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Abstract 
 
The aim of the present paper is to state an asymptotic property  of Shannon’s sampling theorem type, 
based on normalized cardinal sines, and keeping constant the sampling frequency of a not necessarilly band- 
limited signal. It generalizes in the limit the results stated by Marvasti et al. [7] and Agud et al. [1]. We show 
that  is fulfilled for any constant signal working for every given sampling frequency. Moreover, we con-
jecture that Gaussian maps of the form 




2

e t ,   , hold . We support this conjecture by proving the 
equality given by  for the three first coefficients of the power series representation of 




2
e t . 
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1. Introduction and Statement of the Main 
Results 

 
A central result of the signal theory in engineering is the 
well-known Shannon-Whittaker-Kotel’nikov’s theorem 
(see for instance [9] or [11]) working for band-limited 
maps of  (i.e., for Paley-Wiener signals), and 
based on the normalized cardinal sinus map 

 2L 
 sinc t  

defined by  

   
1 if 0

sinc = sin π
if 0.

π

t

t t
t

t







,

 

Another philosopher’s stone of the signal processing 
theory is the Middleton’s sampling theorem for band step 
functions (see [8]). This result was one of the first 
modifications of the classic Sampling theorem (see [10]) 
which only works for band-limited maps. After this 
starting point many different extensions and generali- 
zations of this theorem appeared in the literature trying to 

obtain approximations of non band-limited signals (see 
for instance [2] or [4]). Good surveys on these extensions 
are [3] or [11]. 

In this paper we follow the spirit of the previous 
results in the sense of trying to obtain approximations of 
non band-limited signals by using band-limited ones by 
increasing the band size. But our approach is completely 
different to the previous ones in the sense that we keep 
constant the sampling frequency generalizing in the limit 
the results of Marvasti et al. [7] and Agud et al. [1] . 

In this setting, we state the following asymptotic 
property of Shannon’s sampling theorem type where the 
convergence is considered in the Cauchy’s principal 
value for the series and pointwise for the limit. 

Property 1 Let  be a map and :f     . 
We say that f  holds the property  for    if  

   
1

= sinclim

n

n

n k

k
f t f t k

 

        



.   (1) 

The statement of the main results is: 
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Theorem 1 Every constant signal holds property  
for every given 


  .  

Conjecture 1 The Gaussian maps, i.e. maps of the 
form 

2
e t ,    hold property  for every given 
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  .  
To support our feeling on the truth of the Conjecture 1 

we prove, without loss of generality for = 1 , that the 
Gaussian map  holds expression (1) for the three 
first coefficients of the power series representation of 

. Note that since the Gaussian map is analytical, for 
proving formula (1) is enough to show the equality 
between the coefficients of the power series repre- 
sentation of the Gaussian map and the coefficients of the 
series stated in the second member of (1) after proving 
the analitycity of the second member of (1). The 
statement of our result is the following:  

2

e t

2

e t

2

e t

Theorem 2 Let  be a Gaussian map. Then the 
three first coefficients of the power series representation 
of  are equal to the three first ones of the second 
member of expression (1).  

2

e t

The paper is divided into three sections. In Section 2 
we present the ideas and results that have inspired us to 
formulate property  and Conjecture 1. Section 3 is 
devoted to prove Theorem 1 and in Section 4 is proved 
Theorem 2. 



 
2. On the Property  and Conjecture 1 
 
We state as a property  an approximation in the limit, 
through potentials of band--limited maps of the original 
signal, based on [1] and [7]. 



In [1] is proven that given a sequence    2 n
k k

, 
, 

s l 
> 0B 2B   and  odd, there exist exactly  

band-limited signals 
n
 r

n
x  with bandwidth equal to   B

such that =n
r k

k
x s

 
 
 

. Moreover, is shown that  

0r=rx e x

n

, where  are the roots of unity of order 

 and 

  1

=0

n

r r
e



   1= sinc 2n
k

k Z
0x t s Bt



 k . 

From this is directly deduced that if we consider an 
odd number  and a band-limited signal  with band- 
width  such that the sequence of coefficients  

n f
B

;
k

f k


     
  

  with 
2B

n
 


 holds the properties stated  

in [1], then the signal admits a recomposition of Shannon 
type in the form  

   
1

= sinc

n

n

k

k
f t f t k



        



,        (2) 

where clearly the sampling frequency can be choosen 
bigger than the Nyquist one. 

Our aim is to provide a method for approximating non 
band-limited signal by band-limited ones and keeping the 
frequency of the sampling constant. And our idea is to 
take limits in (2) obtaining an equality of the form  

   
1

= sinclim

n

n

n k

k
f t f t k

 

        
 ,  

expressed as a property . 
In Section 3 we prove that property  is held by any 

constant map for every . Thus, the universe of 
non-trivial signals which hold the conjecture is nonempty 
(note that 


 

  0f t   holds ). Our feeling is that there 
are a big number of representative signals in engineering 
processes which satisfy property . 




We state as Conjecture 1 to prove that any signal of 

Gaussian type holds the statement. Note that the 
Gaussian map, which is mathematically important in 
itself, plays an important role in the signal theory 
because the Gaussian map is the unique function which 
reachs the minimum of the product of the temporal and 
frecuential width. This minimum is given by the 
Uncertainty Principle, see [6]. We believe in the working 
of Conjecture 1 and we support it through Theorem 2 
where we show the equality between the three first 
coefficients of the power series representation of the 
Gaussian map and property . For proving completely 
the conjecture, by the analyticity of the Gaussian map, is 
enough to prove that expression  



 
2

2
e sinclim

n
k

n
k

n
t k 





 
  
 
 


  defines an analytical map  

and to show that the equality works for the rest of 
coefficients. 
 
3. Proof of Theorem 1 
 
The following lemma will play a key role in the proof of 
Theorem 1. 

Lemma 3  sinc = 1
k

z k


   for every z .  

Proof. First of all we shall show that the result works 
for every t . Indeed, if , the result is straight 
because of  

t

   sinc = 1 sinc = 1 0 = 1.
k k

k t

t k t k
 



    
 

 

Therefore, from now on we assume that \t  . 
Taking simetric terms in the series we obtain  

   

  
 

  
 

    1

2 2

sin π
sinc

π

sin π sin π

π π

sin π 2 sin π ( 1)

π π

k

k

k

k

t
t k

t

t k t k

t k t k

t t t

t k t









 

  
     


 















       (3) 

On the other hand, for a given  is known \t 
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that  

 
 2
2 2

1π
= 1 2 ,

sin π

k

k

t
t

t t k








 

and therefore  

 
 

1

2 2 2

1 1 π
= .

2 sin π2

k

k t tk t t





 






       (4) 

Finally, replacing (4) in expression (3) the proof is 
over for every real number . t

The prove of the result for complex numbers is a 
consequence of the use of the Analytic Prologation 
Principle. For applying it, is enough to prove that the 
series 

k  is an analytic function. Indeed, 
by (3) the series can be written in the form  

sinc z k 

        1

2 2

sin π 2 sin π 1
sinc = .

π π

k

k k

z z z
z k

z k z



 


 

 
 

 

Obviously, the first term of the previous sum is an 
analytic map. For proving the analyticity of the second 
term of the sum we shall prove that the series  

  1

2 2

1
k

k k z








   uniformly converges on every compact set  

\L    . In fact, let  = max :s z z L  and  be  0k

such that , then for every  is 0 > 2k s 0k k <
2

k
z  for  

every . Therefore,  z L

  1

2 2 2

1 4
,

3

k

k z k





 

which guarantees the uniformly convergency of the 
series in  and the proof is over. L

Remark 4 We underline that the fact of the series 

k  defines an analytic function is a direct 
consequence of the application of the Uniform Conver- 
gence Principle for cardinal Series, see [5, pag. 70] or 
[11, pag. 22] for a more up-to-date reference. We pre- 
sent a direct approach in the proof of Lemma 3 for com- 
pletness of the arguments.  

sinc z k 

Proof of Theorem 1. Let   =f t C  be a constant 
signal and . By Lemma 3 we have   

 

 

 

1

1

sinclim

= sinclim

= sinc =lim lim = .

n

n k

n

n

n k

n

n nk

k
f t k

C t k

C t k C C








 

 

 

        

 
  

 

  
 













n

 

Thus, is shown that f  holds property  ending 

the proof.  



 
4. Proof of Theorem 2 
 
In the sequel we denote by J  a set of consecutive 
natural numbers in the form   which even- 
tually can be 

0,1,2,
 0 . By  # J  we denote the 

cardinal of the set J  and we assume the arithmetic of 
the infinity (i.e., , =kk    ), therefore by Jm  
we denote  # 1J  . 

Given a sequence  = n n J
 of real numbers, by  

 d   we denote the diameter of the sequence  , i.e., 
    11 <# n nn J . As usual by =d sup       we 

denote the integer part. 
Lemma 5 Let  = n n J

γ  be an increasing bounded 
sequence of real numbers holding the following con- 
ditions:  

1)  0 1 1= < < < < < < = supn n n
n J

a b   


   ,  

2)    1 \ 0n n n J
   

  is monotonic.  

Let  : ,f a b    be a continuous map of constant 
sign on  ,a b , eventually f  can be equal to zero. Then 
for every sequence  n  \ 0

= 
n J

 such that  
 1,k k k    and for every > 0  there exists > 0  

such that if   <d    then  

    2 2 2 1
=1

1
d <

2

M b

k k k a
k

f f x x           (5) 

and  

    2 1 2 1 2
=0

1
d < ,

2

L b

k k k a
k

f f x x           (6) 

where =
2

Jm
M

 
  

 and 
1

=
2

Jm
L

 
  

.  

Proof. For proving (5) we assume, without loss of 
generality, that  and  \ 0n n n J

 is a de- 
creasing sequence. We shall use the following notation  

0f    1  

   2 1 2 1 2
=0

, =
L

o k k k
k

T f     γ β  ,

,k



 

    2 2 2 1
=1

, =
M

e k k
k

T f    γ β  

    2 2 2 1
=1

= ,
M

le k k k
k

S f    γ  

    2 2 1 2
=0

= ,
L

re k k k
k

S f    γ  

   2 1 2 2 1
=1

= ,
M

ro k k k
k

S f    γ  
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   2 1 2 1 2
=0

= .
L

lo k k k
k

S f     γ  

For a given > 0 , since o  is a Riemann sum 
of 

eT T
f  on  ,a b , there exists 0 > 0  such that if 

  < 0d   , then  

 d < .
b

o e a
T T f x x               (7) 

Taking 
 1 =

3 b a




> 0 , since the map f  is uni-  

formly continuous on the interval  ,a b , then there 
exists 1 > 0  such that if 2 2 1k k <    then  

   2 2 <k k 1f f    and consequently if   1<d γ   

     

 

2 2 2 2
=1

1 2 2 1 1
=1

=

            < < = .
3

M

e le k k k k
k

M

k k
k

T S f f

b a

   

   





 

 





1
  (8) 

Proceeding in a similar way  

< , <  and < .
3 3

 

o re e ro o loT S T S T S
3

 
  


  (9) 

Now, it is easily deduced that  

     2 2 1 2 2 2 2 1 ,k k k k k kf f          

and  

  0 1 0 .re leS S f       

So, taking 
 2 1

0

= min ,
3 f

 


  
 
  

 if  0 = 0f    and  

2 = 1   in other case, if   2<d    then  

 0 2< <
3re leS S f .
   

Using the previous inequality,  and  we have 
that  

() ()

     = <o e o re le e re leT T T S S T S S .       (10) 

On the other hand, it is clear that  

0ro loS S                (11) 

and so, using  and   (9) (11)

      2
= < <

3e o e ro lo o ro loT T T S S T S S


.       

From here and , if (10)   2<d γ ,  

0 < .eT T   

So, taking  0 2= min ,

       

     

1 1
d

2 2

1
d < ,

2

b

e ea

b

e o a

T f x x T T

T T f x x 

  

  





γ γ

γ γ

o γ
 

which is just  as we want to show. (5)
The proof of (6) follows in an analogous way. 
Lemma 6 Let x  ,  and  k 

 
2

2

1 e
=

k x

kl x
k x


. Then for every  is k

    0 1 = 0lim x k kl x l x   uniformly in .  k
Proof. Note that for every  and every x  k  , 
 kl x  is decreasing in . k
We fixed  0,1x . For a given > 0  there exist 

 holding > 0C   <kl x
2


 for any  such that  k

2k x C  and consequently  

   1 < .k kl x l x              (12) 

On the other hand, using the power series repre- 
sentation of the exponential function and the Newton’s 
binomial,  

   
 
      

 
   

   
 

 

1

22

=0

1 12 1
2

=0 =0

2

=0

2
1 1

2

1
= 1

1 !

1 2
=

1 !

1
1

1 !

= e
1

k k

p
pp

p

p qp q p

p q

p

p

k x

l x l x

k x k x
p

p
x k

qp

x k x
p

x
k x







x x
 



 



      

  
   

 






 



 

and if  we have the following inequality  Cxk <2

     21

1 < e 1
C

k kl x l x x




 
.  

 
 

Since  21

0
lim e 1 = 0

C

x
x





 
 

 
, using the last inequa- 

lity and  the proof is over.  (12)

The following proposition will play a key role in the 
proof of Theorem 2. 

Proposition 7 Let x 
 kl x

 and  
. Then is held      1

= 1
k

k
L x




 

   
0

π 1
 and  = .lim

2 2x

L x L x


  
  

  <d
 and using the previous 

inequality and (7), if γ  then  Proof. We consider the functions    = ak kx rctgl x   
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on 
π

0,
2


 


 . Let  fixed. We note that x   k x  is  

a decreasing sequence on . It is easily deduced that 
using the Intermediate Value Theorem 

k

      

    
2 1 2

2 1 2
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       = t t ,
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k
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g x g x 


















 

and therefore  

     2 1 2

2
2 1

=
c

k k

k k

,
x x

L x
os

 




 





   (13) 

for suitable     2 1 2 2 1,k k kx x    . 

Note that   π 
0,

4k x  
 

 for all  and conse-  k 

quently 
π

0 < <
4k . Thus,  

      
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
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Since 
π

4
20

d
= 1

c

t

os t , then  

   

   

     

4
20

π
1 4

2 20 1

1 1 d
=

2 2 c

1 d 1 d
.

2 2c c

x

x

t
L x L x
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t
L x

os t os t







 
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

 
t

 (14) 

On the one hand, given > 0  clearly there exists 

0 > 0  such that if 0<x   then  

 

π

4
2

1

d
< .

cx

t

os t
             (15) 

On the other hand, using Lemma 5 for  

 
 2

1
=

c
f x

os x
,  1 =0

= r r
 

γ ,  such that   
1r r





β 

 1,k k k  

1

, ,  and , 
there exists 

2 1 2 1k k   
> 0

 1=a  x = 0b
  such that if   1<d γ  then 

   

 
1

20

1 d
< .

2 2c

x x
L x

os x

 
        (16) 

Since arctan  is a continuous map on   π
0,

4
, for 

1

 
 

  by Lemma 6 there exists 2 > 0  such that if 2<x   
then   <d 1  . 

Therefore, taking 0min 2< = ,x   
(14)

, and replacing 
 and (16)  in  we obtain  (15)

  1
< ,

2
L x   

finishing the proof.  
Proof of Theorem 2. The aim of the proof is to show 

that the limit of the three first nonzero coefficients of the 
power series representations of  

 
2
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n
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
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 
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and 
2

e t  are equal for every  and t > 0  given. 
Indeed, for every  and n  we fix the 
following notation  

0m   

   
 

2
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=
2 1 !
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 0,

, .

    (18) 

,
=0

=
m
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             (19) 

Let  
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2

2
, = e sinc

k

n

k

.g t n t k 



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

 

Note that by the analitycity is enough to consider point-  

wise convergence for all 
1

0,t



 


 . Now, using ex-  

pressions , ,  and the power series of the 
sine function, the map 

(17) (18) (19)
 ,g t n  can be written in the 

form 
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and therefore  

   2 2
, ,

=0 =0

, = 2 = 2
n

n n m n
m n m n

m m

.mg t n D t E t 
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 
 
   

For  it is clear that  = 0m

   0, 0, 0 0,

1
= = =

2

n n

n n n n
E D B C     and hence  
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n
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where  is introduced in Proposition 7 and now by 
such result we obtain 

 L 

1,2 =lim
n

n
n
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1.             (20) 

For  it follows that = 2m
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where 
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We will take the limit in each part separately. Since 

 2

1,

1
= 2

2
n

n n

n
G E

n
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,  

from  we obtain (20)

= 12lim n
n
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To determine the limit of nF , replacing each jB  
and ,j nC  by  and (18) , we get (17)
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using Proposition 7 is 
2 2 2

2π 1 π
= 2lim
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So, from here and , taking limits in  we get (22) (21)
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Note that from the results obtained for  is 
stated that the limit of the three first nonzero coefficients 
of the power series representations of  
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are equal to 
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!

m

m


, coefficients of the power series re-  

presentation of , ending the proof.  
2

e t

 
5. Conclusions 
 
By stating property   a new method for computing 
reconstructions of a given non--band limited signal is 
presented. The formula is closed and stable from a 
numerical point view which allow to implement and do 
empirical experiment for other kind of signals. Our 
feeling is that with this approach a new frame to compute 
approximations of signal is opened. 
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