sensitivity versus 1-specificity. The curve is constructed by 

changing the cutpoint that defines a positive diagnostic test result. The area under the ROC curve (AUC) 
summarizes the test’s overall diagnostic ability and is typically used as a global measure of the accuracy of the 
diagnostic test. 

In the clustered data case, Obuchowski (1997) [1] proposed a nonparametric AUC estimator, and derived an 
asymptotic variance estimate for the AUC estimator, taking into account of within-cluster correlations. However, 
Obuchowski’s AUC estimator gives equal weight to all pairwise rankings within and between clusters. Clusters 
can be different in terms of cluster size, the number of unaffected units, and the number of affected units. In the 
presence of various within-cluster correlations, these differences would affect the contribution of a cluster to the 
overall variance of the AUC estimator and hence weights should vary across clusters. 

In this paper, we modify Obuchowski’s estimator by allowing the weight assigned to each pairwise ranking to 
vary across clusters, and derive the optimal weights that minimize the variance of the AUC estimator. Our 
results in this paper show that the optimal weights depends not only on the within-cluster correlation but also the 
proportion of clusters that have both unaffected and affected units. More importantly, we show that the gain of 
efficiency in comparison with two simple weighting schemes can be doubled when there is a large within-cluster 
correlation and the proportion of clusters that have both unaffected and affected units is small. 

The rest of this paper is organized as follows. In Section 2, the optimal weights for one AUC are derived and 
the estimators of the optimal weights are discussed. The relative asymptotic efficiencies in comparing our 
optimal estimator with two simple weighting schemes are studied. A data example is presented in Section 3 and 
conclusions are provided in Section 4. 

2. Optimal Weights for Estimating One Auc 
2.1. Optimal Weights Derivation 
Assume that there are n  clusters, of which 10n  clusters contain only unaffected units, 11n  clusters contain 
both unaffected and affected units, and 01n  clusters contain only affected units. The total number of clusters 
with at least one unaffected unit is given by 1 10 11n n n+ = + , and the total number of clusters with at least one 
affected unit is given by 1 01 11n n n+ = + . Without loss of generality, we assume that clusters 101, ,n  contain  
only unaffected units, clusters 10 11, ,n n ++   contain both unaffected and affected units, and clusters 1 1, ,n n+ +   
contain only affected units. Let jkX  denote the diagnostic test result of the kth unaffected unit in the jth cluster 

1( 1,2, , ), ( 1,2, , )jk r j n += ⋅ =  . Similarly, let jkY  denote the diagnostic test result of the kth affected unit in the 
jth cluster 10( 1,2, , ), ( 1, , )jk s j n n= ⋅ = +  . 

Let ( )F t  and ( )G t  be the distribution functions of jkX  and jkY , respectively. Assume that if the value of 
jkX  or jkY  exceeds a predetermined cut-off point c  the diagnostic test will be considered positive. Then the 

area under the ROC curve of the diagnostic test is 
0

( ) ( )F t dG tθ
∞

= ∫ . Obuchowski (1997) [1] proposed a 
non-parametric estimate for θ , given by  

1

10=1 = 1 =1 =1

1ˆ ( ),
j jr sn n

jk j k
j j n k k

I X Y
RS

θ
′+

′ ′
′ ′+

= ≤∑ ∑ ∑∑                                   (1) 

where 1
=1

n
jjR r+= ∑  and 

10= 1
n

jj nS s
+

= ∑ . This estimate gives equal weight to all pairwise ranking. 

Note that ( )F t  can be estimated by  
1

1
=1 =1

1ˆ ( ) ( ) ,
jrn

j jk
j kj

F t w I X t
r

+   = ≤ 
  

∑ ∑                                      (2) 

where 1 1( , 1,2, , )jw j n +=   is a set of weights assigned to the clusters with at least one unaffected unit satis- 

fying 1 10, 1, ,jw j n +> =   and 1
1=1 1n

jj w+ =∑ . Similarly, ( )G t  can be estimated by  

10

2
= 1 =1

1ˆ ( ) ( ) ,
jsn

j jk
j n kj

G t w I Y t
s+

  = ≤ 
  

∑ ∑                                   (3) 
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where 2 10( , 1, , )jw j n n= +   is a set of weights assigned to the clusters with at least one affected unit satisfying 

2 100, 1, ,jw j n n> = +   and 
10 2= 1 1n

jj n w
+

=∑ . Similar to Emir et al. (2000) [3], two simple weighting schemes 

can be considered: (1) assigning equal weights to observations, i.e., 1

101 2=1 = 1/ , /n n
j j j j j jj j nw r r w s s+

′ ′′ ′ +
= =∑ ∑ , when 

within-cluster correlation is low, and (2) assigning equal weights to clusters, i.e., 1 1 2 11/ , 1/j jw n w n+ += = , when 
within-cluster correlation is high. 

We propose to estimate θ  by  
1

10

1 2

0
=1 = 1 =1 =1

ˆ ˆˆ ( ) ( ) ( ).
j jr sn n

j j
jk j k

j j n k kj j

w w
F t dG t I X Y

r s
θ

′+∞ ′
′ ′

′ ′+ ′

= = ≤∑ ∑ ∑∑∫                         (4) 

Notice that when 1
1 =1/ n

j j jjw r r+
′′= ∑  and 1

2 =1/ n
j j jjw s s+

′′= ∑ , our estimator is the same as that in Obuchowski 

(1997) [1]. 
To derive our optimal weight, we utilize the following result which can be found in the Appendix of Emir, et 

al. (2000) [3]:  

1/ 2

=1

ˆ ( ) ( ),
n

j j
j

o nθ θ ξ −− = + +∑                                    (5) 

where  

{ }0 1

0
=1

( ) ( ) ( ),
jr

j j
j jk

kj

w
I X t F t dG t

r
ξ

∞∆
= ≤ −∑∫  

{ }1 2

0
=1

( ) ( ) ( ) ,
js

j j
j jk

kj

w
F t d I Y t G t

s
∞∆

= ≤ −∑∫  

and 0 1j∆ =  if the jth cluster contains at least one unaffected unit and =0 otherwise and 1 1j∆ =  if the jth 
cluster contains at least one affected unit and =0 otherwise. Hence, the variance of θ̂  is approximately  

=1

ˆ( ) { ( )}.
n

j j
j

Var Varθ ξ= +∑                                     (6) 

Note that  

0 1
=1

11 ( ) ,
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j j j jk
kj

w G X
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ξ θ
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and  
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=1
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j j

j jk
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F Y

s
θ

∆
= −∑  

Defining the transformation  
( ), ( ),jk jk jk jkU G X V F Y= =                                    (7) 

we can express the variance of θ̂  in (6) in terms of jkU  and jkV  as  
1
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where  
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The optimal weights can be obtained by minimizing (8) with respect to 1 1, 1, ,jw j n +=   and 2 10, 1, ,jw j n n= +   

with constraints 1 1 2 100, 1, , , 0, 1, ,j jw j n w j n n+> = > = +  , 1
11 1n

jj w+

=
=∑ , and 

10 21 1n
jj n w

= +
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Langrage Multipler Method, we have  
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and  
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where 1 2(1,0) , (0,1) ,1 (1,1)t t te e= = =  ,  
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2.2. Asymptotic Variance Comparison 

Let ôpδ  be the estimated optimal weight, 1̂δ  be the estimator of δ  using simple weighting Scheme 1: 
1

10

*
1 21 1/ , /n n

j j j j j jj j nw r r w s s+
′ ′′ ′= = +

= =∑ ∑ , and 2̂δ  be the estimator of δ  using simple weighting Scheme 2: 
*

1 2 11/ , 1/j jw n w n+ += = . 

Along the same line of the proofs for (??), (??) and (??), we can show that ˆ( )opn δ δ−  is approximately 

normal 2*(0, )opN σ , and ˆ( )in δ δ−  is approximately normal 2*(0, )iN σ , 1,2i = , with  
2 2*2 * * 1 * * 1 * * * 1 * * 1
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  

               (11) 
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Let * *2 *2
1 1RE /opσ σ=  be the asymptotic relative efficiency for comparing 1̂δ  with ôpδ , and * *2 *2

2 2RE /opσ σ=  

be the asymptotic relative efficiency for comparing 2̂δ  with ôpδ . Similar to the case of a single AUC, for the 

special case where * *
2 2
u v

σ σ= , and Corr * * *
00( , )jk jkU U ρ′ = , * * *

01Corr( , )jk jU V ρ= , we have that both *
1RE  and  

*
2RE  increases dramatically as *

01ρ  increases and ψ  decreases, and increases slowly as *
00ρ  decreases 

(Figure 1). 
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Figure 1. The effect of 01 00,ρ ρ  and 11τ  on the asymptotic relative efficiencies, 1RE  (solid line) and 2RE  (broken line).  

3. Conculsions  
We have proposed an optimal nonparametric estimator for one AUC, which modifies Obuchowski’s estimate by 
allowing different weights for the pairwise rankings within and between cluster. Optimal weights for one AUC 
has been derived by minimizing the variance of the estimate of one AUC(two AUCs’ difference). Asymptotic 
performance of the AUC estimate using our optimal weights has been studied in contrast with the two weighting 
schemes. 

We have shown that when there is a moderate within-cluster unaffected-affected units correlation and the 
proportion of clusters that contain both unaffected and affected units is small, using either of the two weighting 
schemes, corresponding to Obuchowski’s estimator or the estimator with equal cluster weights, can lead to 
dramatic efficiency loss. For this situation, the optimal weights are recommended. 
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