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Abstract 
A fluid dynamic traffic flow model based on a non-linear velocity-density function is considered. 
The model provides a quasi-linear first order hyperbolic partial differential equation which is ap-
pended with initial and boundary data and turns out an initial boundary value problem (IBVP). A 
first order explicit finite difference scheme of the IBVP known as Lax-Friedrich’s scheme for our 
model is presented and a well-posedness and stability condition of the scheme is established. The 
numerical scheme is implemented in order to perform the numerical features of error estimation 
and rate of convergence. Fundamental diagram, density, velocity and flux profiles are presented. 
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1. Introduction 
With the increasingly rapid economic globalization and urbanization, more problems are brought to our attention. 
One of them is traffic jams. Traffic jams are now a major problem in most of the cities. So at the core of traffic 
congestion, development of traffic management is the need of time. Therefore, an efficient traffic control and 
management is essential in order to get rid of such huge traffic congestion. Modeling and computer simulation 
play an increasing role in the flow management. Many scientists have been working to develop various mathe-
matical models [1] [2] in order to describe traffic flow. In this paper, we consider a macroscopic traffic model 
developed first by Lighthill and Whitham (1955) [3] [4] and Richard (1956) shortly called LWR model based on 
Habermann (1977) [5], Klar (1996) [6]. In [7], L. S. Andallah, Shajib Ali, M. O. Gani, M. K. Pandit and J. Akh-

http://www.scirp.org/journal/ajcm
http://dx.doi.org/10.4236/ajcm.2015.52015
http://dx.doi.org/10.4236/ajcm.2015.52015
http://www.scirp.org
mailto:smmhasan@juniv.edu
http://creativecommons.org/licenses/by/4.0/


M. Hasan et al. 
 

 
187 

ter have used Linear Velocity-Density Function and in [8], M. H. Kabir, M. O. Gani and L. S. Andallah have 
used Non-Linear Velocity-Density Function for the development of Traffic Flow Model. In [8], they have pre-
sented explicit upwind difference scheme. We have also used a non-linear velocity-density relationship but we 
have presented the Lax-Friedrich’s scheme for the development of our model. We have established a well-po- 
sedness and stability condition of the Lax-Friedrich’s scheme. The numerical scheme is implemented in order to 
perform the numerical features of error estimation and rate of convergence. Finally, fundamental diagram, den-
sity, velocity and flux profiles are presented. 

2. General Feature of the Model 
In this section, the general features of the model are shortly presented based on [6] [7] [9] and work out the qua-
litative behavior of the flux. The well-known LWR model is formulated by employing the conservation equation 

( ) ( ) ( )0, where
q

q v
t x

ρρ ρ ρ ρ
∂∂

+ = =
∂ ∂

                         (1) 

A non-linear velocity-density relationship [7] (non-linear function) can be of the form 

( ) max
max

1 , 1
m

v v mρρ
ρ

   = − >    
                             (2) 

In this paper, we will use the non-linear velocity-density relationship (for m = 2 in (2)' as 

( )
2

max
max

1v v ρρ
ρ

   = −     
                                 (3) 

Now, substituting (3) in ( ) ( ) ,q vρ ρ ρ=  it produces a relationship for the traffic flux or flow as a function of 
density: 

( )

( )

2
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3

max 2
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1q v

q v

ρρ ρ
ρ

ρρ ρ
ρ

     = −       
 

⇒ = − 
 

                             (4) 

Now, we put flow-density function (4) into the general non-linear model partial differential equation (PDE) 
(1), we obtain the specific non-linear partial differential equation in the form 

3

max 2
max

0v
t x
ρ ρρ

ρ

  ∂ ∂
+ − =   ∂ ∂   

                              (5) 

2.1. Qualitative Behavior of Non-Linear Traffic Velocity ν(ρ) (Figure 1) 
There is a connection between traffic density and vehicle velocity. If there is more vehicles are on a road then 
their velocity will be slower. On the basis of observations of traffic flow, we make a basic simplifying assump-
tion that the velocity of a car at any point along the highway depends only on the traffic density. Drivers speed 
up when traffic is sparse and they slow down when traffic is dense. Thus, there is a direct relationship between 
traffic density and traffic velocity as q vρ= . Now in order to deal with the non-linear model (1) it is necessary 
to understand the relation ( )v v ρ=  a bit more. 

Based on the intuition mentioned above, one may assume that a driver will drive fastest, with velocity, say
maxv , when the density is at its smallest value, min 0ρ → . The velocity decreases as the density increases, 

which is a statement about the slope of the velocity, ν versus density, ρ curve. Assume further that the traffic is  

bumper-to-bumper, i.e. ν = 0, at some maximum density maxρ  with max
1
L

ρ < , where L is the average length  

of a vehicle. We summarize these experience-born intuitions in mathematical requirements on the function, ( )v ρ . 
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2.2. Qualitative Behavior of Non-Linear Traffic Flow (Flux) q(ρ) (Figure 2) 
The flow or flux given by Equation (4) is a cubic non-linear function. The maximum flow (flux) occurs when its  

slope vanishes and 
2
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d 0
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<  i.e. 
2

2

d
d

q
ρ

 is negative. Now, 
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 is negative. Therefore, ( )q ρ  is concave down and the flow (flux) is maximum at max

3
ρ

ρ =  and  

the maximum flow (flux) is 
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3. Exact Solution of the Non-Linear PDE 
The traffic flow model appended with the initial condition reads as initial value problem (IVP) is 
 

 
Figure 1. Qualitative behavior of traffic velocity. 
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Figure 2. Qualitative behavior of traffic flow.    
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The exact solution [8] of the IVP (8) is given by 

( )
2

0 max 2
max

3, 1t x x v tρρ ρ
ρ

  
= − −     

                              (9) 

which is non-linear implicit form and therefore very complicated to evaluate at each ( ), .t x  
Moreover, in reality it is very complicated to approximate the initial density ( )0 xρ  of the Cauchy problem 

(8) as a function of x from given initial data. Therefore, there is a demand of efficient numerical methods for 
solving the IVP (8). 

4. A Finite Difference Scheme for the Model of IBVP 
For the numerical solution of the traffic flow model, we consider our specific non-linear traffic model problem 
as an initial and two points boundary value problem 
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For the model, the numerical solution based on [9] [10] is 
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where,  
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This difference equation is known as Lax-Friedrich’s scheme. 
However for the flux function (12), the scheme is not straight forward to implement. One needs to work sta-

bility condition and sub-sequel physical constraint condition for the scheme. Now we will study the well-po- 
sedness and stability condition of this scheme for our model. 

5. Stability Condition and Physical Constraint Conditions 
Rewrite the non-linear PDE in (8) as 

( ) 0q
t x
ρ ρρ∂ ∂′+ =
∂ ∂

 

Then the scheme (11) can be written as 
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For well-posedness, ( ) 0n
iq ρ′ ≥ . It is evident that 
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Here, maxv  is essentially positive. 
Therefore, we have 
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This is the condition of well-posedness. 

( ) max
n
iq vρ′∴ ≤                                      (15) 

Now from Equation (13), we have 
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1 1 1 1
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− + ⇒ = + + −                              (18) 

The Equation (18) implies that if 0 1λ≤ ≤ , the new solution in a grid point is a convex combination of the 
two solutions of two difference grid point of the previous time. 

( ): 1n
i

tq
x

λ ρ ∆′= ≤
∆

                                    (19) 

Then condition (17) can be guaranteed via (13) by 
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max: 1
v t

x
γ

∆
= ≤
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                                        (20) 

which is the stability condition involving the parameter maxv . 
Thus whenever one employs the stability condition (20), the well-posedness condition (physical constraints) 

(14) can be guaranteed immediately by choosing 

( )max 0max , 3i ik x kρ ρ= ≥                            (21) 

6. Numerical Simulation 
We implement the Lax-Friedrichs scheme by developing a computer programming code and perform numerical 
simulation as described below. 

6.1. Error Estimation of the Numerical Scheme 

In order to perform error estimation, we consider the exact solution (9) with initial condition ( )0
1
2

x xρ = , we 

have 
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We prescribe the corresponding two-sided boundary value by the equations 
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ρ ρ

ρ

−

⇒ = =
 
− 

 

                                (23) 

And 
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                               (24) 

For the above initial and boundary conditions with vmax = 0.0167 km/sec = 60.12 km/hour; satisfying the 
physical constraint condition (21); ρmax = 5 maxiρ0(xi) = 550 vehicles/km in the spatial domain [5 km, 10 km] we 
perform the numerical experiment for 4 minutes in 0.01t∆ =  time steps for a highway of 10 km in 401 spatial 
grid points with step size 100 meters 0.25x∆ = =  which guarantees the stability condition (20); 0.00668 1γ = < . 
We compute the relative error in L1-norm defined by 

1
1

1

: e n

e

e
ρ ρ
ρ
−

=                                 (25) 



M. Hasan et al. 
 

 
192 

for all time where eρ  is the exact solution and nρ  is the numerical solution computed by the Lax-Friedrich’s 
scheme. 

Figure 3(a) shows the relative error for Lax-Friedrich’s scheme. For Lax-Friedrich’s scheme, the relative er-
ror is less than or equal to 0.000046; which is quite acceptable. Figure 3(b) presents that the error is decreasing 
with respect to the smaller discretization parameters t∆  and x∆ ; which shows the convergence of the Lax- 
Friedrich’s scheme. We observe that, as we increase number of grid points the error is decreasing. Figure 3(b) 
shows the rate of convergence of the numerical solutions. 

Now we consider the initial density using sine function and perform numerical computation in the spatial do-
main [0, 10] in km. Figure 4(a) shows the initial density and Figure 4(b) shows the initial density and the den-
sity after six minutes. 

6.2. Comparative Profile of Density, Velocity and Flux 
Figure 5(a) and Figure 5(b) respectively show the density ( ),t xρ  profiles and velocity ( ),v t x  profiles for 
three different times and one can observe from the two figures that the density and velocity are maintaining the 
negative relation, as given by Equation (3), throughout the computational process as expected. Figure 5(c) shows 
the flux ( ),q t x  profiles for three different times. 
 

 
(a)                                                         (b) 

Figure 3. (a) Relative errors of Lax-Friedrich’s Scheme; (b) Convergence of errors of Lax-Friedrich’s Scheme.               
 

 
(a)                                                         (b) 

Figure 4. (a) Initial traffic density for 10 kilometer highway; (b) Comparative position of the cars between initial and six 
minutes.                                                                                                    
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Finally, Figure 6(a) presents the computed car velocity as a function of density which verifies the non-linear- 
velocity-density function as shown in Figure 1. Figure 6(b) shows the computed flux (traffic flow) as a function 

 

 
(a)                                                         (b) 

 
(c) 

Figure 5. (a) Density profile for 3 minutes in 10 km highway; (b) Velocity profile for 3 minutes in 10 km highway; (c) Flux 
profile for 3 minutes in 10 km.                                                                                     
 

 
(a)                                                         (b) 

Figure 6. (a) Non-linear velocity-density relationship; (b) Fundamental diagram of traffic flow model for non-linear veloci-
ty-density relationship.                                                                                   
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of density which also verifies qualitative behavior, the well-known fundamental diagram as Figure 2. 

7. Conclusion 
The computational result obtained by implementing the analogous version of Lax-Friedrich’s scheme shows the 
accuracy up to five decimal places and a good rate of convergence. Performing numerical simulation, we have 
verified some qualitative traffic flow behavior for various traffic parameters. Finally, we have presented funda-
mental diagram of traffic flow using this scheme, which is a very good qualitative agreement of the Lax-Frie- 
drich’s scheme for traffic flow model. In our model, we have considered only single lane highway. The model 
can be extended for multi-lane traffic flow model which we leave as our future work. 
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