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Abstract 
A (2 + 1) dimensional KdV-mKdV equation is proposed and integrability in the sense of Painlevé 
and some exact solutions are discussed. The Bäcklund transformation and bilinear equations are 
obtained through Painlevé analysis. Some exact solutions are deduced by Hirota method and ge-
neralized Wronskian method.  
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1. Introduction 
Recently high dimensional nonlinear partial differential or difference equations attract much interest. Both inte- 
grable and non-integrable equations have their physical and mathematical values but the former posses some 
special properties such as infinite conservation laws and symmetries, multi-soliton solutions, Bäcklund and 
Darboux transformation (c.f. [1]-[3]). Among these high dimensional equations some are deduced from physics 
phenomenon originally, say KP equation, but others are deduced firstly from (1 + 1) dimensional equation 
mathematically ([4]-[8]). However, the findings of new solutions or special constructions of these equations 
makes nonlinearity of equations be realized clearly, which helps the development of subject of nonlinear science. 
In this paper we will consider a (2 + 1) dimensional KdV-mKdV equation as follows  

( )2 1 1 24 4 2 2 0,t xxy y y x x y x x y
u u uu u u u u u u− −+ + − + ∂ − ∂ =                         (1) 
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where subscript means a partial derivative such as 
2

,t xy
u uu u
t x y

∂ ∂
= =
∂ ∂ ∂

 and ( )1 , , d
x

u u x y t x−

−∞
∂ = ∫ . It is obvious  

that if y x=  the equation becomes a mixed KdV-mKdV equation, which is widely researched by many 
authors (see [7]-[10]). The related negative KdV equation and (2 + 1)-dimensional KdV equation were also 
discussed by several authors (c.f. [11]-[14]). Now we set  

2x y yv u uu= −                                           (2) 

to treat the integral appearing in equation. The Equation (1) is then rewritten as  
24 4 2 0.t xxy y y xu u uu u u u v+ + − + =                                 (3) 

We will prove it has Painlevé property firstly, then deduce a Bäcklund transformation and bilinear equation. 
Using bilinear equation we can construct Wronskian solutions and present some exact solutions finally.  

2. Painlevé Test 
Painlevé analysis method is an important method for testing integrability [15]-[19]. As we know, the basic 
Painlevé test consists of the following steps (taking (1 + 1) dimensional case as an example) [15] [19]. 

Step 1. Expanding the solution of a PDE as Laurent series of a singular manifold  

0
,j

j
j

u uµφ φ
∞

=

= ∑  

where 0µ <  is constant to be determined and coefficients ( )= , .j ju u x t  Then substitute it into PDE to find 
all dominant balances. 

Step 2. If all exponents µ  are integers, find the resonances where arbitrary constants can appear. 
Step 3. If all resonances are integers, check the resonance conditions in each Laurent expansion. 
Conclusion. If no obstruction is found in Steps 1 - 3 for every dominant balances, then the Painlevé test is 

satisfied. 
The situation of high dimensional case is similar. For step 1, we can simply let  

0 0, .u u v vµ νφ φ≈ ≈                                     (4) 

Substituting them into (2, 3) gives us  

0 01, 2, , ,x x yu vµ ν φ φ φ= − = − = = −                               (5) 

where 1.= ±  Thus  

1 2

0 0
, .j j

j j
j j

u u v vφ φ
∞ ∞

− −

= =

= =∑ ∑                                 (6) 

Insert them into (2, 3) and equal coefficients of both side of 3φ−  in (3), 2φ−  in (2) we have  
2 2 2 2

1 18 2 4 2 4 ,x y x x y x y x xx yu vφ φ φ φ φ φ φ φ φ φ− = − −                         (7) 

1 12 .x y x x y x xy xx yu vφ φ φ φ φ φ φ φ φ+ = + −                             (8) 

From them we work out  

1 1
1 , .
2 2

xx
xy

x

u vφ
φ

φ
= − =


                                 (9) 

To get resonances we collect the coefficient of 4rφ −  in (3), 3rφ −  in (2) for general term number r respec- 
tively, we have  

( ) ( ) ( )( )( )2 2
0 0 04 3 2 1 1 2 3 2 ,y r x r x y r x rr u u r v u r r r u u v Fφ φ φ φ φ− − − − − − − + =          (10) 

( )( )02 2 ,y r x rr u u v Gφ φ− + =                              (11) 
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where F, G are functions of ( ), ,i iu v i rφ <  and their derivatives. This gives the resonances 1,2,3,4,r = −  and 
1r = −  means the singular manifold 0.φ =  

Now we proceed to verify the resonance conditions. First we consider 2.r =  For this purpose we extract 
2φ−  in (3) and set it be zero. We readily have  

2 2
2 22 2 ,x y x x y x xy xx xy x tu vφ φ φ φ φ φ φ φ φ φ φ− + = − − + −                           (12) 

or equivalently  

2 2
1 ,

2 2 2
y t xx

y
x x x y

v u
φ φ φ

φ
φ φ φ

 
= − − − + 

 
                             (13) 

The part of 1φ−  in (2) gives  

( )0 1 0 1 11 2 2 0y y xu u u u v− − − =                                 (14) 

and it is true by employing , , 0,1i iu v i =  obtained above. This result shows that an arbitrary appears in reso- 
nance 2r = , i.e. resonance condition is satisfied. Further, we verify resonance condition for 3.r =  Collecting 
the terms of 1φ−  in (3) reads  

( )0 3 0 32 2 0,x v u u v Aφ − + =                                       (15) 

where  

( ) ( )2
2 2 2 0 2 0 1 1 0 1 1 1 0 1 0 02 3 2 2 8 4 2 4 .x xy x y y x x y y x t xxyy

A u u u u v u u u u u u v u u u uφ φ φ φ= − + + + − − + + + +  

In a similar way, collecting the terms of 0φ  in (2) makes us have  

0 3 32 0,y xu u v Bφ φ− − + =                                        (16) 

where  

0 1 2 2 0 2 0 2 1 1 1 22 2 2 2 .y y y y y y xB u u u u u u u u u u u vφ ϕ= − + − − + − −  

we need to verify  

00

0

42
0

2
xx

yx

v AA u
u BB

φφ
φφ

−− −
= =
− −− −

 

because 3r =  is a resonance, i.e. 0 0

0

4 2
0.

2
x x

y x

v u
u

φ φ
φ φ

−
=

− −
 By inserting (13) into and through a dull calculation  

we can complete the proof of compatible condition. It is a turn to consider 4 4,u v  which emerge from 0φ  in (3) 
and 1φ  in (2). They are  

2 2
4 44 2 0,x y xu v Sφ φ φ− − + =                                        (17) 

where  
2

2 2
3 3 3 3 2 2 2 2 2 1 22

2
2 2 2 2 2 2 1 1 1 1 1 1

6 2 2 2 4 2 2

5 5 4 2 4 4 ,

xx y
xx y x y x x y xx y x y x x

x

xx y xxy t xy x y xx x xy y y t xxy

S u u u v u u u u v u v

u u u u u u u u u u u u

φ φ
φ φ φ φ φ φ φ φ φ φ

φ

φ φ φ φ φ φ

= + − + + − − + +

+ + + + + + − + + +

 
 

and  

4 44 2 0,x y xu v Tφ φ φ+ + =                                       (18) 

where  

2
3 3 3 3 2 1 2 1 2 22 2 2 2 2 2 .xx y

xy x y x y y y y
x

T u u u v u u u u u u
φ φ

ε φ φ φ
φ

= − + + + + + + −   
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Its resonance condition is verified similarly but is more complex. Thus we prove that (2 + 1) dimensional 
KdV-mKdV equation passes Painlevé test. 

Now we consider to truncate the series (6). To meet this end we must let 0, 2,3, ; 0, 3,4, .j ju j v j= = = =   
Thus we will have  

0 0 1
1 22,u v vu u v v

φ φ φ
= + = + +                                      (19) 

and combine the equation satisfied by φ  we obtain a Bäcklund transformation actually. In fact, if we take 
2 0u =  then (13) gives  

2
1 .

2 2 2
y t xx

x x x y

v
φ φ φ
φ φ φ

 
= − − −  

 
                                    (20) 

Furthermore, If we continue to set 3 3 0u v= =  we get following relations from (15, 16)  

( )2
0 2 0 1 1 0 1 1 1 0 1 0 02 8 4 2 4 0,x y y x t xxyy

u v u u u u u u v u u u u− − + + + + =                       (21) 

and  

2 1 1 12 .x y yv u u u= −                                         (22) 

The condition 4 4 0u v= =  produces another identity  

2
1 2 1 1 1 1 1 12 4 4 0.x y y t xxyu v u u u u u u− + + + =                               (23) 

Using (20)-(23) we may truncate the series. Thus we indeed get a Bäcklund transformation by noting (22, 23). 
But it is more important pointing that the identities (20)-(23) have only two independent expressions, say (22, 
23). Applying the definition of Schwartzian derivative  

{ }
2

3;
2

xxx xx

x x

x φ φ
φ

φ φ
 

= −  
 

 

we simplify them as a concise form, i.e. so called Schwartzian derivative equation  

{ }d d ; 0.
d d

y t

x x

x
x t

φ φ
φ

φ φ
 

+ + = 
 

                                  (24) 

It is the condition satisfied by function φ  in Bäcklund transformation (19). 

3. Hirota Method for Finding Exact Solutions  
In this section we will give the bilinear equation of Equation (1) and present some exact solutions from it. The 
truncation form (19) suggests us to try the transformation  

1 ln .
2 x

gu
f

 
= +  

 
                                       (25) 

We first take an integral with respect to x on Equation (1). Then eliminate the remaining integral operator by 
setting  

2 0,xD g f⋅ =                                          (26) 

where D is bilinear operator. Thus we can transfer Equation (1) into  

( )2 0.x y t yD D D D g f+ + ⋅ =                                  (27) 

Equations (26, 27) are bilinear equations of (1). To find its solutions we set *g f=  further, where * means 
complex conjugation. Expanding f as perturbation series  

2 3
1 2 31 ,f f f fε ε ε= + + + +                                  (28) 
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and substituting it into bilinear equations, equaling coefficients of power of ε  yields  
1 *

1 1: 0,xx xxf fε + =                                       (29) 

( )* * *
1 1 1 1 1 1 0.t y xxy t y xxyf f f f f f+ + − + + =                              (30) 

Take  

( )1
π

02
1 1 1 1 1 1e , ,

i
f k x l y t

ξ
ξ ω ξ

+
= = + + +                               (31) 

where 1i = −  and ( )0
1 1 1 1, , ,k l ω ξ  are all real constants (the similar condition will be imposed on later text but 

omitting), we know the relation immediately  

( )2
1 1 11 .k lω = − +                                           (32) 

The coefficient of 2ε  can take as zero according to this result. So we get a single solution solution as 
follows  

1

1

1 .
2 cosh

i ku
ξ

= −
                                           (33) 

If we take  
( )1 2 0π 2 π 2

1 e e , ,i i
i i i i if k x l y tξ ξ ξ ω ξ+ += + = + + +                              (34) 

then after substituting it into (29, 30) we know relations  

( )21 , 1,2i i ik l iω = − + =                                        (35) 

are valid. Again compare coefficient of 2ε , we have  
2 * 2 *

2 2 1 1: ,xx xx xf f D f fε + = − ⋅                                      (36) 

( ) ( )* * * 2 *
2 2 2 2 2 2 1 1.t y xxy t y xxy x t yf f f f f f D D D f f+ + − + + = − + + ⋅                        (37) 

When employing (34),  

1 2

2
π 1 2

2 12 12
1 2

e ,i k kf A A
k k

ξ ξ+ +  −
= =  + 

                                  (38) 

are obtained. After that we consider coefficient of 3ε   

( )3 * 2 * *
3 3 2 1 1 2: ,xx xx xf f D f f f fε + = − ⋅ + ⋅                                 (39) 

( ) ( )( )* * * 2 * *
3 3 3 3 3 3 2 1 1 2 .t y xxy t y xxy x y t yf f f f f f D D D D f f f f+ + − + + = − + + ⋅ + ⋅                  (40) 

The r.h.s is computed to zero. Thus we may truncate the perturbation series and 2-soliton solution is got as  
π1 2 1 2

12
π1 2 1 2

12

1 1 e e eln .
2 1 e e e

i

i
x

i i Au
i i A

ξ ξ ξ ξ

ξ ξ ξ ξε
+ +

+ +

 − − +
= +   + + + 

                              (41) 

Further, keeping these results in mind we can conjecture the N-soliton solution taking on  
*1 ln ,

2 x

fu
f

 
= +  

 
                                          (42) 

where 
0,1 1 1

πexp
2

N

i i i j ij
i i j N

f i
µ

µ ξ µ µ θ
= = ≤ < ≤

  = + +  
  

∑ ∑ ∑  and 
2

e .ij i j
ij

i j

k k
A

k k
θ  −
= =   + 
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4. Wronskian Solutions  
Wronskian technique is one of the powerful methods in finding exact solutions of nonlinear integrable evolution 
equation [20] [21]. It can be used to solve whole integrable evolution equation hierarchy (c.f. [22] [23]) and its 
application had been extended to negative nonlinear evolution equation (c.f. [23] [24]), high dimensional 
nonlinear evolution equation [25], etc. The generalization of this method can obtain several types of exact 
solutions (c.f. [26] [27]). Here we use the Nimmo's brief notation to denote Wronskia determinants:  

( )ˆ , , , ,N
x xN W ϕ ϕ ϕ= ∂ ∂  

 ( )2 11 , , , ,N
x x xN W ϕ ϕ ϕ++ = ∂ ∂ ∂  

( )11, , , , ,N
x x xN W ϕ ϕ ϕ−− = ∂ ∂ ∂

  

and  

( )2 11 , , , ,N
x xN W ϕ ϕ ϕ++ = ∂ ∂  

where ( )T
1 2 1, , , Nϕ ϕ ϕ ϕ +=   and  

( ) ( ), , , det , , , .N N
x x x xW ϕ ϕ ϕ ϕ ϕ ϕ∂ ∂ = ∂ ∂   

Supposing that vectors ( )T
1 2 1, , , Nϕ ϕ ϕ ϕ +=   satisfies the following conditions  

2
2 * 1, , 4 , 2 ,

4xx y x t xxy y x
A A iAϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ− −= = = − − = −                      (43) 

where A is a non-singular real constant ( ) ( )1 1N N+ × +  matrix. We will prove that ˆf N=  is the solution of 

bilinear Equations (26) and (27). We first point out that in this situation, *g f=  can be expressed by related 
Wronskia determinant:  

 ( ) 111 , 2 .NNg K N K i A − −+= + = −  

To get down to our work we need the help of two Lemmas, we list out them first. 
Lemma 1 ([26] [27]) Assuming that M is a ( )2n n× −  matrix and , , ,a b c d  are n-dimensional vectors, then 

the following determinantal identity is valid:  

0.Mab Mcd Mac Mbd Mad Mbc− + =  

Lemma 2 ([23] [24]) Assuming P is a n n×  matrix, 1 2, , , nβ β β  are the columns of another n n×  matrix, 
then we have the following foluma  

( ) 1 2 1 2
1

, , , , , , , , .
n

n j n
j

trP Pβ β β β β β β
=

= ∑    

We first treat bilinear Equations (26). Computing derivatives of Wronskians ,f g  and substituting them into 
(26) yields  

( ) 

 ( )
2 ˆ 1, 1, 2 , 3 2 1, 1 , 2

2, , 1 1, 2 1 .

xD g f K N N N N N N N N N N

N N N N N N

⋅ = − + + + + − − + +
+ − + + − + + 

 

             (44) 

When apply Lemma 2 into Wronskians ,f g  we get an identity as follows  

( )  ( )ˆ0 1, 1, 2 , 3 1, , 1 1, 2 1 .K N N N N N N N N N N N N = − + + − + + − − + + − + +  
        (45) 

Then adding it to (44) gives us  
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( )2 ˆ2 1, 1, 2 1, 1 , 2 1, 2 1 ,xD g f K N N N N N N N N N N N⋅ = − + + − − + + + − + +            (46) 

which equals zero by using Lemma 1. Now we can focus our attention on the bilinear Equation (27). We also 
calculate the derivative of Wronskians ,f g  prior to carrying out our procedure. For example, we have  

( ) ( )1 ˆ1, 1, 1 , 1, 1, 2 , 3 2 , 2 .
4 4xy xxy

Kf N N N g N N N N N N N= − − + + = − + + + + + +  

Then ( )2
x y t yD D D D g f+ + ⋅  becomes as  

( )  (


 ) ( )
 ( ) 



ˆ1, 1, 2 , 3 3 , 2 1 1, 2, , 1
4

1, 1, 2 3 1, 1 1, 1, 2 , 3 1,

2, , 1 1, 2 1 2 , 2 1, 1 2 , 2 1, 1, 1 .

K N N N N N N N N N N N N

N N N N N N N N N N

N N N N N N N N N N N N N N

 − + + + + + + − + − − +

+ − − + + − + − − + + + + −

+ − + + − + + − + − + + + − − + 



 



     (47) 

Again using Lemma 2, we produce two identities as follows:   

( )  ( )ˆ0 1, 1, 2 , 3 1 2, , 1 1, 2 ,
4
K N N N N N N N N N N N N = − − + + − + + + − + − − +  

        (48) 

  ( ) ( )0 1 1, 2, , 1 1, 1, 2 1, 1, 2 , 3 1, .
4
K N N N N N N N N N N N N = − + − − + − − − + + − + + − + −  

      (49) 

The substitution of (48, 49) into (47) yields  

( )
 ( )

  ( )


( )

2

ˆ2 1, 1, 2 1 1, 2 , 2 1, 1
4

2 , 3 1, | 1 1, 2, , 1 , 2 1, 1, 1

ˆ3 , 2 1 1, 1 .

x y t yD D D D g f

K N N N N N N N N N N N

N N N N N N N N N N N

N N N N N N

+ + ⋅

= − + + + + − + − + − +

+ − + − − + − − + + + − − +

+ + − + − + 

  



          (50) 

To vanish r.h.s of this equation we apply Lemma 1 again, which give us a valuable identity  
 ˆ1, 1, 2 1 1, 2 , 2 1, 1 0.N N N N N N N N N N N− + + + + − + − + − + =  

Multiply ( )12K det iA−= −  to this identity we work out another relation as follows:  

  , 3 1, 1 1, 2, , 1 , 2 1, 1, 1 0.N N N N N N N N N N N− + − − + − − + + + − − + =    

It is because of  

( )  ( )
( )  ( )

** *1

*
1

ˆ ˆ ˆ2 1, 1, 2 1, 2, , 1 1, 2, , 1

2 1, 2, , 1 1 .

det iA N N N N N N N N N N N N

det iA N N N N

−

−

− − + + = − − + = − − +

= − − − + +

 

In a same way, we deduce  


ˆ, 2 1 1, 1 0.N N N N N N+ − + − + =  

Thus we complete the proof that ( )2 0.x y t yD D D D g f+ + ⋅ =   

Now we present some exact solutions as examples. Firstly, we may write out the expression of spectral vector 
ϕ :  

( ) ( ), , , ,e e ,Q x y t Q x y tC Dϕ −= +                                    (51) 
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where ,C D  are two real constant vectors and  

( )
1 1 π, , ,

2 2 2 2 4
A A A AQ x y t x y t i I

− − 
= + − + + 

 
                           (52) 

where I is ( ) ( )1 1N N+ × +  unit matrix. If we choose A as diagonal matrix then soliton solutions of equation (1) 
can be got again. In fact, supposing  

( )1 2 1 1 2 1diag , , , , 0,N NA λ λ λ λ λ λ+ += ≠   

and  

( ) ( )( )TT 11,1, ,1 , 1,1, , 1 ,NC D += = − −   

then spectral vector ϕ  adopts the following formula  

( )( )1 11 1 2 2
T1e e ,e e , ,e 1 e ,N NNξ ξξ ξ ξ ξϕ + ++ −− −= − + + −  

1 1 π , 1,2, , 1.
2 2 2 2 4

j j j j
j x y t i j N

λ λ λ λ
ξ

− − 
= + − + + = +  

 


 

The solutions given by (25) are solitons solutions in this situation. In fact, when 0N = , it is exactly the 
solution (33). When consider 1N = , we compute out  

( )2 1 2 1 1 2 1 2 2 1 2 1 1 22 sinh sinh 2 cosh cosh , cosh cosh sinh sinh .
2
Kf gλ ξ ξ λ ξ ξ λ λ λ ξ ξ λ ξ ξ= − = −  

This gives the same solution as (41) or simplified form:  
( )
( ) ( ) ( )

1 2 2 1 1 2
2

1 2 2 21 2
1 2 1 2

1 2

1 cosh 2 cosh 2 π, , 1,2,
2 4

sinh cosh
j ju i i j

λ λ λ ξ λ ξ ξ ξ
λ λ λ λξ ξ ξ ξ

λ λ

+ +
= + = − =

−  +
+ + − − 

 



   

           (53) 

which is a two-soliton solution. We can also take into account other solutions. For instance, let  

1 0 0 1
, , .

0 1 1 0
A I I

α β
α σ σ

β α
− −     

= = + = =     
     

 

Then we find ( ), ,Q x y t  in this situation:  

( ) π, , ,
4

Q x y t i Iη ζσ= + +                                     (54) 

( ) ( ) ( ) ( )
2 2 2 2

1 1, .
2 2

y t y t
x t x t

α β
η α ζ β

α β α β
   − −

= − + = − −   + +   
                      (55) 

Taking ( )T1,0C D= = , the spectral vector is got then:  

T
π π2cosh cos ,2sinh sin .
4 4

i iϕ η ζ η ζ    = + +    
    

 

The correspondent solution of Equation (1) is  
πsinh 2 sin 2

1 4ln ,
π2 sinh 2 sin 2
4 x

i
u

i

β η α ζ

β η α ζ

  + −    = +
  + +    

                            (56) 

or simplified form  
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2 22 2

1 cosh 2 cos 2 sinh 2 sin 22 .
2 2 2cosh sin

u i β η ζ α η ζαβ
β η α ζ

−
= +

+
                         (57) 

This is known as a complexiton solution (c.f. [26]). 

5. Conclusion 
Utilizing Painlevé test we prove the integrability of a (2 + 1) dimensional KdV-mKdV equation in the sense of 
Painlevé. And in the mean time a Bäcklund transformation is produced. Through bilinear equation we get 
several exact solutions by Hirota method and generalized Wronskian method. Some explicit formulas of exact 
solutions are obtained. Particularly, 2-soliton solution and complexiton solutions are presented as examples. 
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