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Abstract 

This paper looks at the development of a class of Exponential Compact Higher Order (ECHO) schemes and 
attempts to comprehend their behaviour by introducing different combinations of discrete source function 
and its derivatives. The characteristic analysis is performed for one-dimensional schemes to understand the 
efficiency of the scheme and a similar analysis has been introduced for higher dimensional schemes. Finally, 
the developed schemes are used to solve several example problems and compared the error norms and rates 
of convergence. 
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1. Introduction  

Many interesting engineering problems involve the 
physical processes and transport phenomena that include 
fluid flow, heat and mass transfer, can be modelled by a 
general Convection-Diffusion Equation (CDE). This 
equation describes the convection and diffusion chara- 
cteristics of various physical quantities, such as mome- 
ntum, energy, concentration, etc. This paper deals with 
the numerical solution of convection-diffusion equation 
of the form  

= ( ,  )xx yy x yau bu cu du f x y         (1) 

on , with boundary conditions  2R 

( ,  ) = ( ,  )u x y g x y  on  ,        (2) 

where  are constant diffusion, ,  are 
constant convection coefficients and 

,  > 0a b c d
f , g  are 

sufficiently smooth functions with respect to x  and . 
If ,  are very small when compared with 

 and , then (1) becomes a convection dominated 
equation for which [1-4] are some of the exponential 
schemes known from the literature. For higher dim- 
ensional problems, though the schemes [2-4] are all 
fourth order accurate, scheme presented in [4] seems to 
be giving better results over the other two. The purpose 
of this work is to understand the good features of the 
scheme given in [4] and based on these features include 
some additional conditions in the development of ECHO 

schemes. Since the development of these schemes is 
already been discussed in [4], instead of repeating the 
same in this work, we focus on understanding the merits 
of the scheme. Section two presents a new class of 
ECHO schemes for 1D CDE, their classification and 
numerical verification. Echo schemes for 2D CDE are 
formulated and compared in the Section three and 
conclusions are drawn in the last section. 

y
0 < a << 1b

dc

2. 1D Convection-Diffusion Equations 

The one dimensional equivalent of (1), by fixing  
, is given by  = = 0b d

= ( )xx xau cu f x  , ,      (3) 0 < < 1x

with boundary conditions , , where 1(0) =u g 2(1) =u g

1g , 2g  are some constants. 

2.1. ECHO Schemes 

A general strategy to develop ECHO schemes is by 
starting with the difference equation  

2 =h i h i iD u cD u F             (4) 

where 1 1= ( ) / 2h i i iD u u u h   and 2
1= ( 2h i i iD u u u    

 over a uniformly distributed nodal points with 

step length  and 

2h

h i

1) /iu 

F  is a linear combination of the 

source term if  and its derivatives at a chosen number 
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of stencil (mesh) points with equal number of arbitrary 
constants (refer [2-4] for three such different choices). 

  is taken to be coth
2 2

ch ch

a


 


  when the convection 

coefficient  so that the difference Equation (4) is 

exact for 

0c 
cx

ae
 
 
   otherwise it is equal to . If a iF  is 

taken as if  then (4) is a second order compact 

exponential scheme which was discussed in [5]. In the 
development of the ECHO scheme, the arbitrary 
constants in iF  are obtained by making the difference 

Equation (4) is exact for x , 2x ,  In this work 

four different stencils are used for 

3 ,x   

iF  and the 

corresponding constants have been computed by forcing 
the difference scheme (4) to be at least fourth order 
accurate. The four chosen stencils and their constants are 
given by (refer [3,4] for the complete derivation of the 
computation of the coefficients). 

2.1.1. Stencil-1 
Consider the discrete source function  

1 1i i 2 3i 1 4= (i )ixF c f c f   c f c f         (5) 

where if , ( )x if  are the source function and it’s 
derivative, respectively, at the nodal point . The  i

Equation (4) is already exact for 1,  e



2 3

cx

a 
 

  



  4,  

 and  

enforcing the exactness also for  ,  ,  x x x

4

x  gives 
four simultaneous equations in terms of its coefficients. 
Solving them for ,  gives  ic = 1 ,i ,  2  3 &

3 2
1 = 0.25c 21

6
3 0.5 3            , 

2
2

2
= 2 2

3
c    , 

3 2 2
3 = 0.25c

1

6
3 0.5 3       

0.5



3 26



 

  , 

4c h= 6      , =
a

ch
 , =

ch

   

for 0c   

and 1

1
=

12
c , 2

5
=

6
c , 3

1

12

1 3c

=

 

c c

) 

,  when . 4 = 0c = 0

1

Similarly for the other stencils, system of equations 
are obtained and solved to get the corresponding co- 
efficients. 

2.1.2. Stencil-2  

1 2= ( ) ( ) (i i x i x if c f f c

0
4 x ifF c     (6) 

when  the coefficients are  c

1 = 1c , 

3 21 1
.5

6 1
2

2

1
= 0 0.5

2 12
c h              

 
, 

3 2
3

2 5
= 2 2

3 6
c h         

 
, 

3 2 2
4

1 1 1
= 0.5 0

6 12 12
c h .5             

 
   

and , 1 = 1c 2 =
24

h
c


, , 3 = 0c 4 =

24

h
c  for c .  = 0

)

2.1.3. Stencil-3  

1 2 3 4= ( ) ( ) (i i x i xx i xxx iF c f c f c f c f   ,   (7) 

when 0c   the coefficients are  

1 = 1c , 2 = ( )c h   , 2 2
3

1
=

6
c h     

 
, 

3 3
4 =c h 21 1

6 12
        
 

,  

and , , 1 = 1c 2 = 0c
2

3 =
12

h
c ,  for .  4 = 0c = 0c

( )i

2.1.4. Stencil-4  

1 1 2 3 1 4 5= ( )i i i i x i xxF c f c f c f c f c f       (8) 

when 0c   the coefficients are  
4 3 2

1 = 12 3 (1 4 ) (2 3 )

      (0.5 ) (0.1 0.25 )

c     
  

   
   

,  

4 3 2
2 = 24 24 4 2 0.8c         

4 3 2
3 = 12 3 (1 4 ) (2 3 )

      (0.5 ) (0.1 0.25 )

c

, 

    
  

   

   
,  

3 2
4 = (6 6 0.5c h )      , 

2 4 3 2 1
= 12 12

15
c h      5

  
 

,  

and 1

1
=

30
c , 2

14
=

15
c , 3

1
=

30
c , , 4 = 0c

2

5 =
20

h
c   

for .  = 0c

Schemes with stencils 1, 2 and 3 contain four 
parameters and are fourth order accurate, whereas the 
scheme with stencil 4 contains five parameters and is 
sixth order accurate. Here after, we refer the difference 
scheme (4) with stencils 1 to 4 as schemes [1 ]

1
DS  to 

[1 ]
4

DS , respectively for all the future references. 
Exponential schemes of [2,3] are also fourth order 
accurate with three arbitrary parameters and the scheme 
given in [4] uses six parameters to generate a sixth order 
scheme for the chosen one-dimensional convection- 
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diffusion equation. The discrete source terms of these 
schemes [2-4] are given by.  

Stencil used in [2]:  

1 1=i i 2 3 1i iF c f c f c f             (9) 

2
1

1
= 0.5 0.5

6
c        , 2

2

2
= 2 2

3
c    , 

2
3

1
= 0.5 0

6
c .5        when 0c  ,  

1

1
=

12
c , 2

5
=

6
c , 3

1
=

12
c  when = 0c .  

Stencil used in [3]:  

)i1 2= 3( ) (i i x i xxF c f c f c f         (10) 

c , c h1 = 1 2 = ( )  , 2 2
3

1
=

6
c h     

 
  

when ,  0c 

1 = 1c , 2 = 0c , 
2

3 =
12

h
c  when = 0c .  

Stencil used in [4]:  

1

1 1= 2 3 1

4 1 5 6      ( ) ( ) ( )
i i i i

x i x i x

c f c f

c f c f c f
 





  
 

i

   (11) 

when the coefficients are  

F c f 

0c   
5 490 (12 90 ) 3

1 = (7.5 12 )

7
      (0.5 ) 0.375

30

c       

  



   
, 

4 3
2

8
= 24 24 2

15
c       , 

5 4 3
3 = 90 (12 90 ) (7.5 12 )

7
      (0.5 ) 0.375

30

c     

  

   

   
, 

5 4 3

4 2

30 6 (1 5 ) (3.5 6 )

= 1
(0.5 ) 5

30

c h

    

  

    


         
5 4 3 2

5 = (120 120 8 2 )c h


, 

          , 
5 4 3

6 2

30 6 (1 5 ) (3.5 6 )

= 1
(0.5 ) 5

30

c h

    

  

    
 

         

,  

and 1

2
=

15
c , 2

11
=

15
c , 3

2
=

15
c , 4 =

40

h
c , 5 = 0c , 

6 =
40

h
c


 for = 0c .  

Name the scheme (4) with stencils used in [2-4] as 
schemes [1 ]

5
DS , [1 ]

6
DS  and [1 ]

7
DS , respectively. That is, 

a total of n O sche  have been introduced 
until now and out of which five of them are fourth order 
accurate and the other two are sixth order accurate. 
Among the fourth order schemes, three of them, 
developed in this work, have four free parameters and 
the other two, taken from the literature [2] and [3], have 
three parameters. Among the sixth order schemes, one 
scheme developed in this work has five free parameters 
and the other taken from the literature [1 ]

7

 seve ECH mes

DS  has six 
parameters. That is, the seven schemes can lassified 
into thn  order schemes with n  number of parameters 
and t ther contain less than  number of parameters. 
The aim of the rest of the work s to demonstrate, using 
wave number analysis and numerical experimentation, 
the thn  order ECHO schemes with n  parameters are 
more accurate than the other class of sc mes. 

 be c

ution 

he o

2.2. Com

g th

n
 i

arison of the Characteristic Curves 

alys

he

, re

p  

Usi e wave number an is sol of any n
numerical scheme can be measured with which one can 
understand the closeness of the characteristic of a 
difference equation to that of the differential equation [6]. 
Since the stability of any numerical scheme depends on 
the magnitude of the peclet number, defined by =

ch
p , 

in this work, the characteristics are compar h 
respect to peclet numbers. The characteristic of the 
governing Equation (1), obtained by substituting 

aed wit

Iwxe  in 
the place of the dependent variable u , is given by:  

2c[1 ] =D I
h p

    
 

     (12) 

wh

 
      

ere = wh ,  is th e nuw e wav mber, = 1I  . 
schemeSimilar ha teristics of the difference s 

are obtained by substituting 
ly, the c rac  

Iie   at iu  to get (refer 
[4,6] for more details).  

Characteristic Cur [1D]
1Sve for : 

' '

2




'

1z
 

[1 ]
1 =D

h z I

    (13) 

wh

c w Iw 


       

ere w' = sin , ' ' = 2 2w cos , 
1

= coth
2 2

p 
 
 

,  

1 4 3 1= ( )sinz       , 2 3 1) co= ( sz    ,  

3 2
1 3

=
p

1 1
0.25 0.5) ) 3

6
p p p    

( (3 1       
  

,  

2
2 2

1 2
= 2  2 ,  

3
p p

p
  

 
 

3 2
3 3

=
p

1 1
0.25 1 3

6
p p p   (3 ) ( 0.5)

        
  

,  
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3
4 3

1
= (0.5 6 6)p p

p
  

 

teristic Curve for [1D]
2

.  

Charac S :  

' ' '
[1 ]
2 =D

h z
 

 2 1

c w Iw

z I

 


 
 




         (14) 

where  

sin='w , ' ' = 2 2cosw  , 

1 ) cosz= coth
2 2

p 
 
 

, 1 3 4 2= (    

2 ) sin

  , 

2 1= (z 4     , 1 = 1   , 

3 2
2 3

1) 1p p
p

  
 

 
, 

1 1 1
= 0.5 (

12 6
p        

 
( )

21 5 2
= 2 (

6 3
p p         
  

,  3 3
1)

p

3 2
4 3

1 1 1
= 0.5 ( 1)

12 6
p p p

p
          

  
.  

Characteristic Curve for 

( 1  )

[1D]
3S :  

' '  '

2 1

c w Iw

I

 


           (15) 

where  

[1 ]
3 =D

h z z
  

 

' = sinw  , ' ' = 2 2cosw  , 
1

= coth
2 2

p  
 
 

, 

2
4 )1 2= (z     , 2 1=z 2

3   ,  1 = 1 , 

2

1
= (1 )p

p
  , 2

3 2

1 1
= 1

6
p p

p
    

 
, 

2 3
4 3

= 1
p

1 1 1

6 1
p p p

2
    

 
 

.  

Characteristic Curve for [1D]
4S :  

''  '

2 1

c w Iw 


           (16) 

where θ(λ) [2]S4 

[1 ]
4 =D

h z Iz
  

 

' = sinw  , ' ' = 2 2cosw  , 
1

= coth
2 2

p  
 
 

, 

1 4 1)3= (z sin   
2

2 2 5= (

  , 

3 1)

 

 
[1D]λ  Figure 1. Comparison of real and imaginary parts of 

at = 0.1p . 

2 3 4
2 4

1
= { 24 24 4 2 0.8 }p p p p

p
       , 

2

cosz        , 

21
) (

1 0.25

p p1

      

p4

3 4

= (12 3 (1 4

(0.5 ) (0.p p

2 3

))

)  

 

 

  






,  

3 4

3 4

1
= (12 3 (1 4 ) (2 3 )

      (0.5 ) (0.1 0.25 ))

p p
p

p p

  

 

   

   

, 

3
4 3

1
= (6 6 0.5p p

p
)  

  , 

2 4
5 4

1 1
= 12 12

15
p p p

p
      

 
. 

Both real and imaginary parts of the haracteristics 
(13-16) are compared with (12) in Figures , 2 and 3 for 
peclet numbers 0.1, 10 and 100, respectively. For the 
sake of comparison, the characteristics of t  Schemes 

 c
 1

he
[1 ]
5

DS , [1 ]
6

DS  and [1 ]
7

DS , are also included in these 
figures. It is clear from these comparisons that the 
Scheme [1 ]

7
DS  is the best among the chosen schemes 

followed by 1
4

DS . These comparisons can be quantified 
by introducing Resolving efficiency. 

2.3. Resolving Efficiency 

The resolving ficiency [7] of any numerical scheme,   ef
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Figure 2. Comparison of real and imaginary parts of 

defined by 

[1D]λ  
at = 10p . 

max


, is a number between 0 and 1. max , 

e ofindependent of the grid size, is the maximum valu  
  fo hicr w h | |fd exact   

 

 

Figure 3. Comparison of real and imaginary parts of 
at 

solve few model problems and compared their error 
norms in the next subsection. 

Two distinct one-dimensional problems with sharp 

Consider x

[1D]λ  
= 100p . 

2.4. Verification with Numerical Examples 
is less than a tolerance  . 

hemesResolving efficiencies are mputed for various sc   co
olerance limwith different t its   and presented  

Tables 1, 2 and 3, for peclet numbers 0.1, 10 and , 
respectively. It is clear from these tables that Scheme in 
[ ] has a very ving efficiency followed by 

[1 ]
4

in
 100 

 good resol4
DS . Also, a careful look at these tables reveals that, for 

small peclet numbers, say for 0.1p , all the fourth 

order schemes have more or less equal resolving 
efficiency, however, for = 10p  and 100, the fourth 

order schemes with four parameters have a much better 
ving efficiency than the Schemes given in [2] and 

[3]. Since ( )Re

=

resol
  of these schem lved to a much 

less value for = 10p  and 100, these are more prone to 

dissipation error which ult y results into loss of 
accuracy. To demonstrate the effect of the resolution of 
various schemes on the accuracy of the generated 
numerical s ns, these schemes have been used to 

es reso

boundary layers are chosen for the purpose of numerical 
verification.  

2.4.1. Example 
2= sin cosxx xu u x       0 < <<,   

1 , 0 < < 1x  for which / 1/( ) = sin ( 1) / (xu x x e e     
1)  is the exact solution with a sharp boundary layer, 

for small values of  , towards = 1x . 

2.4.2. Example 

imatel

olutio  

C sider on
2

2
2 2

=
(1 ) (1 )xx xu u

x x
 

 


 
 

 sin

cos
  


  

x x    , 0 < << 1 , 0 <  fo< 1x r which ( )u x  

= ln(1 ) cosx x    is the ex n. act solutio
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Table 1. Resolving efficiency of the real and imaginary 
[1D]  at = 0.1p .  

 

parts of λ

[1 ]Im( )D  [1 ]Re( )D  

Scheme = 0.1  = 0 .01  = 0.001  = 0.1  = 0 .01 = 0.001
[1 ]

1

DS  0.68 0.39 0.22 0.65 0.38 0.22 
[1 ]

2

DS  0.55 0.30 0.17 0.53 0.30 0.17 
[1 ]

3

DS  70 0. 0.0. 42 24 0.68 0.42 0.24 
[1 ]

4

DS  1.00 0.75 0.52 0.83 0.60 0.42 

Scheme 
0.69 0.38 0.21 0.52 0.29 0.16 

Schem  
[3] 

Schem  
[4] 

[2] 
e

0.70 0.42 0.24 0.55 0.32 0.18 

e
0.95 0.67 0.45 0.89 0.64 0.44 

Table . R ing cien  th l ma  
p λ t p .  

2 esolv  effi cy of e rea and i ginary
arts of [1D]  a = 10

 [1 ]e( DR )  [1 ]( DIm )  

Scheme = 0.1  = 0.01  = 0.001  = 0.1  = 0.01 = 0.001
[1 ]

1

DS  0.59 0.32 0.18 0.68 0.37 0.21 
[1 ]

2

DS  0.44 0.24 0.13 0.52 0.28 0.16 
[1 ]

3

DS  56 
[1 ]

0. 0.33 0.19 0.63 0.37 0.22 

4

DS  

Sch

0.64 0.36 0.20 0.95 0.66 0.45 

e 
0.16 0.05 0.01 0.77 0.39 0.20 

Schem
[3] 

Schem
[4] 

em
[2] 

e 
0.18 0.05 0.01 0.63 0.42 0.24 

e 
0.87 0.59 0.45 1.00 0.69 0.46 

Table 3. lvi ffic  of  r  
g a  λ t 0p . 

 Reso ng e iency  the eal and ima-
inary p rts of [1D]  a = 10  

 [1 ]e( DR )  [1 ]( DIm )  

Scheme = 0.1  = 0.01  = 0.001  = 0.1  = 0.01 = 0.001
[1 ]

1

DS  0.31 0.16 0.11 0.74 0.42 0.21 
[1 ]

2

DS  0.21 0.16 0.11 0.53 0.32 0.16 
[1 ]

3

DS  0.26 0.63 0.37 0.21 
[1 ]

0.16 0.11 

4

DS  

Sch e

0.36 0.21 0.16 0.89 0.63 0.42 

 
0.05 0.05 0.05 0.58 0.32 0.21 

Schem  
[3] 

Schem  
[4] 

em
[2] 

e
0.05 0.05 0.05 0.52 0.32 0.21 

e
0.57 0.42 0.26 1.00 0.73 0.52 

 
Mo l .1.)  (2. ed g 

t n es
de problems (2.4  and 4.2.) are solv  usin

he seve schem  [1
1

]DS  and [1
7

]DS . To he et 
n th mber des ri om to 
81  the usi ram has n v  b n 
1  Th ors pu ty 
or pared in the Tables 4 and 5 for problems 

1.2

of the error 

vary t  pecl
umber, 
 and

e nu
 diff

of
on pa

 no  has bee
eter 

n va
 bee

ed fr
aried

 11 
etwee

0–1 and
m, are com

10–4. e err , com ted using the infini
n
(2.4.1.) and (2.4.2.), respectively (read 1.234567(–08) as 

34567×10–08 in all these tables). 

The comparison norms for various 
schemes reveals that for the peclet number p  less than 
one, the accuracy of all the fourth order schemes are 
more or less equal however, the accuracy of the solutions 
of the 1

1
DS  to 1

3
DS  becomes better over schemes in [2] 

and [3] if p  is increased to 1. The improvement in the 
accuracy becomes even better, better by decimal 
pl

 two 

 o
aces, if p  is increased to 10 or more. This behavior 

supports the characteristic analysis carried ut in the 
earlier section wherein we have shown that the resolving 
efficiency of schemes in [2] and [3] is much smaller than 
the oth urth er schemes at large peclet numbers. 
This concl es that to develop fourth order schemes 
using four parameters may improve the resolving 
efficiency nd hence the accuracy of the numerical 
schemes. The same is also can be concluded between the 
sixth order schemes. The solutions generated using 
Scheme in [4] are uniformly far superior, for the entire 
range of peclet numbers 0.1 to 100, over all the schemes, 
where as 1

4

er fo
u

a

 ord
d

DS  is comparable only at low peclet numbers. 
Further, between the three developed fourth order 
schemes, 1

2
DS  has less resolving efficiency and the 

solutions obtained using this scheme are slightly inferior 
when compared with the other two, however, it is still 
has a better performance than the two existing three 
parameter schemes. 

3. 2D Convection-Diffusion Equations 

Efficiency of every numerical scheme can be established 
computationally by solving a class of example problems 
but analysis of the used numerical scheme is more 
important to gain confidence before applying them for 
real world problems. Usually, the efficiency of the higher 

ionary 
city or 

order compact schemes for one-dimensional stat
CDE is shown by studying their monotoni
comparing their characteristic curves. For 2D schemes, 
the comparisons have to be made characteristic surfaces. 
The development of a 2D scheme for the two- 
dimensional CDE (1) is already presented in [4] and 
using a similar procedure, 2D equivalents for the 
schemes 1

1
DS  to 1

4
DS  can be developed as follows: 

3.1. ECHO Schemes 

The development of an ECHO scheme for a two 
dimensional CDE will be given in a general procedure 
such that a similar procedure can be followed for 
different urce nctions. When the convection 
coefficients a e constant, the two-dimensional equivalent

so fu
r  

*  (17) 

of (4) is given by  
2 2

, , , , ,

where 1, 1,= ( ) / 2h ij i j i jD u u u h 

=h h i j k k i j h i j k i j i jD u D u cD u dD u F    
 , 2

1,= ( 2h ij i j ijD u u u    
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or r the example 2.4.1.  

 

Table 4. Comparison of the err  norms fo

  N p  Scheme [4] Scheme [3] [1 ]

4

DS  [1 ]

3

DS  [1 ]

2

DS  [1 ]

1

DS  Scheme [2]

 11 1 9.09604(–08) 2.49708(–04) 3.72418(–04) 5.82331(–07) 2.77555(–05) 1.08028(–04) 4.03898(–05)
110  21 1/2 06) 6.76222(–06) 2.53384(–06)

 41 1 07) 4.22750(–07) 1.58500(–07)

 81 1/8 6 9 2.22867( 2) 6.60876( 9) 2.64234( 8) 9.90844( )

 

8  1  3.5212 (–13) 8.1183 (–07) 1.2121 (–06) 2.8979 (–11) 6.8925 (–09) 2.6886 (–08) 1.0002 (–08)

 1  

8  1  3.7719 (–13) 3.7565 (–06) 4.7198 (–06) 1.1770 (–10) 1.3772 (–08) 3.8337 (–08) 1.2307 (–08)

 1  

8  1  3.8169 (–13) 4.8880 (–06) 5.0416 (–06) 1.2949 (–10) 1.8805 (–08) 4.4755 (–08) 1.3008 (–08)

1.43583(–09) 1.77531(–05) 2.33358(–05) 9.10599(–09) 1.70241(–
/4 2.24904(–11) 9.74330(–07) 1.46099(–06) 1.42770(–10) 1.05873(–

 3.51524(–13) .09526(–08) .14209(–08) –1 –0 –0 –09
          

11 10 8.88729(–08) 1.77531(–03) 2.29850(–03) 3.65241(–06) 4.88874(–05) 1.37564(–04) 4.53176(–05)
210  21 5 1.44506(–09) 1.62385(–04) 2.29640(–04) 8.90909(–08) 2.43375(–06) 7.90343(–06) 2.75463(–06)

 41 2.5 2.25920(–11) 1.22054(–05) 1.79906(–05) 1.72607(–09) 1.22122(–07) 4.48986(–07) 1.63784(–07)

 1 .25 1 0 7 9 7 0 4
          

11 00 8.77791(–08) 2.45467(–03) 2.54243(–03) 4.19056(–06) 6.92138(–05) 1.61527(–04) 4.75106(–05)
310  21 50 1.48553(–09) 2.97753(–04) 3.20284(–04) 1.31316(–07) 4.37339(–06) 1.06444(–05) 3.17153(–06)

 41 25 2.40075(–11) 3.46001(–05) 3.96217(–05) 4.02580(–09) 2.56511(–07) 6.58354(–07) 2.01890(–07)

 1 2.5 7 3 8 6 5 4 7
          

11 000 8.74623(–08) 2.54393(–03) 2.54569(–03) 4.20028(–06) 7.21326(–05) 1.64144(–04) 4.74090(–05)
410  21 500 1.48149(–09) 3.19490(–04) 3.21770(–04) 1.32418(–07) 4.75839(–06) 1.10378(–05) 3.17837(–06)

 41 250 2.40094(–11) 3.97058(–05) 4.03276(–05) 4.14605(–09) 3.02745(–07) 7.10714(–07) 2.05097(–07)

 1 25 9 3 1 6 0 9 3

T  5.able  Comparison of the error norm for the example 2.4.2. 

  N p  Scheme [4] Scheme [3] Scheme [2] [1 ]

4

DS  [1 ]

3

DS  [1 ]

2

DS  [1 ]

1

DS  

 11 1 1.43890( 07) 1.94626( 04) 2.89270( 04) 4.22688( 07) 4.32687( 05) 1.70161( 04) 6.35454( 05)– – – – – – –
110  21 ) 1.04996(–05) 3.93304(–06)

 41 1/4 3.49160(–11) 7.83288(–07) 1.17424(–06) 1.06559(–10) 1.64206(–07) 6.56127(–07) 2.45980(–07)

 81 1/8 5 4 7 ) 1.67111( 11) 1.02436( 8) 4.09636( 8) 1.53605( )

 

8  1  6.9841 ( 13) 4.1643 ( 07) 6.2148 ( 07) 1.4773 ( 11) 1.3648 ( 08) 5.3307 ( 08) 1.9829 ( 08)

100 

1/2 2.23695(–09) 1.24756(–05) 1.86690(–05) 6.76779(–09) 2.63582(–06

 .45044(–13) .90114(–08) .35061(–08 – –0 –0 –08

          

11 10 1.96384(–07) 8.40121(–04) 1.06619(–03) 1.67762(–06) 1.04588(–04) 3.00805(–04) 9.83965(–05)
210  21 5 2.97619(–09) 8.06763(–05) 1.13353(–04) 4.36902(–08) 4.94140(–06) 1.62042(–05) 5.63472(–06)

 41 2.5 4.51730(–11)

–
6.21577(–06)

–
9.14492(–06)

–
8.72299(–10)

–
2.42789(–07) 

–
8.96202(–07) 

–
3.26724(–07)

– 1 .25 7 6 9 0 9 3 1

 

 11 

         

2.00935(–07) 1.12598(–03) 1.13629(–03) 1.85818(–06) 1.52895(–04) 3.65401(–04) 1.06674(–04)
310  21 50 3.16771(–09)

4.94835(–11)

1.42618(–04)

1.69497(–05)

1.51699(–04)

1.93126(–05)

6.19806(–08)

1.95897(–09)

9.18371(–06) 2.2584

5.25029(–07) 

0(–05) 6.7064

1.35391(–06) 

9(–06)

4.14529(–07) 41 25 

 81 12.5 7.64628(–13) 1.86159(–06) 2.33386(–06) 5.81487(–11) 2.78268(–08) 7.76336(–08) 2.49046(–08)
          
 11 1000 2.00962(–07) 1.16355(–03) 1.13359(–03) 1.85569(–06) 1.59831(–04) 3.72624(–04) 1.06834(–04)

410  21 500 3.16938(–09) 1.52631(–04) 1.51914(–04) 6.23029(–08) 1.00195(–05) 2.34902(–05) 6.74224(–06)

 41 250 4.96365(–11) 1.94022(–05) 1.95976(–05) 2.01159(–09) 6.21278(–07) 1.46575(–06) 4.22341(–07)

 81 125 7.76046(–13) 2.41622(–06) 2.48556(–06) 6.37930(–11) 3.80936(–08) 9.08791(–08) 2.63944(–08)

 
 and2

1, )i ju h
, 1i j iju u
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stributed 
ong x   

and y   directions, respectively and discrete source 
function ijF  is a 2D

developm
 e  

e  
quivalent of
ent of th
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2D ECHO

onding 1D
 scheme isscheme. The 
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b diff lecti of source functions. 

e [1
1

D]S  
urce 

 
Consider the so fu

 (18) puted using Taylor series 

,

nction, which is an extension of 
the scheme 2.1.1., given by  

*
1 1, 2 3 1, 4

1 , 1 2 3 , 1 4

= ( )

         ( )

i j ij i j x i

i j ij i j y ij

F c f c f c f c f

d f d f d f d f

 

 

  

   
   (18) 

The truncation error of the scheme (17) with the 

ij

source function  com
expansion, is gi y, ven b  

,= ,

4
, ,        ( )

xyi jTE Eu Gu Hu xyyi j xxyi j

xxyyi j i jKu f O h  
       (19) 

where ,  1 1=E dK cL , 1 2=G bK cL  2 1=H dK aL , 

2 2=K bK aL    
2

1 3 1 4 2 3 1

1 3 1

= ( ) ,  = ( ) / 2,

= ( )

K h c c c K h c c

L k d d

  

 
   (20) 

2
4 2 3 1,  = ( ) / 2d L k d d

Expanding the terms in (19) and (20) sh
scheme (17) is of second order accurate.
fourth order, the scheme and the source function is 

 as 

e coefficients  and , 
are given by  

ows that the 
 To make it 

written
2



2

2 2 2 2 =

h h k k h k h k

k h h k h k ij ij

D D cD dD ED D

GD D HD D KD D u F

     

  
   (21) 

, 1 1, 2 , 3 1, 4 ,

1 , 1 2 , 3 , 1 4 ,

=

        

i j i j i j i j xi j

i j i j i j yi j

F c f c f c f c f

d f d f d f d f

 

 

  

   
 

where th  ic id = 1,  2,  3 & 4i  

3 2 2
1

1
= 3 0.5 3 0.25

6 x x x x x x xc x             , 

2
2

2
= 2 2

3 x x xc     , 

3 2 2
3 = 3 0.5 3

6

1
0.25x x x xc x x x x             , 

3 2 2
1

1
= 3 0.5 3 0.25

6 y y y y y y y yd              , 

2
2

2
= 2 2

3 y y yd     , 

3 2 2
3

1
= 3 0.5 3 0.25

6 y y y y y y yd y             , 

3 2
4 = ( 6 0.5 6 )y y y yd h       ,  

=x

a

ch
 , =y

a

dk
 , = h

x ch


 , and = k

y dk


   

for  and not equal to zero  c d  

and 1

1
, =c

12 2

5
, =c

6 3

1
=c

12
, = 0c4 , 1

1
=d

12
, 

2

5
=

6
d , 3

1
=

12
d , 4 = 0d  when .  

Similarly, for the other selection of source functions 
remainder terms are utilized to get fourth order accuracy. 
For every sche  

 0= =c d

me , E , G H K  ar as i and e same n 
(20) but 1K , 2K , 1 2L  and L  va with the scheme. 

3.1.2. Scheme 

ries 

[1D]
2S   

Let   

1, j

 2 1

)

   ( ( )y ij jd f

 1 1, 2 3

1 , 1 3 ,

1 1 2 3 2 3 1

= ( ) ( ( )

    ) ( )

    = ,  = ( ),  

i i x i j x ij x i

y i j y i

F f c f c f c f

d f d f

K c c c K h c c

 

1 1 2 3 2 3 1     = ,  = ( )L d d d L k d d

  

  

  
  

The coefficients  t  d crete so rce function are 
given by 

   (22) 

in he is u
 

3 2

1
2

1 1
0.5

6 1=
1

0.5
12

2x xx

x x x x x

 
c h



    

  
 
    
 

, 
 

3
2

2 5
= 2 2

3 6
2

x x x xc h x        
 

, 

3 20.5
6 12x x x

3
2

1 1

=
1

0.5
12 x x x x x

c h
  

    

 

 
    
 

, 
   

3 2

1
2

1 1
0.5

6 1=
1

0.5
12

y y y 2

y y y y y

d k
  

    

    
 
    
 

, 

3 2
2

2 5
= 2 2

3 6y y y yd k y        
 

, 

3 2

3
2

1 1
0.5

6 1=
1

0.5
12

y y y 2

y y y y y

d k
  

    

    
 
    
 

  

1 =
24

h
c


, 2 = 0c , 3 =

24

h
for = 0c d c ,  and 

1 =
24

k
d


, 2 = 0d , 3 =

24

k
d  when = = 0c d .  

3.1.3. Scheme [1D]
3S  

= (

 

Let    

)1 2 3

1 2 3

1 1 2 2 1 1 2 2

) ( ) (

      ( ) ( ) ( )

   = ,  = ,  = ,  = ,

ij ij x ij xx ij xxx ij

y ij yy ij yyy ij

F f f c f c f

d f d f d f

c

K c K c L d L d

  

       (23) 
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 coefficien he discrete source fun re 
n by  

The ts in t ction a
give

1 = ( )x xc h   , 2 21
=

62 x xc xh     
 

, 

3 3
3 = 21 1

6 12x x x x xc h      , 
  





1 = ( )y yd k   , 

2 2
2

1
=

6 y y yd k    

 




, 

3 3 21 1
=3 6 12y y y y yd k            

d  not equal to zero and , 

 

for c and 1 = 0c
2

2 =
12

h
c , 

3c = 0 , , 1 = 0d
2

2 =
12

k
d , .  

3.1.4. Scheme 

3 = 0d  when = = 0c d

[1D]
4S   

Let   

1 1, 2 3 1,

4 5 1 1, 2

3 1, 4 5

2

1 4 3 1 2 5

1 4 2 3

= ( ),  =

(  (
2

3 1

2

3 1 5 1

=

      ( ) ( )

      ( ) ( )

( ),
2

= ), = ),

i i j ij i j

x i xx i i j i

i j y i yy i ij

F c c f c f

c f c f d f d f

d f d f d f f

h

j

f

K c c

d d d d

 





 

   

   



  

  (24)  

The coefficients in the discrete source function are 

h c c K c c

k
L d k L d

  



given by  
4 3 2

1 = 12 3 (1 4 ) (2 3 )

      (0.5 ) (0.1 0.25 )
x x x x

x x x

c x    
  

   
   

, 

4 3 2
2 = 24 24 4 2 0.x x x x x xc          

4 3 2
3 = 12 3 (1 4 ) (2 3 )

      (0.5 ) (0.1 0.25 )

8 , 

x x x x

x x x

c x    
  

   
   

, 

3 2
4 = (6 6 0.5 )x x x xc h       , 

2 4 3 2
5

1
= 12 12

15x x x xc h         
 

, 

4 3 2
1 = 12 3 (1 4 ) (2 3 )

       (0.5 ) (0.1 0.25 )

y y y y y

y y y

d     

  

   

   
4 3 2

2 = 24 24 4 2 0.8y y y y y yd          

, 

,  

4 3 2
3 = 12 3 (1 4 ) (2 3 )y y y yd y       

(0.5 ) (0.1 0.25 )y y y      , 
3 2

4 = (6 6 0.5 )y y y yd k       , 

2 4 3 2
5

1
= 12 12

15y y y yd k        





 

for c  and d  not equal to zero and 

 

1

1
=

30
c , 2

14
=

15
c , 

3c
1

=
30

, c4 = 0 , 
2

5 =
20

h
c , 1

1
=

30
d , 2

14
=

15
d , 

3

1

30
, =d 4 = 0d , 

2

5 =
20

k
d  when .  

These four different schemes 3.1. 3.1.4. are 
compared with the existing ECHO schemes given in [2] 
and [3]. 

2D Scheme in [2] : 

Let      

 = = 0c d

1.-

1 1, 2 3 1,

1 1, 2 3 1,

2

1 3 1 2 3 1

2

1 3 1 2 3 1= ( ),  = ( ),
2

=

    

2

F c f c f c f

f  

= ( ),  = ( ),

i i j ij i j

i j ij i j ijd f d f d f

h
h c c K c c

k

 

K

L k d d L d d

 

 

   

        (25) 

  

 

The coefficients in the discrete source function are 
given by

1

1
= ( )(x xc    2

2
= 2 (

3
0.5)

6 x  , )x x xc     , 

3

1
= ( )( 0.5)

6 x x xc      , 

1

1
= (d  2

2
= 2)( 0.5)

6 y y y    , ( )y3 y yd    ,  

3

1
= ( )( 0.5)

6 x x xd        

d  not equal to zero and for c  and 1

1
=

12
c , 2

5
=

6
c , 

3

1

12
, =c 1

1
=

12
d , 2

5
= 3

1
=

12
d

6
d ,  when 

2D Scheme in [3] : 

Let      

= = 0c d . 

, 1 2 ,

1 2

1 1 2 2 1 1 2 2

= ( ) ( )

      ( ) ( )

= ,  = ,  = ,  = ,

i i j x ij xx i j

y ij yy ij

F f c f c f

d f d f f

K c K c L d L d

 

       (26) 

e urce fu tion a
given by  

Th  coefficients in the discrete so nc re 

1 = ( )x xc h   , 2
2 = (0. (x x xc h 5 ))    , 

1 = ( )x xd h   , 2
2 = (0 ( )x x xd h .5 )      

o zero and for c  and d  not equal t 1 = 0c , 
2

2 =
12

h
c , 
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1 = 0d , 
2

2 =
12

h
d

3.2. Comparison of the Characteristic

 when = = 0c d . 

 Surfaces  

istic surface of tial equation is 

obtained s et nu

The character

 in term

a differen

mbers of pecl =xp
c

a
 and 

h

=y

dk
p

a
, in x   and  di pectively. 

Equation (1), 

obtained by 

y  rections, res

g 
( )

The characteristic of the governin

substituting 
I w x w yx y

 
e
gi

 in the place of 
 

the 
depend isent variable u , ven by: 

2
[2 ] 21

= y y yD
x x x

pcd
r I p r

a p p r r

 
  

 

x y

 

   

 
        

 (27)  

where =x xw h , =x yw k  are phase angles and xw , 

yw  are the wave numbers, h  and k  are ngths  step le
and = 1I 

diffe
. Sim e chara tic surfa

c
)

ilarly, th
he als

cteris ce of 
any rence s me is  obtained by substituting  o

(I i jx ye
 

 for in the difference scheme. Following  ij

this procedure, the characteristic surfaces of the 2D 
schemes [2 ]

1

u  

DS  to [2 ]
4

DS  ted and the same are 
given by 

Characteristic Surface for [1D]

are compu

1S :  

2 1 2
1

3 4

1
=D

x y

z Izcd

a p p z Iz


 
  

        (28) 

1

2 2

1 11 1
(2cos 2)(2cos 2)k

x y
x yr rp

2
= 2 (1 cos ) (1 cos )

(1 ) (1 ) sin sin

k
h x y

y x

r
r

p p r

6 6

x

h

z

p r

r
r

rp

h h x y
yp


  

   

 

 
      ;  

 
 

  
     








 





2

2

= sin sin

1
(1 ) sin (2cos 2)

6

(1 ) (1 ) (2cos 2)sin
6

y
x x y

x h
k x y

y x

y y
h k x

yx

p
z p r

r

p rr

p p r

p p r

r prp

 


  

y  

 

 
      

 
 

      
 

3 2 2 3 1 3 1= ( 1) ( )cos ( ) cos



; 

x yz              , 

4 3 1 3 1 4 4= ( )sin ( )sinx y xz y                

where  

= coth
2 2

x x
h

p p
 , = coth

2 2
y y

k

p p
 , 

1 3 2

3(1 ) 1 21
=

6 4
h h h

xx x pp p

 


  
   , 2 2

2(1 )2
=

3
h

xp





 , 

3 3 2

3(1 ) 1 21
=

6 4
h h h

xx x pp p

  


  
   , 

4 3

6(1 )
=

2
h h

xx pp

 



  .  

ilarly,  Sim

1

3(11
=

3 2

) 1 2

6 4
k k k

yy y pp p

    
   , 2 2

2(1 )2
=

3
k

yp





 ,  

3 3 2

3(1 ) 1 21
=

6 4
k k k

yy y pp p

  


  
   , 

4 3

6(1 )
=

2
k k

yy pp

 



  .  

The terms  and  in the denominator of (28) are 
the contribu due to the source function of the 
scheme and hence  from scheme to scheme. 
However,  all the exponential schemes 
are same as in (28). T justify this, one can expand 

3z
tions 
 

the num

4z

vary
erator of

o 1K , 

2K , 1L  and 2L
each case

 with their parameters for every 
 and i  they appear like  scheme n 

1 = ha
K

c


, 

2

2 2

( )
=

6
ha a h

K
c


 ,  

1 = kb
L

d


, 

2

2 2

( )
=

6
kb bk

L
d


 .  

Therefore, the characteristics of the schemes are differ 
by i h their denom nator w ich contains the contribution of 
the source function of the scheme. The characteristic 
surfaces of the remaining three schemes are 

Characteristic Surface for [1D]
2S :  

[2 ] 1 2
2

3 4

1
=D

x y

z Izcd

a p p z Iz

 
  

       (29) 

3 3 1 3 1= 1 ( ) sin ( ) cosx x yz y           , 

4 2 2 3 1 3 1= ( ) cos ( ) cosx y x x yz            y     , 

1 3 2

1 1 2 1
=

12 122
h h h

xx x pp p

  


  
   , 

2 3

5 2(1 )2
=

3 6
h h

x x xp p p

 



  , 

3 3 2

1 1 2 1
=

12 122
h h h

xx x pp p

  


  
   , 

1 3 2

1 1
= k k k  


  2 1

12 122 yy y pp p


   , 

2 3

5 2(1 )2
=

3 6
k k

y y yp p p

 



  , 
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3 3 2

1 1 2 1
=

12 122
k k k

yy y pp p

  


  
  

teristic Surface for [1D]
3

;  

Charac S :  

2 1 2
3

3 4

1
=D

x y

z Izcd

a p p z Iz


 
  

 

2 2
3 2 2

       (30) 

= 1 x yz      , 3 3
4 1 1 3 3= x y xz y          , 

1
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xp
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1
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6 2

1 h
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1 2
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h h
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1

1
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6
k

yp
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1 2
=

12
k k

yy pp

 


 
 ,  

Characteristic Surface for [1D]
4S :  

2 1
4

1
=D z Icd




2

3 4x y

z

a p p z Iz

 
 
 

       (31) 

3 2 2 3 1

2 2
3 1 5 5

= ( 1) ( ) cos

      ( ) cos

x

y x y
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, 
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=

4 10
h h h h

xx x x pp p p

   


  
    , 

2 3 2

24(1 ) 2(2 )4
=
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  , 
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2 2 1
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h

xx x x pp p p

 
, 
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2
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xx pp
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4 1
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0yy y y pp p p

  


   
   , k 

2 3 2

24(1 ) 2(2 )4
=

5
k k

y yp p

 


 
  , 
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0y y yp p p

   


   
    , 

yp

4 53 4

6(1 ) 12(1 ) 1 1
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2 2 1
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     ;  

Similarly, the characteristics of the schemes in [2] and 
[3] are derived and given y 

Characteristic Surface for Scheme [2]:  

5

 b

[2] 1 2

3 4

1
=

x y

z izcd

a p p z iz


 
  

         ( 2) 3

3 2 2 3 1 3 1= ( 1) ( )cos ( ) cosx yz             , 

4 3 1 3 1= ( )sin ( )sin

1

1
= h

xp





, 2 2

11
=

6
h

xp





 ,  

1

1
= k

yp





, 2 2

11
=

6
k

yp





 .  

Characteristic Surface for Scheme [3]:  

[3] 1 21
=

z izcd
 
      

3 4x ya p p z iz 
     (33) 

1
2 2

3 2 2 4 1= 1 , =x y xz z y         ,  



x yz         ,  

1

1
= h

xp





, 2 2

11
=

6
h

xp


  ,  



1

1
= k

yp





, 2 2

11
=

6
k

yp





 .  

The characteristic surfaces defined in (28-31) are 
symmetric or antisymmetric in the region [0,  ]    
[0,  ]   depending on whether [2 ]D

i  is an even or odd 
function of xp  and yp . Further they are al

2
so periodic 

with period  . These surfaces [2 ]D
i , with respect to 

0 xp    and 0 yp   , 
arison, 

r

can t
ho

nsional case, it is difficult to visualize the closeness
arisons are m

ns f  o

 be pl
wever,

y, comp
rom the

o
 

ted together for 
unlike in one the shak

dime
of these surfac
different a
if =

e 

n

of com

r c

p

es. Alternativel
oss sectio

 
ade at 

 Further, gula rigin.

x y

r
p p

curve, the
, they are also sym
efore, in the pres

m h
e 

characteristics are comp ed at 15˚, 30˚  45˚ cross 
sections.  

etric w
ent case, t

it
h

 respect to 45˚ 
values of the  

ar  and

The characteristics at the three chosen cross sections 
are plotted against the exact one in Figures 4 and 5 for 

= = 10p p  and = = 100x yp p , respectively. The 
comparisons of the real parts of the characteristics are 
included in the first column of these figures, while the 
comparisons of the imaginary parts are shown in the 
second column. The three rows in these figures stand for 
the comparisons at 15˚, 30˚ and 45˚ cross sections, 
respectively.  

It can be seen clearly in each of these figures that the 
characteristics of the existing three parameter 2D 
schemes are far away from the exact curve compared to 
the four parameter schemes which have been developed 
in this work. Interestingly, the deviation is increased with 
angle and also wi

x y

th peclet number giving a very 
substantial deviation at = = 100x yp p . Particularly, 
Scheme in [2] is deviated more at the center and also 
produced a significant overshoot for all most all the cross 
sections. 

Among the present four parameter based fourth order 
2D schemes, [2 ]

2
DS  produced minimum and [2 ]

3
DS  

produced maximum dissipation errors. However, when  
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(a)                                                   (b) 

Figure 4. Comparison of the (a) real and (b) imaginary parts of the characteristic at 

the peclet number is increased to 100, 

10x yp = p = . 

[2 ]
2

DS
here is 

 overshot 
the exact characteristic in its real part but t no such 
abnormality with respect to [2 ]

3
DS . A similar overshoot 

in its real part is also been observed in 

 

[2 ]
1

DS
parts, 

 at least 
along 15˚ cross section. For the imaginary [2 ]

3
DS

 
has the minimum and [2 ]

2
DS  has the high deviation 
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(a)                                                (b) 

Figure 5. Comparison of the (a) real and (b) imaginary parts of the characteristic at  

giving little more dispersion error. To conclude, 

100x yp = p = . 

[2 ]
3

DS  
 four 

d six 
may be relative a better one among the developed
parameter schemes. However, both five an

parameter based schemes are indistinguishable and these 
are better resolved for real case as comparable to [2 ]

3
DS  

for imaginary case. and almost close to [2 ]
3

DS  

Copyright © 2011 SciRes.                                                                                AJCM 



S.V.S.S. YEDIDA  ET  AL. 
 
52 

 

Table 6. Comparison of the error norm and rate of convergence for the example 3.3.1.  

  N ( xp , yp ) Scheme [4] Rate [2 ]

4

DS  Rate [2 ]

3

DS  Rate [2 ]

2

DS  Rate [2 ]

1

DS  Rate

 11 11 (2, 1) 3.2758(–05)  3.3534(–05)  1.0116(–04)  2.4911(–04)  7.5792(–05)  

110  21 21 (1, 1/2) 2.1086(–06) 3.98 2.1208(–06) 3.98 6.4702(–06) 4.0 1.5813(–05) 3.98 4.6762(–06) 4.20 

 41 41 (1/2, 1/4) 1.3299(–07) 3.99 1.3317(–07) 3.99 4.0445(–07) 4.0 9.8422(–07) 4.01 2.9358(–07) 3.99 

 81 81 (1/4, 1/2) 8.3358(–09) 4.00 8.3364(–09) 3.99 2.5290(–08) 4.0 6.1618(–08) 4.00 1.8314(–08) 4.00 

             

 11 11 (20, 10) 1.0280(–01)  8.2609(–02) 6.3122(–02)  8.4654(–01)  1.7722(–01)

21 21 (10, 5) 5.9942(–03) 4.10 9.3313(–03) 2.48 2.7119(–02) 1.22 1.3763(–01) 2.62 4.2111(–02) 2.07 

 41 41 (5, 5/2) 1.7187(–04) 5.12 3.5268(–04) 4.73 3.3219(–03) 3.03 1.3880(–02) 3.31 4.9041(–03) 3.10 

 81 81 (5/2, 5/4) 2.9582(–06) 5.86 6.5424(–06) 5.75 2.2380(–04) 3.89 9.0323(–04) 3.94 3.3340(–04) 3.88 

 

 11 11 (200,100) 2.9329(01)  1.2625(–00)  2.0891(–04)  1.0339(02)  2.1052(–00)  

21 21 (100,50) 6.7439(00) 2.12 6.2716(–01) 1.00 2.8535(–05) 2.87 2.5296(01) 2.03 1.0482(–00) 1.00 

 41 41 (50,25) 1.3939(00) 2.27 3.0705(–01) 1.03 2.3053(–03) –6.34 6.0623(00) 2.06 5.1798(–01) 1.02 

 81 81 (25, 25/2) 2.1120(–01) 2.72 1.2556(–01) 1.29 5.2316(–02) –4.50 1.3821(00) 2.13 2.3966(–01) 1.11 

 161 161 (25/2,25/4) 1.6135(–02) 3.71 2.0981(–02) 2.58 4.1933(–02) 0.32 2.5399(–01) 2.44 7.1006(–02) 1.76 

 321 321 (25/4,25/8) 5. 2) 3.08 1.0272(–02) 2.79 







   

210  






310  







 7798(–04) 4.80 1.0951(–03) 4.26 6.9254(–03) 2.60 2.9998(–0

 

3.3.1. Example 

3.3. Numerical Verification  

Consider the following two-dimensional problems with 
sharp boundary layers. 

2 =xx yy x yu u u u      
11 11

2 1 (1 ) (1 2 )y xy y e 


        
 

, 0 < <<
 

 1 ,  

in the gire on 0 x , 1y   with exact solution 
1 1

1
( , ) =u x e 2y x (1 )yy   .  

   

3.3.2. Example 

= (1 2 )expxx yy x y

x
u u u u y 


      

 
, 0 < << 1 ,  

in the region 0 x , 1y   

 ( , ) = (1 ) 2 exp
x

u x y y y x

 

ms ( re solved 
using 

   
 

.  

he example proble 3.3.1.) and (3.3.2.) aT
[2 ]
1

DS  to [2 ]
4

DS  
s are com

 [4

and also with the scheme given in 
[4]. The pared, in the form of error norm 

s 6 and 7, for 
As expected, 

 given in ] and the scheme 

 result

hem

and the rate of convergence, in Table
problems (3.3.1.) and (3.3.2.), respectively. 
the sc e [2 ]

4
DS

ple 3.3.1. a
 pro   

higher nce for E nd  
accuracy for Exam  T ese ons are 
once a confirm acy of the r
n  e io

For convection dominated problems all most all the 
c u s w a n 

shown in 4] that the scheme given in [4] has performed 
e e m 2  g e 

charact istic analysis an  numerical verifi ation, i an 
be concluded that it is better to use n parameter based 2D 
sc evelop  schem ch es 
with less parameters. 

duced
betterrate of converge xam

ple 3.3.2..
 the accur

h  comparis
characte

 
istic gain 

a alysis made in th  previous subsect n. 

s hemes prod ced ame accuracy ho ever, it h s bee
 [

tter than thb sche es given [ ] and [3]. Lookin  at th
er d c t c

hemes to d  thn  order es, over s em
with exact solution 
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Table 7. Comparison of the error n d rate of con ergence for the example 3.3.2.  orm an v

  ( xp , yp ) Scheme [4] Ra [2 ]N te 4

DS  R [2 ]ate 3

DS  R [2 ]ate 2

DS  Rate [2 ]

1

DS  Rate 

 11 11 (1,1) 2.2658(–04)  2.2675(–04)  1.8741(–04)  3.9867(–04)  2.9060(–04)  

110  21 21 (1/2, 1/2) 1.4046(–05) 4.00 1.4048(–05) 4.00 1.1519(–05) 4.02 2.4501(–05) 4.02 1.7917(–05) 4.02 

 41 41 (1/4, 1/4) 8.7539(–07) 4.00 8.7542(–07) 4.00 7.1382(–07) 4.01 1.5323(–06) 4.00 1.1212(–06) 4.00 

 81 /8, 1/8) 4.4908( 7.0682( 3.99 

  

 11 11 (10,10) 9.6530(–03)  1.2891(–02)  1.4054(–02)  3.6026(–02)  1.6494(–02)  

21 21 (5,5) 4.6367(–03) 1.06 4.9883(–03) 1.37 5.0340(–03) 1.48 1.1336(–02) 1.67 6.8089(–03) 1.28 

 2.29 9.5928(–04) 2.38 8.1280(–04) 2.63 2.0086(–03) 2.50 3281(–03) 2.36 

 81 81 (5/4, 5/4) 9.0223(–05) 3.39 9.0385(–05) 3.40 

100,100) 5.7441(–02)  1.8322(–02)  

21 21 (50,50) 1.0511(–02) 2.45 1.0879(–02) 0.75 292(–

 41 41 (25,25) 6.6370(–04) 3.99 5.8353(–03) 90 

(25/2, 25/2) 1. (–03) 1.12 

 161 161 (25/4, 25/4) 8.524 4) 0.99 9.6240(–04) 1.48 

 321 321 (25/8, 25/8) 2.0814(–04) 2.03 2.1228(–04) 2.18 





 81 (1  5.5187(–08) 3.99 5.5187(–08) 3.99 –08) 3.99 9.6631(–08) 3.99 –08)

           

  

210  

 41 41 (5/2, 5/2) 9.4892(–04)  1.

 6.9922(–05) 3.54 1.8443(–04) 3.45 1.2511(–04) 3.41 

1.9735(–02)  2.7883(–01)  2.2093(–02)  

1.1782(–02) 0.74 8.8185(–02) –1.66 1.3 02) 0.73 

 

 11 11 (

310  

 0. 6.3558(–03) 0.89 2.7366(–02) 1.69 7.2365(–03) 0.88 

2.9415(–03) 1.11 8.1345(–03) 1.75 3.4111(–03) 1.08  81 81 6570(–03) –1.32 2.6765

6(–0 1.0164(–03) 1.53 2.2469(–03) 1.86 1.2841(–03) 1.41 

1.8988(–04) 2.42 4.4575(–04) 2.33 2.9124(–04) 2.14 
 
4. Conclusions 

e have deve teristics 
risons for e chemes. 

The characteristic comparisons are also been extended 
for two dimension
this short analysis that when exponential compact higher 
order schemes re e v ing the sourc
term as a linear combination of its values at the 
sur ou n oda t riv tiv ter
to use  or
so that t e resultant schem
and he  u th
same reason, the fourth order ECHO schemes developed 
in is r e t isting scheme
[2,3]. The same is also true when the ECHO schemes are 
extended r 2D CDE, the co pondi  three p rameter
schemes are comparatively less efficient than the four or 
six parameter based schemes. 

ish
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