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Abstract 
A simple strategy for capturing unstable steady solution is proposed in this paper. By enlarging 
the real time step, the unstable high frequency modes of the unsteady flow can be effectively sup-
pressed because of the damping action on the real time level. The steady component will not be 
changed during real time marching. When the unsteady flow solution converges to a steady state, 
the partial derivatives of real time in unsteady governing equations will disappear automatically. 
The steady solution is the exacted unstable steady solution. The method is validated by the lami-
nar flow past a circular cylinder and a transonic buffet of NACA0012 airfoil. This approach can ac-
quire high-precision unstable steady solutions quickly and effectively without reducing the spatial 
discretization accuracy. This work provides the basis for unstable flow modeling and analysis. 
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1. Introduction 
Computational fluid dynamics (CFD) has been developed for over 30 years and is able to intensively simulate 
the complex flow and unstable process of temporal evolution. However, in many engineering studies, particu-
larly for multidisciplinary analysis such as fluid-structure interaction and flow control issues, the direct CFD 
method is time consuming and difficult to implement for qualitative analysis and parameterization design. Thus, 
in the last 10 years, reduced order methods [1]-[3] based on the unsteady flow field have been developed rapidly 
and have been widely used in various engineering fields [4]-[8]. 

Most reduced order methods are executed on the basis of external excitation for the response to a steady state. 
These methods are still linear models, which are convenient for stability analysis and control law designing. 
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Modelling and reducing orders for the unsteady flow-field perturbations based on a steady-state solution are the 
essence of the linear method. Therefore, obtaining the steady-state numerical solution is the fundamental job of 
this method. Obtaining the steady-state solution is simple for stable flows. By contrast, acquiring the steady- 
state solution is usually difficult for unstable flows. However, most problems involved in engineering are closely 
related to unstable flows, such as vortex-induced vibration problems [9] [10] and buffet problems in aeronautics 
[11]-[15]. Analyzing the flow physical mechanisms and flow-field stability control is significant to model un-
stable flows. 

Unstable flows can be modelled in two ways. One approach involves linearizing the control equations on the 
basis of steady-state solutions and obtaining the linear equations of small disturbance unsteady components for 
further reduction [14]-[16]. The other approach uses closed-loop control to transform the unstable flow to stable 
flow, creates a random perturbation for the stable flow, and institutes dynamic models by the system identifica-
tion method [17] [18]. The key point of the second approach is that the designed actuating pattern and control 
law can turn the unstable flow to a stable flow. Designing the control laws of a complex, nonlinear, and un-
steady flow is also difficult. The foundation of the first modelling approach is obtaining the steady-state solution 
of unstable flows, which usually involves two methods. The first method imposes forced symmetry boundary 
conditions [19]. However, this method is only suitable for symmetric problems, such as flows past a circular 
cylinder. This method is invalid for asymmetric problems, such as dislocation tandem cylinders, airfoil at high 
angles of attack with dynamic separation, and transonic buffet problems. The second method needs a feedback 
control process to obtain a steady solution [17] [20]. Designing an appropriate actuating pattern and control law 
to keep the flow stable is also difficult. A few literature works proposed the use of the time mean flow solution 
instead of the unstable steady solution. However, the topology of both solutions is significantly different from 
each other. Moreover, the characteristics of disturbance solutions are observed [19] [21]-[23]. Other literature 
works have adopted the subcritical flow before instability to substitute for the unstable steady solution [24] [25]. 
This method is simple to implement but only takes an expectant effect in the vicinity of an instability critical 
point; away from the critical point, the method will produce significant errors.  

This paper proposes a simple strategy for capturing an unstable steady solution. For the implicit dual time- 
stepping scheme, the high frequency unstable modes will be filtered by enlarging the real time step substantially 
such that only the steady component remains. Thus, we can acquire a high-precision steady solution that 
satisfies the control equations and boundary conditions. The effectiveness of the method is verified by a typical 
flow-field solution including the flow past a circular cylinder and the transonic buffet problem of NACA0012 
airfoil. Furthermore, we also analyze the mechanism of the impact on the real time step for the unstable flows. 

2. Numerical Method 
2.1. Governing Equations and Finite-Volume Formulation 
The 2D Navier-Stokes flow equations can be written in integral form as follows: 

( ) ( )d d d
t Ω ∂Ω ∂Ω

∂
Ω+ ⋅ Γ = ⋅ Γ

∂ ∫∫ ∫ ∫ 

Q F Q n G Q n                          (1) 

where Ω  is the control volume, ∂Ω  is the boundary of the control volume, and ( )T
,x yn n=n  is the outer  

normal vector of the control volume boundary. The vector Q are conservative variables, ( )F Q  and ( )G Q  
denote inviscid fluxes and viscous fluxes respectively. 

In the cell-centered finite-volume method, the computational domain is divided into non-overlapping control 
volumes that completely cover the domain. The interface variables are derived from the average values of the 
grid cells to calculate the flux of control volumes. The equations of the integral form are translated to linear or-
dinary differential equations through spatial discretization, and the flow variables are obtained by the time- 
marching method. 

For the second-order finite-volume method, the semi-discrete finite-volume formulation of the flow equations 
is expressed as follows: 
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where iQ  denotes the cell-centered value of the control volume i, ( )N i  is the sum of cell faces and ,i mΓ  is 
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the interface area. 
The numerical flux can be evaluated by the upwind scheme. According to the Godunov-type method, the in-

terface normal flux is calculated by the Riemann flux: 

( ) ( ), ,, , ,, ,
i m i m

L R
i m i m i m⋅ ≈F Q n F Q Q n                               (3) 

In the current paper, we mainly adopt the Roe scheme [26] to evaluate the numerical flux. For the second- 
order accuracy method, the middle point of the control volume interface is used to calculate the numerical 
integral. 

2.2. Conditions for Acquiring Unstable Steady Solution by Enlarging the Real Time Step 
2.2.1. Dual Time-Stepping for Implicit Scheme 
For the semi-discrete Equation (2), we adopt the implicit discretization for flux terms and the three-point back-
ward-difference approximation of the time derivative: 
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The symbol t∆  denotes the real time step, and the superscript 1n +  is the value of the new time level. Eq-
uation (4) is solved by the implicit dual time-stepping scheme, which is a particular technique often employed 
for unsteady flows proposed by Jameson [27]. The main idea of the dual time-stepping approach is adding the 
pseudo-time level to the left of the governing equations. Thus, we obtain the following: 

( )
1 1 1

1d 3 4 0
d 2

n n n n
ni i i i

i itτ

+ + −
+− +

+ + =
∆

Q Q Q Q R Q                           (6) 

where τ  denotes the pseudo-time variable. The implicit time-marching scheme can be employed for the solu-
tion of the system of Equation (6) on the pseudo-time level. When the scheme is fulfilled, i.e., 1d d 0n

i τ+ =Q , 
we obtain a steady state in pseudo time. The real solution of the new time level 1n

i
+Q  is also obtained. The sig-

nificant advantage of this approach is that the physical time step is unrestricted as in explicit methods. 

2.2.2. Mechanism Analysis of the Impact on Real Time Step for the Response of the Unsteady Flow 
For the unsteady flow, the unsteady effect in numerical method is mainly reflected by the real time derivative in 
the governing equations. However, the explicit time-marching scheme must adopt a small time step to ensure the 
numerical stability because of the restriction of the CFL condition. Thus, the calculation efficiency is low. 
Therefore, the implicit time-marching scheme is generally used in the unsteady flow-field solution. The process 
for solving numerical governing equations includes decomposing the computational domain with small non- 
overlapping control volumes and transforming the continuous partial differential equations into discrete linear 
algebraic equations to solve. Considering the truncation error caused by the equation approximation and the dis-
sipation introduced by the numerical scheme, the numerical solution cannot completely and exactly describe the 
real flow field. Hence, we acquired an approximate simulation. With regard to the physical unsteady flow, such 
as periodic flow, vortex shedding, and high angle of attack separation flow, the strength of its unsteady charac-
teristics is mainly determined by the instability of flow itself. The necessary condition for the numerical method 
to accurately simulate the unsteady flow is that the dissipation introduced by the method must be less than the 
flow instability characteristics. A higher numerical method accuracy corresponds to a smaller solution dissipa-
tion. 

In general, the steady solution of the unstable flow cannot be obtained by solving the steady governing equa-
tions. However, given the dissipation action of the numerical scheme, which embodies the damping effect in 
flow-field solving, solving the steady governing equations directly can still acquire the steady-state solution if 
the numerical damping is greater than the flow instability for a few weak unsteady flows. However, for a strong 
unsteady flow, numerical damping can insufficiently suppress the flow instability, particularly the high-preci- 
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sion method with low dissipation. Furthermore, the steady-state solution cannot be obtained naturally. Thus, 
many studies adopt coercive boundary conditions to achieve this solution. Expanding the scale of computational 
grids or using low-order accuracy spatial discrete schemes is the most straightforward way to increase the nu-
merical dissipation. Although this manner may also acquire the steady-state solution, such an approach will 
greatly reduce the numerical solution accuracy and result in incorrect computation. 

We can quickly, efficiently, and accurately obtain the unstable steady solution by enlarging the real time step 
for unsteady flow-field equations. For the unsteady flows, the flow field contains different magnitude of fre-
quency modes. We need to adopt very small real time step to exactly capture the high frequency modes. While, 
when Enlarged the real time step, the high frequency modes of unsteady flow are filtered out, whereas the low 
frequency stable mode will not change. Therefore, enlarging the real time step is equivalent to increasing the 
numerical dissipation of the real time level. With the proceeding of time marching, when all of the unstable fre-
quency modes decay and only the stable frequency modes remain, the flow field tends to a steady state. In Equa-
tion (10), when iterations in the pseudo time-level converge, the pseudo-time derivative 1d d 0n

i τ+ =Q  tends to 
be zero and the real solution in the new time level is obtained. When all of the unstable modes are filtered out, 
the real time derivative ( )1 13 4 2n n n

i i i t+ −− + ∆Q Q Q  also tends to be zero, and the unstable steady solution is 
obtained. Furthermore, the steady solution satisfies the steady flow control equations and boundary conditions 
and does not reduce the numerical accuracy. Thus, we obtain the steady solution for the unstable flow field. 

3. Numerical Examples 
3.1. Laminar Flow past a Circular Cylinder 
Laminar flow past a stationary circular cylinder is one of the most classical subjects of fluid mechanics and is 
the fundamental model of investigating the complex flow. Modeling and analyzing the flow past a cylinder can 
also deepen the understanding of flow physical mechanisms. This section mainly analyzes two states of the 
Reynolds number including Re = 60 and Re = 100. 

In this case, the laminar flow past a stationary cylinder has a free stream of 0.1M∞ =  and the Reynolds 
number is 60 and 100. The computational domain is divided by 40324 control volumes and 200 points on the 
cylinder surface. Furthermore, a hybrid mesh is adopted wherein the first height of the boundary layer is 5 × 
10−3, the layer sum is 11, and the total height is 0.1. The meshes of the computational domain and the grids near 
the cylinder are shown in Figure 1. The Roe flux scheme and implicit dual-time marching method are chosen to 
calculate, and the pseudo-time iteration method is symmetric Gauss–Seidel with a residual error convergence 
level 5 × 10−8. 

For the two different states, the Stouhal numbers of the shedding vortex are StRe = 60 = 0.135 and StRe = 100 = 
0.161 and correspond to the periods TRe = 60 = 74.1 and TRe = 100 = 62.5, which are uniformed by the non-dimen- 
sional parameter of the diameter of the cylinder and free-stream sound speed, respectively. First, we set the real 
time step as dtreal = 0.01T, i.e., 100 points are computed in a single period. The results are shown in Figure 2. 
The vorticity of the flow field behind the cylinder is shown in Figure 2(a), and the lift coefficient response of 
the cylinder is shown in Figure 2(b). The pressure distribution and streamlines of the time mean flow solution at 
this state are shown in Figure 3. However, when we enlarge the real time step to dtreal = T, a couple of symme-
tric standing vortex is behind the cylinder and the flow field maintains stability at all times. The results are  
 

   
Figure 1. Meshes of the circular cylinder. 
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(a) 

   
(b) 

Figure 2. Results of the circular cylinder for the real time step dtreal = T. (a) Vorticity of flow field behind the 
cylinder; (b) Lift coefficient response of the cylinder. 

 

 
Figure 3. Pressure distribution and streamlines of the 
time mean flow with Re = 100. 

 
shown in Figure 4. The streamlines of the flow field are shown in Figure 4(a), the vorticity comparisons of 
time-averaged flow and unstable steady flow with referenced paper [23] are shown in Figure 4(b). The lift coef-
ficient response of the cylinder is displayed in Figure 4(c). 

From the above results, when the real time step is small, the unsteady flow field can be accurately simulated 
by the numerical method. The shedding vortex behind the cylinder is significantly captured and the lift coeffi-
cient results are calculated accurately. When increasing the real time step to the vortex shedding period, the un-
stable flow field will transform to the steady state and do not change with time. The lift coefficient curve also 
decreases rapidly to nearly zero. The vorticity distribution of both the time-mean flow and unstable steady flow 
are all very close to the referenced article (Figure 4(b)). Therefore, the steady flow field obtained by this me-
thod does not reduce the accuracy and has high precision. 

We perform a calculation by using different sizes of real time step and depict the change of lift coefficient 
amplitude in Figure 5. In this figure, the y-axis denotes the amplitude of the lift coefficient and the x-axis de-
notes the multiple of the shedding vortex period T. For the weak unstable flow, Re = 60, the flow field will tend 
to show a steady state when the real time step increases to 4%T. For the strong unstable flow, i.e., Re = 100, the 
flow field will tend to show a steady state when the real time step increases to T/2. Thus, the critical real time 
step of acquiring the steady flow field is related to the instability strength of the flow field. A stronger instability 
characteristic corresponds to a larger critical real step size. 

After obtaining the unstable steady solution, we can recalculate the real unsteady flow field on the basis of the 
solution as the initial flow field. The lift coefficient response of the cylinder with Re = 100 and dtreal = 0.01T is  
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(a) 

   

   
(b) 

   
(c) 

Figure 4. Results of the circular cylinder for the real time step dtreal = T. (a) Pressure distribution and stream-
lines of the flow field; (b) Vorticity comparisons of the unstable steady flow and time-averaged flow: the upper 
results are obtained from the referenced paper [23], and the lower results are obtained by the present method; (c) 
Lift coefficients response of the cylinder. 

 

   
Figure 5. Change of lift coefficient amplitude with different sizes of real 
time step. 

 
shown in Figure 6. A comparison of the results shown in Figure 2(b) shows that a slow and detailed process 
can be caught from the stable state to the unsteady flow field. By using the unstable steady solution, we can 
make a better analysis of period flow. 

3.2. Transonic Buffet Flow of NACA0012 Airfoil 
Transonic buffet is a phenomenon of forced vibration because of the interaction between shock waves and 
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boundary layer. This phenomenon is a technical challenge that is often encountered in aircraft design. Modeling 
and analyzing the buffet flow are particularly important to investigate the mechanism and mitigate or control the 
buffet vibration. Obtaining the steady-state solution of the unstable flow is the fundamental work of this method. 
This section mainly demonstrates the transonic buffet flow as the case of NACA0012 airfoil. 

In this case, the flow past a NACA0012 airfoil has an angle of attack of α = 5.5˚ and the free stream M∞ = 0.7 
and Reynolds number is 3.0 × 106. The computational domain is divided by 8568 control volumes and 180 
points on the airfoil surface. A hybrid mesh is adopted wherein the first height of the boundary layer is 1 × 10−5 
and the total height is 0.02. The meshes of the computational domain and grids near the cylinder are shown in 
Figure 7. We adopt the SA turbulence model, and other computational method settings are similar to those in 
Section 3.1. 

Given that the reduced frequency of this state is k = 0.195, the corresponding flow period is T = 23, which is 
uniformed by the non-dimensional parameter of the chord length of the airfoil and the free-stream sound speed. 
First, we set the real time step as dtreal = 0.01, T = 0.23, i.e., 100 points are computed in a single period. The 
results are shown in Figure 8. The pressure contours and streamlines of four different times in a period are 
shown in Figure 8(a), and the lift coefficient response of the airfoil is shown in Figure 8(b). The pressure dis-
tribution and streamlines of the time mean flow solution at this state are shown in Figure 9. However, when we 
enlarge the real time step to dtreal = T, a stable state flow field is obtained and the lift coefficient converges. The 
results are shown in Figure 10. The pressure contours and streamlines are shown in Figure 10(a), and the lift 
coefficient response of the airfoil is shown in Figure 10(b). The comparison of pressure coefficients with 
time-mean flow and unstable steady flow is shown in Figure 10(c). 

From the above results, when the real time step is equal to 0.01T, the flow field quickly develops to the unsta-
ble state and a buffet phenomenon significantly occurs. When the real time step increases to dtreal = T, the flow 
field no longer presents an unsteady state. The vortex is stationary on the upper airfoil, and the lift coefficient 
converges and does not change with time. By comparing pressure contours and pressure coefficients, significant  
 

 
Figure 6. Lift coefficient response of the cylinder based on the steady 
solution for Re = 100. 

 

   
Figure 7. Computational domain grids of NACA0012 airfoil. 
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(a) 

 
(b) 

Figure 8. Results of the transonic buffet of NACA0012 airfoil for the real time dtreal = 
0.01T. (a) Pressure contours and streamlines of four different times in a period; (b) Lift 
coefficient response of the airfoil. 

 

   
Figure 9. Pressure distribution and streamlines of the time mean flow for NACA0012. 
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differences are observed between the time-mean flow and unstable steady flow. For the time-mean flow, the 
shock wave disappears and the distribution of pressure coefficients becomes smooth. However, for the unstable 
steady solution, a shock wave remains at 20% after the leading edge of the airfoil. Furthermore, the values of the 
convergent coefficient of both flows are different. Cl = 0.557 for the time-mean flow, whereas Cl = 0.578 for the 
unstable steady flow. This result is consistent with our preceding examples in the paper. We still perform calcu-
lations with different sizes of the real time step and depict the minimum and maximum lift coefficient ampli-
tudes in Figure 11. In this figure, the y-axis denotes the amplitudes of the lift coefficient and the x-axis denotes  
 

   
(a) 

   
(b)                                      (c) 

Figure 10. Results of the transonic buffet of NACA0012 airfoil for the real time dtreal 
= T. (a) Pressure contours and streamlines of the flow field; (b) Lift coefficient response 
of the airfoil; (c) Comparison of pressure coefficients of time mean flow and unstable 
steady flow. 

 

 
Figure 11. Minimum and maximum amplitudes of the lift coefficient corresponding to 
different sizes of the real time step. 
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the multiple of the shedding vortex period T, where Cl_min denotes the minimum amplitude of the lift coeffi-
cient and Cl_max denotes the maximum amplitude of the lift coefficient. The critical real time step is dtreal = 
5%T. When the real time step is larger than the critical step, the flow field will tend to remain stable and have 
the same size of the lift coefficient. 

4. Conclusion 
This paper proposes a fast, effective, and accurate way of capturing the unstable steady solution. By enlarging 
the real time step size, the unstable frequency modes of the unsteady flow field are filtered out because of the 
damping in the real time level. When the numerical iteration converges, the time derivatives of unsteady term 
dismiss automatically and the stable solution suited for steady governing equations are obtained. The method is 
validated by two unsteady flow cases including the laminar flow past a circular cylinder and a transonic buffet 
of NACA0012 airfoil. The critical real time step of acquiring the steady flow field is related to the instability 
strength of the flow field. A stronger instability characteristic corresponds to the need for a larger a critical real 
step size. The unstable steady solution can be obtained by this method. Thus, we can recalculate the unsteady 
flow field. Moreover, the detailed process from the linear state to the unsteady nonlinear saturated state can be 
captured, thus providing the foundation for the modeling and analysis of unstable flows. 
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