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Abstract 
The paper investigates the numerical solution of the magnetohydrodynamics (MHD) boundary 
layer flow of non-Newtonian Casson fluid on a moving wedge with heat and mass transfer. The ef-
fects of thermal diffusion and diffusion thermo with induced magnetic field are taken in consider-
ation. The governing partial differential equations are transformed into nonlinear ordinary diffe-
rential equations by applying the similarity transformation and solved numerically by using finite 
difference method (FDM). The effects of various governing parameters, on the velocity, tempera-
ture and concentration are displayed through graphs and discussed numerically. In order to verify 
the accuracy of the present results, we have compared these results with the analytical solutions 
by using the differential transform method (DTM). It is observed that this approximate numerical 
solution is in good agreement with the analytical solution. Furthermore, comparisons of the pre- 
sent results with previously published work show that the present results have high accuracy. 
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1. Introduction 
The induced magnetic field is arisen due to a strong magnetic field. The problems with induced magnetic field 
play an important role in a number of industrial applications such as fiber or granular insulation, liquid-metals, 
electrolytes, ionized gases as well as the geothermal systems. The study of the boundary layer flow under the in-
fluence of a magnetic field with the induced magnetic field was considered by a few authors. For example, Rap-
tis and Perdikis [1] studied the MHD free convection boundary layer flow past an infinite vertical porous plate. 
Very little attention has been paid to the boundary layer flow and heat transfer taking the effect of the induced 
magnetic field and thermal radiation into consideration. For example, Kumari et al. [2] considered the MHD 
flow and heat transfer over a stretching surface by considering the effect of the induced magnetic field. On the 
other hand, Takhar et al. [3] investigated the unsteady free convection flow at the stagnation point in the pres-
ence of a magnetic field. Recently Ali et al. [4] studied MHD stagnation-point flow and heat transfer towards 
stretching sheet with induced magnetic field. Khamisah Jafar et al. [5] studied viscous dissipation and radiation 
effects in MHD stagnation point flow towards a stretching sheet with induced magnetic field. The thermal re-
versal in MHD stagnation point flow towards a stretching sheet with induced magnetic field and viscous dissipa-
tion effects have been investigated by Kashif Ali and Muhammad Ashraf [6]. The MHD mixed convection 
boundary layer flow toward a stagnation point on a vertical surface with induced magnetic field was studied by 
Ali et al. [7]. Khamisah Jafar et al. [8] discussed the MHD boundary layer flow due to a moving wedge in a pa-
rallel stream with the induced magnetic field.  

The analysis of non-Newtonian fluids has many applications in industrials such as ground water hydrology, 
petroleum reservoir, nuclear waste disposal, geothermal energy production, transpiration cooling, design of solid 
matrix heat exchange and paced bed chemical catalytic reactors. Also, there are some models of non-Newtonian 
fluids such as Casson model which concerned one of the most important applications of theoretical fluid me-
chanics to problems arising in physiology, mainly in describing the flow of the blood. Casson [9] proposed a 
model to describe the flow curves of suspensions of pigments in lithographic varnishes used for the preparation 
of printing inks. Eldabe et al. studied some problems of non-Newtonian fluids such as ([10]-[14]).  

In the present work, we extend and generalize the work of [8] to include the boundary layer motion of non- 
Newtonian fluid obeying Casson model with heat and mass transfer in the presence of radiation and mixed dif-
fusion. The main objective of the present work is to obtain the numerical solutions of the MHD boundary layer 
flow of Casson fluid on a moving wedge with heat and mass transfer. The effects of thermal diffusion and diffu-
sion thermo with induced magnetic field are taken into consideration. The governing equations of motion with 
the boundary conditions are solved numerically by using (FDM) and analytically by using (DTM). The solutions 
are obtained as a function of the physical parameters of the problem; then the effects of these various parameters 
of the problem on these solutions have been computed and discussed in detail and illustrated through some fig-
ures. The special cases of our problem are compared with the previous published works. This showed that there 
is a good agreement between them. 

2. Mathematical Formulation  
Let us consider a steady, laminar, hydromagnetic coupled heat and mass transfer by mixed convection flow on a 
wedge plate in a parallel free stream with a variable induced magnetic field applied parallel to the wedge walls 
outside the boundary layer. The equations governing the steady motion of an incompressible non-Newtonian 
electrically conducting fluid in presence of a magnetic field are: 

0, 0V H∇⋅ = ∇ ⋅ =                                         (1) 

( ) ( )0 1 1 ,
4

V V H H P
µ

τ
πρ ρ ρ

⋅∇ − ⋅∇ = − ∇ + ∇ ⋅                              (2) 

( ) 2 0,eV H Hµ∇× × + ∇ =                                      (3) 

( ) ( )2 2m Tr
p

s

D kqc V T k T V C
y c

ρ
ρ τ

∂
⋅∇ = ∇ + ⋅ ∇ − + ∇

∂
                         (4) 

( ) 2 2m T
m

m

D k
V C D C T

T
⋅∇ = ∇ + ∇                                  (5) 
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where V is the fluid velocity vector, H is the induced magnetic field vector, 
2

8
H

P p
µ
π

= +  is the magnetohy- 

drodynamic pressure, p is the fluid pressure, 0µ  is the magnetic permeability, τ  is the stress tensor, σ  is 
the electrical conductivity, T is the temperature, k is the thermal conductivity, pc  is the specific heat at constant  

pressure, ρ  is the density of the fluid, 1
4eµ πσ

=  is the magnetic diffusivity, rq  is the radiative heat flux, C  

is the species concentration, sc  is the concentration susceptibility, Tk  is thermal diffusion ratio, mT  is mean 
fluid temperature and mD  is the coefficient of chemical molecular diffusivity.  

The rheological equation of state for an isotropic flow of a Casson fluid can be expressed as [9]: 

2 ,
2

2 ,
2

y
B ij c

ij
y

B ij c

p
e

p
e

µ π π
π

τ

µ π π
π

  
+ >  

  = 
  + < 
 

                               (6) 

In the above equation ij ije eπ =  and ije  denotes the ( ), thi j  component of the deformation rate, π  is the 
product of the component of deformation rate with itself, cπ  is the a critical value of this product based on the 
non-Newtonian model, Bµ  is the plastic dynamic viscosity of the non-Newtonian fluid and yp  is the yield 
stress of the fluid.  

We take the Cartesian coordinates x measured along the surface of the wedge and y normal to it, respectively. 
If ( ),u v  and ( )1 2,H H  are the velocity and magnetic components in (x, y) directions, respectively, subject to 
the boundary layer approximations, Equations (5) and (6) for the problem under consideration can be reduced to: 

0,u v
x y
∂ ∂

+ =
∂ ∂

                                         (7) 

1 2 0,
H H
x y

∂ ∂
+ =

∂ ∂
                                        (8) 

2
0 01 1

1 2 2

d d 11 ,
4 d 4 d

e e e
e

U H HH Hu u uu v H H U
x y x y x x y

µ µ
ν

πρ πρ β
 ∂ ∂  ∂ ∂ ∂

+ − + = − + +   ∂ ∂ ∂ ∂ ∂  
               (9) 

2

2
11 1

1 2 e
H H Hu uu v H H
x y x y y

µ
∂ ∂ ∂∂ ∂

+ − − =
∂ ∂ ∂ ∂ ∂

                           (10) 

22 2

2 2

1 11 m Tr

p p s p

D kqT T T u Cu v
x y c y c y c cy y

να
β ρ

    ∂ ∂ ∂ ∂ ∂ ∂
+ = + + − +      ∂ ∂ ∂ ∂∂ ∂      

                  (11) 

2 2

2 2
m T

m
m

D kC C C Tu v D
x y Ty y

 ∂ ∂ ∂ ∂
+ = +  ∂ ∂ ∂ ∂ 

                            (12) 

The boundary conditions are as follows: 

( )
( ) ( )

1 2

1 0

0, , 0, , , at 0

, , , as

m
w w w w

m m
e e

v u u x U x H H T T C C y

u U x U x H H x H x T T C C y∞ ∞ ∞

= = = = = = = =

= = = = = = →∞
               (13) 

where 2B c ypβ µ π=  is the non-Newtonian Casson parameter, ν  is the kinematic viscosity, ( )eU x  and 

( )eH x  are the x-velocity and magnetic field at the edge of the boundary layer, respectively and pk cα ρ=  is 
the thermal diffusivity.  

We assume here that ( ) m
eU x U x∞=  and ( ) 0

m
eH x H x= , U∞  is the constant velocity at the outer edge of 

the boundary layer and 0H  is the value of ( )eH x  at x = 0. Further, m is also a constant, which varies in the 
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range 0 1m≤ ≤ , wU  is a positive or a negative constant [8]. 
By using the Rosseland approximation, the radiative heat flux rq  is given by given by 

* 4

*

4
3r

Tq
yk

σ ∂
= −

∂
                                        (14) 

where *σ  is the Stefan-Boltzmann constant and *k  is the mean absorption coefficient. It should be noted that 
by using the Rosseland approximation, the present analysis is limited to optically thick fluids. If temperature 
differences within the flow are sufficiently small, then Equation (14) can be linearized by expanding 4T  into 
the Taylor series abo T∞ , which after neglecting higher order terms takes the form 

4 3 44 3T T T T∞ ∞≈ −                                         (15) 

In view of Equations (14) and (15), Equation (11) reduces to 
2* 3 2 2

* 2 2

16 11 1
3

m T

p s p

D kTT T T u Cu v
x y c y c ckk y y

σ να
β

∞     ∂ ∂ ∂ ∂ ∂
+ = + + + +     ∂ ∂ ∂∂ ∂     

                  (16) 

3. Method of Solutions 
To solve system of Equations (7)-(13), we will consider the following similarity transformations: 

( ) ( ) ( )
( ) ( ) ( ) ( )0

1 2 2, , ,
2 1 1

,

m
e e

w w

m U x xU x xxy f H g
x m m U

T T C C
T T C C

ν νη ψ η ϕ η
ν

θ

∞

∞ ∞

∞ ∞

+
= = =

+ +

   − −
= ∅ =   − −   

                (17) 

where η  is the independent similarity variable, ( )f η  the dimensionless stream function, ( )g η  the dimen-
sionless Induced magnetic field, ( )θ η  the dimensionless temperature and ( )ϕ η  the dimensionless concen- 
tration. Further, ψ  is the stream function which is defined in the usual way as u xψ= ∂ ∂  and v yψ= ∂ ∂  
and ϕ  is the magnetic stream function which is defined in the usual way as 1H xϕ= ∂ ∂  and 2H yϕ= ∂ ∂ .  

By using Equation (17) in the Equations (9)-(12) and Equation (16), we get the following ordinary differential 
equations in dimensionless form 

( ) ( )2 211 1 1 0f ff f M gg gγ γ
β

   ′′′ ′′ ′ ′′ ′+ + + − − + − =    
                      (18) 

0g fg f gλ ′′′ ′′ ′′+ − =                                       (19) 

24 11 1 0
3 a r r r uR P f P E f P Dθ θ

β
   ′′ ′ ′′ ′′+ + + + + ∅ =  

   
                         (20) 

0 0c cS f S S θ′′ ′ ′′∅ + ∅ + =                                     (21) 

where ( )2 1m mγ = +  is the wedge parameter, 0
22 4M H Uµ πρ ∞=   is the magnetic parameter, 1 4λ πνσ=  

is the reciprocal magnetic Prandtl number, ( ) ( )2
e p wE U x c T T∞= −  is the Eckert number, rP ν α=  is the 

Prandtl number, 3 *4aR T kkσ ∞=  is the radiation parameter, c mS Dν=  is the Schmidt number,  

( ) ( )u m T w s p wD D k C C vc c T T∞ ∞= − −  is the Dufour number and ( ) ( )0 m T w m wS D k T T vT C C∞ ∞= − −  is the 
Soret number. 

Also, the subjected boundary conditions Equation (13) will now take the form: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
0 0, 0 , 0 0, 0 0, 0 1, 0 1,

1, 1, 0, 0

f f g g

f g

δ θ

θ

′ ′= = = = = ∅ =

′ ′∞ → ∞ → ∞ → ∅ ∞ →
                   (22) 

where wU Uδ ∞=  is the moving parameter. 
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3.1. The Differential Transform Method (DTM) 
The differential transformation of an analytical function  ( )f t  for one variable is defined as [15]. 

( ) ( )

0

d1
! d

k

k
t t

f t
F k

k t
=

 
=  

  
                                      (23) 

where ( )f t  is the original function and ( )F k  is the transformed function. The differential inverse transfor-
mation of ( )F k  is defined as: 

( ) ( )( )00
k

kf t F k t t∞

=
= −∑                                      (24) 

Combining Equations (23) and (24), we obtain 

( ) ( ) ( )

0

0
0

d
! d

k k

kk
t t

t t f t
f t

k t
∞

=
=

 −
=  

  
∑                                 (25) 

From Equations (23)-(25), it can be seen that the differential transformation method is derived from Taylor’s 
series expansion, but the method does not calculate the derivatives representatively. However, the relative deriv-
atives are calculated by an iterative way which is described by the transformed equations of the original function. 
For implementation purposes, the function ( )f t  is expressed by a finite series and Equation (24) can be writ-
ten as 

( ) ( )( )00
kN

kf t F k t t
=

≈ −∑                                    (26) 

By Equation (23), the following theorems can be deduced: 
Theorem 3.1.1 If ( ) ( ) ( )f t u t v t= ±  then ( ) ( ) ( ).F k U k V k= ±  

Theorem 3.1.2 If ( ) ( )f t u tα=  then ( ) ( ).F k U kα=  

Theorem 3.1.3 If ( ) mf t t=  then ( ) ( )
1

.
0 otherwise

k m
F k k mδ

=
= − = 


 

Theorem 3.1.4 If ( ) ( )d
d
u t

f t
t

=  then ( ) ( ) ( )1 1 .F k k U k= + +   

Theorem 3.1.5 If ( ) ( )d
d

n

n

u t
f t

t
=  then ( ) ( ) ( )

!
.

!
k n

F k U k n
k
+

= +   

Theorem 3.1.6 If ( ) ( ) ( )f t u t v t= ⋅  then ( ) ( ) ( )0 .k
rF k U r V k r
=

= −∑   

Theorem 3.1.7 If ( ) ( ) ( )d d
d d
u t u t

f t
t t

=  then ( ) ( )( ) ( ) ( )0 1 1 1 1 .k
rF k r k r U r U k r
=

= + − + + − +∑  

3.2. Basic Concepts of the Multi-Step Differential Transform Method (MDTM)  
When the DTM is used for solving differential equations with the boundary condition at infinity or problems 
that have highly non-linear behavior, the obtained results were found to be incorrect (when the boundary-layer 
variable go to infinity, the obtained series solutions are divergent). Besides that, power series are not useful for 
large values of the independent variable.  

To overcome this shortcoming, the MDTM that has been developed for the analytical solution of the differen-
tial equations is presented in this section. For this purpose, the following non-linear initial-value problem is con-
sidered: 

( )( ), , , , 0pu t f f f′ =                                        (27) 

subject to the initial conditions ( ) ( )0k
kf c= , for 0,1, 2, , 1k p= − . 

Let [0, T] be the interval over which we want to find the solution of the initial-value problem (27). In actual 
applications of the DTM, the approximate solution of the initial value problem (27) can be expressed by the fol-
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lowing finite series: 

( ) ( ) [ ]00 , 0,nN
nnf t a t t t T

=
= − ∈∑                              (28) 

The multi-step approach introduces a new idea for constructing the approximate solution. Assume that the in-
terval [0, T] is divided into M subintervals [ ]1,m mt t− , 0,1, 2, ,m M=   of equal step size h = (T/M) by using 
the nodes tm = mh. The main ideas of the MDTM are as follows. First, we apply the DTM to Equation (24) over 
the interval [ ]10, t , we will obtain the following approximate solution: 

( ) ( ) [ ]1 1 0 10 , 0,nN
nnf t a t t t t

=
= − ∈∑                             (29) 

using the initial conditions ( ) ( )1 0k
kf c= . For 2m ≥  and at each subinterval [ ]1,m mt t−  we will use the initial 

conditions ( ) ( ) ( ) ( )1 11m
k k

m mmf t f t−− −=  and apply the DTM to Equation (27) over the interval [ ]1,m mt t− , where 0t   
in Equation (23) is replaced by 1mt − . The process is repeated and generates a sequence of approximate solutions 

( ) 1,2, , ,mf t m M=  , for the solution ( )f t : 

( ) ( ) [ ]1 10 , ,nN
m mn m m mnf t a t t t t t− −=

= − ∈∑                              (30) 

where N K M= ⋅ . In fact, the MDTM assumes the following solution: 

( )

( ) [ ]
( ) [ ]

( ) [ ]

1 1

2 1 2

1

, 0,

, ,

, ,M M M

f t t t

f t t t t
f t

f t t t t−

 ∈


∈= 

 ∈



                                 (31) 

The new algorithm, MDTM, is simple for computational performance for all values of h. It is easily observed 
that if the step size h = T, then the MDTM reduces to the classical DTM. As we will see in the next section, the 
main advantage of the new algorithm is that the obtained series solution converges for wide time regions and 
can approximate non-chaotic or chaotic solutions. 

3.3. Analytical Solution Be the MDTM  
By applying the MDTM to Equations (18)-(21), gives the following recursive relations in each sub-domain 
( )1,i it t + , 0,1, , 1i N= − . 

( )( )( ) [ ] ( )( ) [ ] [ ]

[ ] ( )( ) [ ] [ ] ( )( ) [ ] [ ]

[ ] ( ) [ ] [ ]

0

0 0

0

11 1 2 3 3 1 2 2

1 1 1 1 1 2 2

1 ( 1) 1 1 0

k

r

k k

r r

k

r

k k k F k k r k r F r F k r

k r k r F r F k r M k r k r G r G k r

M k r k r G r G k r

β

γ δ

γ δ

=

= =

=

 
+ + + + + + − + − + − + 

 
   

+ − + − + + − + + − + − + − +   
   
  

+ − + − + + − + =  
  

∑

∑ ∑

∑

   (32) 

( )( )( ) [ ] ( )( ) [ ] [ ]

( )( ) [ ] [ ]
0

0

1 2 3 3 1 2 2

1 2 2 0

k

r
k

r

k k k G k k r k r F r G k r

k r k r G r F k r

λ
=

=

+ + + + + − + − + − +

− − + − + − + =

∑

∑
              (33) 

( )( ) [ ] ( ) [ ] [ ]

( )( )( )( ) [ ] [ ]

( )( ) [ ]

0

0

41 1 2 2 1 1
3

11 2 1 2 1 2 2

1 2 2 0

k

a r
r

k

r
rr

r u

R k k k P k r F r k r

P E r r k r k r F r F k r

P D k k k

θ θ

β

=

=

 + + + + + − + − + 
 

 
+ + + + − + − + + − + 

 
+ + + ∅ + =

∑

∑               (34) 
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( )( ) [ ] ( ) [ ] [ ] ( )( ) [ ]
0

1 2 2 1 1 1 2 2 0
k

c c o
r

k k k S k r F r k r S S k k kθ
=

+ + ∅ + + − + ∅ − + + + + + =∑         (35) 

where [ ] [ ] [ ] [ ], , andF k G k k kθ ∅  are the differential transform of ( ) ( ) ( ) ( ), , and .f gη η θ η η∅  
The differential transformed boundary conditions in Equation (22) to: 

[ ] [ ] [ ] [ ]
[ ] [ ] ( ) [ ] [ ] [ ]2 2 1 1

0 0, 0 0, 0 1, 0 1,

1 , 2 , 1 0, 2 , 1 , 1 .

F G

F F f G G g t c

θ

λ θ

= = = ∅ =

= = = = = ∅ =
                  (36) 

where 2 2 1 1, , andf g t c  are constants. These constants are computed from the boundary condition. Moreover, 
substituting Equation (36) into Equation (32)-(35) and by using the recursive method, we can calculate other 
values of ( ) ( ) ( ), ( ), andF k G k k kθ ∅ . Hence, substituting all ( ) ( ) ( ), ( ), andF k G k k kθ ∅ , into Equation (26), 
we obtain series solutions. 

The velocity, induced magnetic field, temperature and concentration distributes achieved with the aid of 
MATHAMATICA application software. 

3.4. Numerical Solutions by Using the FDM 
To solve the ordinary differential Equations (18)-(21), we use a finite difference based numerical algorithm. We 
reduce the order of Equations (18) and (19) by one with the help of the substitution: 

d d,
d d

f gq f p g
η η

′ ′= = = =                                  (37) 

Equations (18)-(21) in view of Equation (37) can be written as: 

( ) ( )2 211 1 1 0q fq q M gp pγ γ
β

   ′′ ′ ′ ′+ + + − − + − =    
                      (38) 

0p fp pqλ ′′ ′ ′+ − =                                     (39) 

24 11 1 0
3 a r r r uR P f P E q P Dθ θ

β
   ′′ ′ ′ ′′+ + + + + ∅ =  

   
                       (40) 

0c c oS f S S θ′′ ′ ′′∅ + ∅ + =                                  (41) 
The boundary conditions: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0, 0 , 0 0, 0 0, 0 1, 0 1,

1, 1, 0 0, 0.

f q g p

q p

δ θ

θ

= = = = = ∅ =

∞ = ∞ = = ∅ ∞ =
                  (42) 

Now, we can write Equations (37)-(41) in the following finite difference form  

( )
( ) ( )21 1 1 1 1 12

2

211 1 1 0
2 2

i i i i i i
i ii

i
i

q q q q q p p
f q M g pγ γ

β η ηη
+ − + − + −

   − + − −      + + + − − + − =        ∆ ∆∆       
        (43) 

( )
1 1 1 1 1 1

2

2
0

2 2
i i i i i i i

i i
p p p p p q q

f gλ
η ηη

+ − + − + −
 − + − −     + − =     ∆ ∆∆     

                     (44) 
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η
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+ −

 − + − −      + + + +       ∆ ∆  ∆      
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The velocity, induced magnetic field, temperature and concentration distributes at all interior nodal points 
computed by successive applications of the above finite difference equations and these are achieved with the aid 
of MATLAB application software. 

4. Results and Discussion  
The system of the equations which describe the motion of Casson fluid in the boundary layer with heat and mass 
transfer and in the presence of induced magnetic field with radiation are solved analytically by using (DTM) and 
numerically by using (FDM). The values of the velocity, temperature, concentration and induced magnetic field 
are obtained as a functions of the physical parameters of the problem such as Casson parameter β , wedge pa-
rameter γ , magnetic parameter M, magnetic Prandtl number λ , radiation parameter Ra, Prandtl number Pr, 
Eckert number E, Dufour parameter Du, Schmidt number Sc, and Soret number S0. These effects are illustrated 
graphically through a set of (1 - 18).  

Figures 1-5 represent the velocity profiles for the flow parameters. The effect of β  on the velocity profiles 
is presented in Figure 1. It is seen that the velocity increases when β  increases. Figure 2 clears the effect of 
γ  on the velocity profiles. It is shown that the velocity increases with increasing γ . Figure 3 clears the effect 
of M on the velocity profiles. It is shown that the velocity decreases with increasing M, also it decrease with in-
creasing λ  as shown in Figure 4. The effect of δ  on the velocity profiles is presented in Figure 5. It is 
shown that the velocity increases with increasing δ . Figures 6-10 represent the induced magnetic field profiles 
for the flow parameters. It is observed that the induced magnetic field increases with increasing , andβ γ δ , 
while decreases with increasing M and λ . Figures 11-15 represent the temperature profiles for the flow para-
meters. It is observed that the temperature increases with increasing Ra, E and Du, while decreases with increas-
ing β  and Pr. Figures 16-18 represent the concentration profiles for the flow parameters. It is noted that con-
centration increases with an increases S0, while it decrease with the increases β  and Sc.  

 

 
Figure 1. Velocity profiles ( )f η′  for some values of β .              

 

 
Figure 2. Velocity profiles ( )f η′  for some values of γ .              
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Figure 3. Velocity profiles ( )f η′  for some values of M.       

 

 
Figure 4. Velocity profiles ( )f η′  for some values of λ.      

 

 
Figure 5. Velocity profiles ( )f η′  for some values of δ .     

 

 
Figure 6. Induced magnetic profiles ( )g η′  for some values of β . 
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Figure 7. Induced magnetic profiles ( )g η′  for some values of γ . 

 

 
Figure 8. Induced magnetic profiles ( )g η′  for some values of M. 

 

 
Figure 9. Induced magnetic profiles ( )g η′  for some values of λ . 

 

 
Figure 10. Induced magnetic profiles ( )g η′  for some values of δ . 
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Figure 11. Temperature profiles ( )θ η  for some values of β . 

 

 
Figure 12. Temperature profiles ( )θ η  for some values of rP . 

 

 
Figure 13. Temperature profiles ( )θ η  for some values of aR . 

 

 
Figure 14. Temperature profiles ( )θ η  for some values of E.     
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Figure 15. Temperature profiles ( )θ η  for some values of uD . 

 

 
Figure 16. Concentration profiles ( )η∅  for some values of β . 

 

 
Figure 17. Concentration profiles ( )η∅  for some values of cS . 

 

 
Figure 18. Concentration profiles ( )η∅  for some values of 0S .  
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In order to verify the accuracy of the numerical solution of present work by using (FDM) we have compared 
these results for ( )0f ′′  when 0δ =  and M = 0 with Rajagopal et al. [16], Kuo [17], Ishak et al. [18], K. Jafar 
[8]. It is observed that this numerical solution in excellent agreement with the results previous obtained values as 
shown in Table 1. Finally, Tables 2-4 shows comparison between numerical solution by using (FDM) and the 
analytical solution using (DTM). It is observed that this approximate numerical solution is in excellent agree-
ment with the results of the analytical solution of by using (DTM).   

 
Table 1. Comparison between the previous obtained values of ( )0f ′′  by Rajagopal et al. [16], Kuo [17], Ishak et al. [18], 

K. Jafar [8] and our results when 0 and 0.Mδ = =                                                          

γ  Rajagopal et al. [16] Kuo [17] Ishak et al. [18] K. Jafar [8] Present result 

0.0 - 0.469600 0.4696 0.4696 0.46960075 

0.1 0.587035 0.587880 0.5870 0.5871 0.5870358 

0.3 0.774755 0.775524 0.7748 0.7748 0.7747554 

0.5 0.927680 0.927905 0.9277 0.9277 0.9276813 

1.0 1.232585 1.231289 1.2326 1.2326 1.232590 

 
Table 2. Comparison between the previous obtained values of  ( ) ( )andf fη η′  where                                       

1, 0.5, 0.3, 1, 0.2, 0.7, 0.5, 0.1, 0.5, 0.3 and 0.5.r a u c oM P R E D S Sβ γ λ δ= = = = = = = = = = =                           

η  ( )f η  ( )f η′  

DTM MDTM FDM DTM MDTM FDM 

0.0 0.0 0.0 0.0 0.2 0.2 0.2 

1.0 0.403766 0.403766 0.4037649 0.580616 0.580616 0.58061605 

2.0 1.11098 1.11098 1.1109816 0.811421 0.811421 0.81142107 

3.0 1.98901 1.98901 1.9890103 0.929608 0.929609 0.92960949 

4.0 2.95048 2.94735 2.9473479 1.0034 0.97895 0.97895070 

5.0 6.32369 3.93601 3.9360082 14.7103 0.995059 0.99505878 

6.0 415.231 4.93359 4.9335872 1902.95 0.999104 0.99910402 

7.0 28673.5 5.93319 5.9331922 111857 0.999884 0.99988388 

8.0 1.0757 × 106 6.93315 6.9331527 3.62989 × 106 1.0 1.0 

 
Table 3. Comparison between the previous obtained values of ( ) ( )andg gη η′  where                                       

1, 0.5, 0.3, 1, 0.2, 0.7, 0.5, 0.1, 0.5, 0.3 and 0.5.r a u c oM P R E D S Sβ γ λ δ= = = = = = = = = = =                           

η  
( )g η  ( )g η′  

DTM MDTM FDM DTM MDTM FDM 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1.0 0.20504 0.20504 02.050395 0.402848 0.402848 0.4028479 

2.0 0.776432 0.776432 0.7764307 0.718855 0.718855 0.7188556 

3.0 1.59576 1.59579 1.5957888 0.897193 0.897483 0.974845 

4.0 2.45379 2.53591 2.5359114 0.411927 0.970245 0.9702454 

5.0 −31.0684 3.51998 3.5199796 −185.501 0.993106 0.9931059 

6.0 −4620.89 4.51661 4.5166091 −20617.8 0.998756 0.9987563 

7.0 −281829 5.51606 5.5160617 −1.07009 × 106 0.99984 0.9998396 

8.0 −9.71748 × 106 6.51601 6.5160072 −3.21308 × 107 1.0 1.0 
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Table 4. Comparison between the previous obtained values of ( ) ( )andθ η η∅  where                                 

1, 0.5, 0.3, 1, 0.2, 0.7, 0.5, 0.1, 0.5, 0.3 and 0.5.r a u c oM P R E D S Sβ γ λ δ= = = = = = = = = = =                           

η  
( )θ η  ( )η∅  

DTM MDTM FDM DTM MDTM FDM 

0.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 0.65649 0.65649 0.6564895 0.696176 0.696176 0.6961763 

2.0 0.355842 0.355842 0.3558407 0.422562 0.422562 0.4225611 

3.0 0.153485 0.15349 0.1534889 0.213823 0.213822 0.2138215 

4.0 0.0417624 0.052241 0.052240 0.0885228 0.0866998 0.0866989 

5.0 −3.56762 0.0141772 0.01417667 0.649388 0.0273532 0.0273525 

6.0 −393.027 0.00306269 0.00306253 67.9412 0.00653717 0.00653686 

7.0 −20071.9 0.000478198 0.000478176 3451.29 0.00107547 0.00107538 

8.0 −592012 0.0 0.0 101282 0.0 0.0 

5. Conclusions 
In this work we have obtained the numerical solution of MHD boundary layer flow of non-Newtonian Casson 
fluid on a moving wedge with heat and mass transfer and induced magnetic field. The effects of thermal diffu-
sion and diffusion thermo with induced magnetic field are taken into consideration. The resulting partial diffe-
rential equations which describe the problem are transformed into ordinary differential equations by using a si-
milarity transformation and then solved numerically by using the finite difference method (FDM) and analyti-
cally by using (DTM). A representative set of numerical results for velocity, induced magnetic field, tempera-
ture and concentration profiles is presented graphically and discussed. The figures and tables clearly show that 
the results by using (FDM) are in excellent agreement with previously published works and with the results of 
the analytical solution by using (DTM). The important results for this study summarized as follows: 
 The velocity distribution decreases with the increase of  and M λ , while it increases with an increase of 

,  and β γ δ . 
 The temperature distribution increases with the increase of Ra, E and Du, while it decreases with the increas-

es of Pr and β . 
 The induced magnetic field distribution increases with the increase of ,  and β γ δ , while it decreases with 

the increases of  and M λ . 
 The concentration distribution increases with increase of S0, while it decreases with the increases of Sc and 

β . 
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