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Abstract 
Long-term memory of stock markets is a topic that has not received its due attention from aca-
demics. Posting the assertion made by Fama, 1970 [1] about markets being efficient, no one can 
consistently outrun it for a longer duration. Handful of papers checked the efficiency in emerging 
markets to see if the efficiency proposition held true. Furthering the literature in this study we 
test for the long-term memory of National Stock Exchange (NSE) index, Nifty and NSE_500 which 
are a collection of 50 and 500 listed firms respectively in India. The duration of the data for study 
is roughly eight years over the period from 2006-06-29 to 2012-09-13, a total of 1545 observa-
tions. We observe that long-term memory does exist in the context of Indian stock market index. 
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1. Introduction 
The Efficient Market Hypothesis proposed and professed by Fama (1970) would have markets that utilize full 
information and reflect in the stock prices without any participant standing a chance to outperform it. But that 
kind of market is an ideal one and does not exist in real world making long memory one of the important fea-
tures of any market. It is the property of markets returning to the mean value of index over a significantly long 
period of time. Since the markets have a tendency to move towards the mean, participants who are endowed 
with quality information can outperform against the efficient market hypothesis condition. Markets react to news 
that is observable and well established, but the point of difference is the extent of reaction to any news. A mar-
ket absorbs all the information and reflects that in the index or if it does not, some market participants are left at 
an advantage. Presence of long-term memory makes it advantageous for some market participants to outperform 
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the market and make speculative profit at the expense of others. All of these happen because of the lack of com-
plete arbitrage of market information. Long-term memory hence intuitively is a characteristic of less developed 
financial market as opposed to an efficient one. Most of the previous studies found that emerging stock market 
countries are far from efficient due to the increase in the number of retail and institutional investors trading on 
stock markets. The different reactions in terms of their degree of information, interests and risk profiles, and 
reactions to news across different times are believed to be producing long memory in the stock return volatility. 
Earlier literatures on the strand of long memory and volatility are from diverse regions of the world like Ger-
many, Malaysia etc. A few pertinent articles of Bilel, T. M. & S. Nadhem (2009) [2], Corhay, A., A. T. Rad, & J. 
P. Urbain (1995) [3], Gurgul, H., & T. Wójtowicz (2006) [4], Kang, S. H., Cheong, C. C. & Yoon, S. M. (2010) 
[5], Tan & Khan (2010) [6], Kang, S. H. & Yoon, S. M. (2007) [7], Kang, S. H. & Yoon, S. M. (2008) [8], Lo, 
A. W. (1991) [9] need to be mentioned. This study attempts to test if stock returns and volatility exhibit long 
memory in national stock exchange (NSE) price indices over the period from 2006-06-29 to 2012-09-13, a total 
of 1545 observations. 

2. Methodology 
In this section we briefly explain about Autoregressive Fractional Integrated Moving Average (ARFIMA) model, 
Fractional Integrated GARCH (FIGARCH) model and the Fractional Integrated Asymmetric Power ARCH 
(FIAPARCH) model. 

2.1. Autoregressive Fractional Integrated Moving Average (ARFIMA) Model 
Following the Granger and Joyeux (1980) [10], and Hosking (1981) [11], for the series tx , 1, ,t T=   the 
ARFIMA(r, d, s) model may be expressed as follows: 

( )( ) ( ) ( )1 d
t tL L x Lµ εΨ − − = Θ                                   (1) 

( )~ 0,1 ,t t t tz zε σ=                                       (2) 

where μ is conditional mean and εt is independent and identically distributed (i.i.d.) with a variance 2σ , and L 
is the lag operator as denoted earlier. ( ) 2

1 2
r

rL L L Lψ ψ ψΨ = + + +  and ( ) 2
1 2

s
sL L L Lθ θ θΘ = + + +  are the 

autoregressive (AR) and moving-average (MA) polynomials lie outside of unit cycles, respectively. 
The process is said to be long memory at the long run as long as d > 0 in Equation (1). In particular, for 
( )0,0.5 ,d ∈  and d ≠ 0, the series is covariance stationary and mean reverting, with shocks disappearing in the 

long run; for ( )0.5,1d ∈ , the series imply mean-reversion, however, it is not a covariance stationary process as 
there is no long run impact of an innovation on future values of the process. For d ≥ 1, the series is non-statio- 
narity and non-mean-reversion. On the contrary, the process is said to exhibit intermediate memory, for 

( )0.5,0d ∈ − . 

2.2. Fractional Integrated GARCH (FIGARCH) Model 
Similar research on the volatility has led to an extension of the ARFIMA representation in 2

tε , leading to the 
FIGARCH model. Baillie et al. (1996) [12] have extended the traditional GARCH model to capture the long 
memory component in the return’s volatility. The FIGARCH (p, ξ, q) model is given by 

( )( ) ( ) ( )2 2 21 1t t tL L Lξφ ε ω β ε σ− = + − −    

Or 

( ) ( ) ( )( )2 2 2 21 1t t t tL L L L ξσ ω β σ β ε φ ε= + + − − −    

where ( ) 2
1 2 ,q

qL L L Lφ φ φ φ= + + +  and ( ) 2
1 2 .p

pL L L Lβ β β β= + + +  All the roots of ( )Lφ  and  
( )1 Lβ−    are assumed to stand in outside the unit root. The FIGARCH model provides greater flexibility for 

modelling the volatility as it nests GARCH. If ξ = 0, the FIGARCH (p, ξ, q) process reduces to a GARCH (p, q) 
process. The impact of a shock is said to decrease at a hyperbolic rate when 0 < ξ < 1. By allowing ξ to take a 
value within 0 and 1, FIGARCH permits for an intermediate range of persistence. 

The parameters of the various-type of GARCH models can be estimated by using nonlinear optimization pro-
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cedures to maximize the logarithm of the Gaussian likelihood function. However, as highlighted by Tang and 
Shieh (2006) [13] and Kang et al. (2010), the residuals estimated from the GARCH type model often suffer 
from asymmetry and leptokurtosis. To overcome the leptokurtosis problem, the Student-t distribution can be 
considered (Cheong 2008 [14]; Kang and Yoon, 2008). On the other hand, to capture the asymmetry and lepto-
kurtosis, Lambert and Laurent (2001) [15] proposed the skewed Student-t distribution. 

2.3. Data Analysis and Findings  
The data set used in this study comprises daily observations of NSE_Nifty and NSE_500 of India over the pe-
riod 2006-06-29 to 2012-09-13, a total of 1545 observations. The daily stock returns are defined as the logarith-
mic first-difference of the daily closing index values. The data is extracted from the official website of reserve 
bank of India. We begin with descriptive statistics and stationarity analysis and presented first results in Table 1. 

Table 1 of Panel A provides a summary of statistics of the stock return series. The significance of all the 
normality tests applied (in Panel B) indicated that the residuals appear to be leptokurtic. Further, the significant 
Ljung-Box statistics for the returns, Q(5) and squared returns, Q(10), indicating the rejection of the null of white 
noise, asserting that these return series are auto-correlated. In summary, it is clear that the Indian stock market 
exhibits frequent volatilities with extensive amplitude (which is also apparent in Figure 1), implying the as-
sumption of normal distribution may not be suitable for capturing asymmetry and tail-fatness in a return distri-
bution. Finally, unit root and stationary results reported in Panel C of Table 1 indicate that return series is sta-
tionary.  

2.4. The Quantile-Quantile Test (Q-Q Plot) 
The Q-Q plot helps us to compare shapes of probability distributions by plotting their quantiles against each other.  

 
Table 1. Descriptive statistics and stationarity analysis.                                                                 

Descriptive statistics (Panel A) 

 NSE_Nifty NSE_500 

Mean 0.000385 0.000355 

Median 0.000858 0.001263 

Minimum −0.13014 −0.11592 

Maximum 0.16334 0.15034 

Standard deviation 0.017648 0.016927 

Skewness 0.076239 −0.13598 

Ex. Kurtosis 8.164 7.7666 

Normality tests (Panel B) 

Doornik-Hansen test 1229.43 (0.000) 1145.16 (0.000) 

Shapiro-Wilk 0.934552 (0.000) 0.92973 (0.000) 

Lilliefors test 0.0685719 (0.000) 0.075981 (0.000) 

Jarque-Bera test 4289.33 (0.000) 3885.31 (0.000) 

Q(5) 10.0182 [0.075] 20.3623 [0.001] 

Q(10) 26.7193 [0.003] 37.1365 [0.000] 

Unit root and stationarity analysis (Panel C) 

ADF (Constant) −7.82721* (0.000) −7.72697* (0.000) 

ADF (Constant and Trend) −7.84858* (0.000) −7.75198* (0.000) 

Note: in the parenthesis we report p-values. *Denotes significance at 1% level of significance. 



N. Ahamed et al. 
   

 
434 

 

 
Figure 1. Exhibiting frequent volatilities for NSE_Nifty and NSE_500.                                                     
 
When we compare two distributions, if the points in the Q-Q plot lies approximately on the line y = x, then both 
distribution have similar pattern. If the Q-Q plot lies exactly on a line, then the distributions are linearly related. 
The Quantile-Quantile plots results (Figure 2) suggest that both share common and similar distributions. 

The results obtained from the ARFIMA model (Figure 3), ARFIMA-FIGARCH model and ARFIMA-  
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Figure 2. Q-Q plot for NSE_Nifty and NSE_500.                                                                              

 
FIAPARCH are reported in Table 2 while those are based on Student t-distribution. The ARFIMA model is se-
lected using the Akaike Information Criteria (AIC) [16] while fixing AR and MA at the maximum of 3. An 
ARFIMA (3, d, 3) model is found to best represent the long memory process in stock return series. The esti-
mates of d are statistically significant at less than 1% percent level of significance. Thus, the results support that the  
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Figure 3. Autocorrelation and partial autocorrelation function for NSE_Nifty and NSE_500.                                     
 
returns are forecastable and supportive of long memory processes. However, the residuals are mostly negatively 
skewed, implying that the distribution is non-symmetric. Further, we find significant Q-statistics implying that 
the residuals are not independent, the J-B test statistics provide the signal that the residuals are leptokurtic and 
the significant ARCH statistics indicates that the ARCH effects is present in the standardized residuals. There-  
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Table 2. Estimation results of the ARFIMA models for NSE_Nifty.                                                                    

 

 ARIFMA     ARIFMA-FIGARCH     

   Normal-distribution t-distribution Skew-t-distribution 

Estimate Std. Error Pr(>|t|) Coefficient Std. Error t-prob Coefficient Std. Error t-prob Coefficient Std. Error t-prob 

Cst (M) 0.000409 0.00013 0.00164 0.001172 0.000662 0.077 0.00139 0.000657 0.0345 0.001048 0.000608 0.0852 

d-ARFIMA 0.078055 0.002109 0 0.094161 0.10104 0.3515 0.109094 0.082755 0.1876 0.105559 0.081454 0.1952 

AR (1) −0.40519 0.000015 0 −0.2542 0.29669 0.3917 −0.56569 0.11457 0 −0.56841 0.10107 0 

AR (2) −0.02735 0.000107 0 0.017944 0.41575 0.9656 0.021383 0.13479 0.874 0.018171 0.1186 0.8782 

AR (3) 0.794115 0.000022 0 0.510347 0.12229 0 0.606645 0.07731 0 0.605938 0.068203 0 

MA (1) 0.367821 0.000006 0 0.216443 0.24508 0.3773 0.494502 0.13606 0.0003 0.490968 0.11316 0 

MA (2) 0 NA NA −0.06108 0.43913 0.8894 −0.11761 0.15489 0.4478 −0.12551 0.12727 0.3242 

MA (3) −0.84797 0.000028 0 −0.59612 0.12174 0 −0.70208 0.090291 0 −0.70999 0.073906 0 

Cst (V) × 10^4 0.017426 0.000266  0.052851 0.032601 0.1052 0.060724 0.031386 0.0532 0.052248 0.029316 0.0749 

d-FIGARCH   0 0.585817 0.097426 0 0.63608 0.098773 0 0.638022 0.10027 0 

ARCH (Phi1)    0.128689 0.083442 0.1232 0.037206 0.07049 0.5977 0.048152 0.067901 0.4783 

GARCH  
(Beta1) 

   0.619694 0.094622 0 0.640676 0.086011 0 0.654676 0.08613 0 

Asymmetry       6.413076 1.0159 0 −0.07342 0.041358 0.0761 

Tail          6.586427 1.1008 0 

 

LogLikelihood: 4062.559   4304.93   4342.68   4344.52   

Akaike −5.252   −5.5608   −5.6084   −5.6095   

Bayes −5.2243   −5.5193   −5.5634   −5.561   

Shibata −5.2521   −5.5609   −5.6085   −5.6096   

Hannan-Quinn −5.2417   −5.5454   −5.5917   −5.5915   

Q (17) 17.073 0  18.3381 [0.0740597] 18.6855 [0.0669781] 21.6522 [0.0272100]* 

Q (29) 27.415 0.000199  29.5385 [0.1631126] 31.3606 [0.1141884] 34.2888 [0.0610958] 

Q2 (17) 40.64 1.74E−11  9.42186 [0.8544478] 10.2917 [0.8010006] 11.0168 [0.7514060] 

Q2 (29) 87.53 0.00E+00  17.992 [0.9037653] 18.9185 [0.8729523] 19.7939 [0.8392921] 

ARCH LM Tests            

ARCH Lag [2] 56.49 5.42E−13  0.39555 [0.6734]  1.1998 [0.3015]  1.3742 [0.2533]  

ARCH Lag [5] 98.88 0.00E+00  0.98536 [0.4253]  1.1352 [0.3396]  1.2246 [0.2950]  

ARCH Lag [10] 135.26 0.00E+00  0.65285 [0.7688]  0.78473 [0.6437]  0.85507 [0.5754]  

Notes: standard errors and p-values are in parentheses and brackets respectively. ** and * indicate significant at 5 and 1 percent significance level respectively. 
ln(L) value is the maximized value of the log likelihood function, and AIC is the Akaike (1974) Information criteria. J-B refers to Jarque-Bera normality test. 
The ARCH(5) and ARCH(10) denotes the ARCH test statistic with lag 5 and 10, while the Q(p) is the Ljung-Box test statistic for standardized residuals at lag p. 

 
fore, based on these test statistics one can infer that for such situations working with the ARFIMA model in the 
return series and at the same time highlights the importance of testing the existence of long memory in volatility. 

Therefore, in the next step we relied on ARFIMA-FIGARCH model. As shown in Table 3, the parameter d 
(i.e., d-Arfima) remains significant revealing the presence of long memory in return series. We find the long 
memory parameters, (d-Figarch), as 0.67 for the volatility component which is significant at 1 percent signific-
ance level, indicating the long-range memory phenomenon for volatilities. The existence of long memory in 
both return and volatility contradicts the efficient market hypothesis of Fama (1970) that the future return and  
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Table 3. Estimation results of the ARFIMA models for NSE_500.                                                                

 

 ARIFMA     ARIFMA-FIGARCH     

   Normal-distribution t-distribution Skew-t-distribution 

Estimate Std. Error Pr(>|t|) Coefficient Std. Error t-prob Coefficient Std. Error t-prob Coefficient Std. Error t-prob 

Cst(M) 0.000464 0.000466 0.3199 0.001209 0.000711 0.0895 0.001957 0.000774 0.0115 0.001131 0.000696 0.1043 

d-ARFIMA 0.083774 0.003865 0 0.148646 0.071422 0.0376 0.184906 0.070633 0.0089 0.179491 0.075805 0.018 

AR (1) 1.295357 0.000191 0 −0.19058 0.16611 0.2514 −0.49701 0.16767 0.0031 −0.53517 0.12657 0 

AR (2) −0.8637 0.000349 0 −0.00794 0.19776 0.968 0.052938 0.12123 0.6624 0.009362 0.09944 0.925 

AR (3) −0.09521 0.00017 0 0.595891 0.11948 0 0.600178 0.083673 0 0.581247 0.064572 0 

MA (1) −1.34154 0.000016 0 0.143369 0.14627 0.3272 0.392524 0.1664 0.0185 0.414539 0.1244 0.0009 

MA (2) 0.934703 0.000008 0 −0.05671 0.18801 0.763 −0.18711 0.106 0.0777 −0.17244 0.080884 0.0332 

MA (3) 0.051143 0.000008 0 −0.68492 0.12286 0 −0.7098 0.090325 0 −0.71193 0.068807 0 

Cst(V) × 10^4 0.016657 0.00008 0 0.043271 0.026916 0.1081 0.056419 0.02778 0.0424 0.04334 0.023721 0.0679 

d-FIGARCH    0.613892 0.1202 0 0.657075 0.10225 0 0.667657 0.10798 0 

ARCH (Phi1)    0.164956 0.085968 0.0552 0.03289 0.072874 0.6518 0.046961 0.066469 0.48 

GARCH 
(Beta1)    0.654849 0.13198 0 0.642636 0.094668 0 0.669853 0.095867 0 

Asymmetry       5.993905 0.87547 0 −0.14588 0.042802 0.0007 

Tail          6.322875 0.9999 0 

 

LogLikelihood 4131.557   4385.51   4429.85   4436.96 4131.557  

Akaike −5.3401   −5.6652   −5.7213   −5.7292   

Bayes −5.309   −5.6237   −5.6763   −5.6808   

Shibata −5.3402   −5.6653   −5.7215   −5.7294   

Hannan-Quinn −5.3285   −5.6497   −5.7046   −5.7112   

Q (17) 17.597 0  23.0005 [0.0176724]*  23.347 [0.0157853]*  30.017 [0.0015749]**  

Q (29) 26.104 0.000619  32.5941 [0.0884055]  35.1294 [0.0504973]  42.0471 [0.0089643]**  

Q2 (17) 59.87 1.11E−16  8.87072 [0.8841796]  10.1489 [0.8102684]  11.3267 [0.7291133]  

Q2 (29) 115.12 0.00E+00  20.9427 [0.7889642]  22.1955 [0.7273764]  23.5133 [0.6571527]  

ARCH LM Tests 

ARCH Lag [2] 79.35 0  0.34833 [0.7059]  1.6044 [0.2014]  1.9743 [0.1392]  

ARCH Lag [5] 116.87 0  0.91195 [0.4722]  1.1656 [0.3239]  1.3504 [0.2404]  

ARCH  
Lag [10] 149.56 0  0.59509 [0.8190]  0.7576 [0.6701]  0.88077 [0.5507]  

Notes: Standard errors and p-values are in parentheses and brackets respectively. ** and * indicate significant at 5 and 1 percent significance level respectively. 
Ln(L) value is the maximized value of the log likelihood function, and AIC is the Akaike (1974) Information criteria. J-B refers to Jarque-Bera normality test. 
The ARCH(5) and ARCH(10) denotes the ARCH test statistic with lag 5 and 10, while the Q(p) is the Ljung-Box test statistic for standardized residuals at lag p. 

 
volatility values are unpredictable. Further, the estimates of fat-tailed parameter (Student (DF)) is also statisti-
cally significant at the 1 percent level with the value of is 6.455669, suggesting the usefulness of Student-t dis-
tribution in modelling the leptokurtosis of estimated residuals.  

Further, we estimated the ARFIMA-FIAPARCH model under Student-t distribution. The values of fraction-
ally differencing parameters (i.e., d-Arfimaand d-Figarch) providing the evidence of dual long-memory process 
as they are significantly different from zero. Besides, the estimates of fat-tailed parameter (Student (DF)) which 
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is statistically significant at the 1 percent level with value of 7.09, suggesting the usefulness of Student-t distri-
bution in modelling the leptokurtosis of estimated residuals. The insignificant diagnostic statistics, for instance, 
the Q (p), and ARCH (p) also further confirm the selection of Student-t distribution to capture time-varying vo-
latility. 

In fact, Awartani and Corradi (2005) [17], Tan and Khan (2010) also found that GARCH-class of models that 
do not allow for asymmetries in the volatility process are beaten by asymmetric GARCH models. As seen in the 
tables, according to the AIC, the ARFIMA-FIAPARCH models fit the return series better than the ARFIMA- 
FIGARCH models. 

3. Conclusions  
It can be concluded that there does exist a non-normal distribution in the return on Indian stock exchange, 
slightly leptokurtic as indicated by the Jarque-Berra test. 

The process is said to be long memory at the long run as long as d > 0 in Equation (1). In particular, for d ∈ (0, 
0.5), and d ≠ 0, the series is covariance stationary and mean reverting, with shocks disappearing in the long run; 
for d ∈ (0.5, 1), the series imply mean-reversion; however, it is not a covariance stationary process as there is no 
long-run impact of an innovation on future values of the process. For d ≥ 1, the series is non-stationary and non- 
mean-reversion. On the contrary, the process is said to exhibit intermediate memory, for d ∈ (−0.5, 0). Since our 
study exhibits that a d value of 0.09, 0.09 and 0.1 is indicative of mean reversion in conflict with efficient mar-
ket. 
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