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Abstract 
This paper is devoted to studying the generalized Chaplygin gas models in Bianchi type III space- 
time geometry with time varying bulk viscosity, cosmological and gravitational constants. We are 

considering the condition on metric potential n n

RR R m m
R R Rt t

 

31 2 1 2

1 2 3

,= = = . Also to obtain deterministic 

models we have considered physically reasonable relations like P p= + Π , r
0=η η ρ  and the eq-

uation of state for generalized Chaplygin gas given by Bp −
= αρ

. A new set of exact solutions of 

Einstein’s field equations has been obtained in Eckart theory, truncated theory and full causal 
theory. Physical behaviour of the models has been discussed. 
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1. Introduction 
The motivation behind the stimulated interest in anisotropic cosmological models is experimental study of iso-

http://www.scirp.org/journal/ns
http://dx.doi.org/10.4236/ns.2015.76035
http://dx.doi.org/10.4236/ns.2015.76035
http://www.scirp.org
mailto:shubha.kotambkar@rediffmail.com
mailto:gpsingh@mth.vnit.ac.in
mailto:rupali.kelkar@yahoo.com
http://creativecommons.org/licenses/by/4.0/


S. Kotambkar et al. 
 

 
313 

tropy of the cosmic microwave background radiation and speculation about the amount of the helium formed at 
the early stages of the evolution of the universe. The existence of anisotropic stage of the universe is supported 
by experimental data and numbers of scientific arguments in the literature which is supposed to be phased out 
during evolution. The present day universe is isotropic and homogeneous. In understanding the behavior of un-
iverse at early stages, anisotropic cosmological models have played a significant role. Singh and Singh [1] [2] 
have obtained cosmological models for Bianchi type V, VI0, III and Kantowski-Sachs space-times within 
framework of Lyra geometry. Bianchi type III cosmological model in f(R, T) theory of gravity has been dis-
cussed by Reddy et al. [3]. Pradhan et al. [4] discussed anisotropic Bianchi type III string cosmological models 
in normal gauge for Lyra’s manifold with electromagnetic field. Singh et al. [5] have investigated Bianchi type 
III cosmological models in Lyra’s geometry in the presence of massive scalar field. 

The astronomical observations of type Ia supernovae [6]-[10], galaxy red shift surveys [11], cosmic back-
ground radiation data [12] [13] and large scale structure [14] convincingly suggest that present universe is un-
dergoing the accelerated phase of expansion. To understand this accelerated behavior of universe, cosmological 
constant played a significant role. A large cosmological constant at early epoch is the basis of the inflationary 
model and the much smaller cosmological constant at a much later epoch is suggested by current observations. 
In an attempt to solve the discrepancy between the cosmological constant inferred from observations and the 
vacuum energy density resulting from quantum field theories, many researchers have proposed cosmological 
models with time varying Λ . Sahni and Starobinski [15] have presented detailed discussion on current obser-
vational situation focusing on cosmological tests on Λ . 

The idea of variability of G originated with the work of Dirac [16], who for the first time drew the attention of 
the scientific community to the time varying G in context of cosmological model. The theory of an expanding 
universe supports the idea of time-dependent gravitational constant. Time varying G has many interesting con-
sequences in astrophysics. It is shown that G varying cosmology is consistent with whatsoever cosmological 
observations available at present [17]. Variability of G is also supported by observational results coming up 
from Lunar Laser Ranging [18]. Anisotropic cosmological models with bulk viscosity, variable G and Λ  have 
been investigated by Chakraborty and Roy [19]. Singh and Beesham [20] have discussed anisotropic Bianchi 
type V perfect fluid space-time with variable G and Λ . Singh [21] has focused on Robertson-Walker model 
with variable cosmological term and gravitational constant in cosmological relativity theory. Khurshudyan et al. 
[22] have studied observational constraints on models of the universe with time-variable gravitational and cos-
mological constants along modified gravity theory.  

In the literature it has been discussed that during the early stages of evolution of the universe, bulk viscosity 
could arise in many circumstances and could lead to an effective mechanism of galaxy formation [23]. To con-
sider more realistic models one must take into account the viscosity mechanism, which has already attracted the 
attention of many researchers. Bulk viscosity leading to an accelerated phase of the universe today has been stu-
died by Fabris et al. [24]. Singh et al. [25] have presented a number of classes of solutions of Einstein’s field 
equations with variable G and Λ  and bulk viscosity coefficient in the frame work of non-causal theory. Singh 
and Chaubey [26], and Singh and Baghel [27] [28] have discussed some Bianchi type models with bulk viscosi-
ty. Recently Kotambkar et al. [29] have investigated anisotropic cosmological models with quintessence consi-
dering the effect of bulk viscosity.  

It has been observed that the universe has entered an acceleration phase and some exotic dark energy must 
presently dominate [30] [31]. This hypothetical form of energy that permeates all of space tends to increase the 
rate of expansion of the universe. Hence in order to explain recent cosmic observations, dark energy is consi-
dered as prime candidate. Chaplygin gas may be useful for describing dark energy because of its negative pres-
sure. Chaplygin gas (CG) is referred as exotic fluid, as it has positive energy density but negative pressure. Due 
to effectiveness of CG in explaining the evolution of the universe, several generalizations of Chaplygin gas have 
been proposed in the literature [32]-[34]. The form of equation of state (EOS) of matter is generalized by adding 
an arbitrary constant with an exponent over the mass density, referred as generalized Chaplygin gas (GCG) [35] 
[36]. The form of EOS is modified by adding an ordinary matter field, matching the recent observational fallouts 
GCG referred as modified Chaplygin gas (MCG) [37]. Alcaniz et al. [38] have investigated cosmological mod-
els with high red shift objects and the generalized Chaplygin gas. Paul et al. [39] have studied observational 
constraints on modified Chaplygin gas. 
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2. Field Equation 
We consider the Bianchi type III metric in the form  

2 2 2 2 2 2 2 2 2
1 2 3d d d e d d .xs t R x R y R z= − + + +                            (1) 

1 2 3, ,R R R  are function of t alone. 
For perfect fluid distribution Einstein’s field equations with gravitation and cosmological constant may be 

written as  

1 8π .
2ij ij ij ijR Rg GT g− = − + Λ                                 (2) 

where G is gravitational constant, Λ  is cosmological constant, which are time dependent.  
The energy momentum tensor ijT  for viscous fluid distribution is given by  

( ) ,ij i j ijT P u u Pgρ= + +                                   (3) 

where 
.P p= +Π                                           (4) 

where p is equilibrium pressure, Π  is bulk viscous stress together with 1j
iu u = . 

Einstein’s filed Equation (2) for the metric (1) leads to  

( )3 2 32

2 3 2 3

8π ,
R R RR G p

R R R R
+ + = − +Π +Λ
  

                             (5) 

( )3 1 31

1 3 1 3

8π ,
R R RR G p

R R R R
+ + = − +Π +Λ
  

                             (6) 

( )1 2 1 2

1 2 1 2

8π ,
R R R R G p
R R R R

+ + = − +Π +Λ
   

                             (7) 

2 3 1 31 2
2

1 2 2 3 1 3 1

1 8π ,
R R R RR R G

R R R R R R R
ρ+ + − = + Λ

    

                            (8) 

1 2

1 2

0.
R R
R R

− =
 

                                        (9) 

where the over head dot denote differentiation with respect to time t. An additional equation for the time 

changes of G and Λ  is obtained by divergence of the Einstein tensor, i.e. 
;

1 0
2ij ij

j

R Rg − = 
 

 which leads to 

( );8π 0ij ij j
GT g−Λ = , yielding 

( ) 31 2

1 2 3

8π 8π 0.
RR RG G p

R R R
ρ ρ ρ

  
+ Λ + + + +Π + + =  

   

 

 

                    (10) 

Equation (10) splits into two equations as 

( ) 31 2

1 2 3

0,
RR Rp

R R R
ρ ρ

 
+ + + + = 

 

 

                                (11) 

31 2

1 2 3

8π 8π .
RR RG G

R R R
ρ

 
Λ + = − Π + + 

 

 

                              (12) 

For the full causal non-equilibrium thermodynamics the causal evolution equation for bulk viscosity is given 
by [40] 
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3 31 2 1 2

1 2 3 1 2 3

.
2

R RR R R R T
R R R R R R T

ετ τ ητ η
τ η

   Π
Π + Π = − + + − + + + − −   

   

     



                     (13) 

0T ≥  absolute temperature, η  is bulk viscosity coefficient which cannot become negative, τ  denote the 
relaxation time for transient bulk viscous effects. Causality requires 0τ > . When 0ε = , Equation (13) reduces 
to evolution equation for truncated theory. For 1ε =  Equation (13) reduces to evolution equation for full caus-
al theory and for 0τ =  Equation (13) reduces to evolution equation for non-causal theory (Eckart’s theory). 

3. Cosmological Solutions 
Since there are five basic Equations (5)-(9) and eight unknowns viz. 1 2 3, , , , , , andR R R p Gρ Λ Π  therefore 
three more physically plausible relations among these variables will be considered for solving the set of equa-
tions. 

Case I: Non-Causal Cosmological Solution 
For non causal solution 0τ =  , therefore the evolution Equation (13) takes the form of  

31 2

1 2 3

3
RR R H

R R R
η η
 

Π = − + + = − 
 

 

                                  (14) 

To find the complete solution of the system of equations, following relations are taken into consideration. 
The power law relation for bulk viscosity is taken as 

0 ,rη η ρ=                                               (15) 

0 0η >  and r is constant. 
The equation of state is 

, 0 1, 0Bp Bα α
ρ
−

= < ≤ >                                      (16) 

We assume the solution of the system in the form 

31 2 1 2

1 2 3

, .n n

RR R m m
R R Rt t

= = =
 

                                    (17) 

where n is constant. On integrating Equation (17), we get 
1 1

1 2
1 2 3exp and exp

1 1

n nm t m tR R a R b
n n

− −   
= = =   

− −   
                         (18) 

where a and b are constants of integration. 
Using Equations (16) and (17) in (11), we obtain 

( ) ( )1 2 1 22 2
,n n

m m B m m
t t αρ ρ

ρ
+ +

+ =                                 (19) 

which on solving yields 

( )( )
1

1
1 2 12 1

exp ,
1

nm m
B C t

n

αα
ρ

+
− − + +  = +  

−    
                          (20) 

where C is constant of integration. 
From Equation (20) and Figure 1 one can see that energy density is decreasing with evolution of the universe 

which is in fair agreement with observations. 
On differentiating Equation (20), one can get 

( ) ( )( ) ( )( ) 1
1 2 1 2 1 21 12 2 1 2 1

exp exp
1 1

n n
n

C m m m m m m
t B C t

n nt

α
αα α

ρ

−
+

− − − + − + + − + +      = +    
− −        

        (21) 
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Figure 1. Shows variation of energy density ρ  with respect to cosmic time t. Here we con-
sider B = 1, C = 1, n = 1.5, m1 = 2, m2 = 1 and 0.5α = .                                 

 
Now with the help of Equations (17) and (18), Equation (8) becomes 

2
1 1 2 1 2

2 2 2
2 11

1 8π ,
2exp

1

n n n
n

m m m m m G
mt t t a t
n

ρ
−

+ + − = + Λ
− 

 − 

                     (22) 

which on differentiation leads to  

( )1 1 2 11 1
2 1 2

2 2 2 2
exp 8π 8π .

1
n

n n

nm m m m m t G G
nt a t

ρ ρ−
+

− + − + = + + Λ − 
 

                   (23) 

Substituting Equations (12), (14) and (17) into Equation (23), we have 

( ) 2
1 1 2 11 1 1 2

2 1 2

2 2 2 2 2
exp 8π 8π .

1
n

n n n

nm m m m m m mt G G
nt a t t

ρ η−
+

− + − +   + = +   −   
                (24) 

By use of Equations (15) and (21), Equation (24) yields 
( ) ( )

( ) ( )( ) ( ) ( )( )

2 1 2 1
1 1 1

21 1 2 11 1
2 1 1 2 0

2 exp
,

8π exp exp 2 exp

n n n

r
n n n n n

C t m a t D t
G

C t D t B C Dt m m t B C Dt
α

α αη

− + − − −

−
− − − − −+ +

 + =
 

+ + + + 
  

     (25) 

where 
( )( ) ( ) ( )1 2 1

1 1 1 2 2 1 2 1

2 1 2
, 2 2 , 2 , .

1 1
m m mD C nm m m C C m m D

n n
α− + + −

= = − + = − + =
− −

 

From Equation (25) and Figure 2 one can see that gravitational constant is increasing with evolution of the 
universe which goes with observations. 

Using Equations (20) and (25), Equation (22) gives  

( ) ( )
( ) ( )

( ) ( )( ) ( ) ( )( )

2 2 1
1 1 2 1

2 1 2 1
1 1 1

11 21 1 2 1 1
2 1 1 2 0

2 exp

2 exp

exp exp 2 exp

n n

n n n

r
n n n n n

m m m t a D t

C t m a t D t

C t D t B C Dt m m t B C Dt αη

− − −

− + − − −

−
−

− − − − − +

Λ = + −

 + −
 

+ + + + 
  

         (26) 

From Equation (26) and Figure 3 one can see that cosmological constant is decreasing with evolution of the 
universe which is in fair agreement with observations. 
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Figure 2. Shows variation of gravitational constant with respect to cosmic time t. Here we 
consider B = 1, C = 1, n = 1.5, m1 = 2, m2 = 1, 0.5α = , r = 1.5, a = 1 and 0 1η = .              

 

 
Figure 3. Shows variation of cosmological constant with respect to cosmic time t. Here we 
consider B = 1, C = 1, n = 1.5, m1 = 2, m2 = 1, 0.5α = , r = 1.5, a = 1 and 0 1η = .             

 
Now from Equations (15) and (20), we have 

( )1 1
0 exp

r
nB C Dt αη η − + = +                                    (27) 

From Equation (27) and Figure 4 one can see that bulk viscosity coefficient is decreasing with evolution of 
the universe which is in fair agreement with observations. 

From Equations (14) and (17), the expression for bulk viscous stress is given by 
( ) ( )0 1 2 1 13 2

exp
r

n
n

m m
B C Dt

t
αη − +

− +  Π = +                             (28) 

Thus the metric (1) reduces to the form 

( )
1 1

2 2 2 2 2 2 2 21 22 2
d d exp d e d exp d

1 1

n n
xm t m ts t a x y b z

n n

− −   −
= − + + +   

− −   
                (29) 

The shear scalar [41] may be defined as  
2 22

2 33 3311 22 22 11

11 22 22 33 33 11

1
12

g gg g g g
g g g g g g

σ
     
 = − + − + −    
       

    

                     (30) 
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Figure 4. Shows variation of bulk viscosity coefficient with respect to cosmic time t. Here we 
consider B = 1, C = 1, n = 1.5, m1 = 2, m2 = 1, 0.5,  0.75,  1α = , r = 1.5.                       

 
For this model the Shear scalar is 

( )2
1 22

2

2
3 n

m m
t

σ
−

=                                          (31) 

From Equation (31) it is clear that as t →∞ , shear dies out. 
The expansion scalar is defined by 

3 , .RH H
R

Θ = =


                                        (32) 

For this model expansion scalar is given by 

1 22
n

m m
t
+

Θ =                                           (33) 

The deceleration parameter is related to the expansion scalar as  
2

2

3 ,q Θ+Θ
= −

Θ



                                          (34) 

For this model  

1

1 2

3 1
2

nnq t
m m

−= −
+

                                       (35) 

Foe accelerating expansion of the universe the deceleration parameter q < 0 for 

1
11 22
.

3
nm mt

n
−+ <  

 
 

( ) ( )( )
1

22 1
1 2 1 2 1

2

2 2 1
Relative anisotropy exp

13
n

n

m m m m
B C t

nt

αασ
ρ

−
+

− − − + +  = = +  
−    

             (36) 

( )
( )

1 2

1 2

2
constant

3 2
m m
m m

σ −
= =

Θ +
                                  (37) 

Case II: Causal Cosmological Solution 
In addition to physically plausible relations (16), (17), in this case we assume 

2.HβΛ =                                             (38) 
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where H is Hubble parameter, given by  

( )1 3
1 2 3 and .RH R R R R

R
= =


                                   (39) 

From Equations (17) and (39), the Hubble parameter is given by  

1 22
3 n

m mH
t
+

=                                          (40) 

Using Equations (17)-(18), (38) and (40) in Equation (8), we get  
1

1
2 2

218π exp ,
1

n

n

m tMG
nt a

ρ
− −

= −  
− 

                                (41) 

where ( )22
1 1 2 1 22 2 .

9
M m m m m mβ

= + − +  

From Equations (20) and (41), 

( ) ( )
1

1 11
12 2

1 1exp exp
8π

n n
n

MG B C Dt D t
t a

α
−

− −+   = + −    
                       (42) 

From Equation (42) and Figure 5 one can see that gravitational constant is increasing with evolution of the 
universe which supports observations. 

Substitute the values from Equations (17), (20), (38) and (42) in Equation (5), we get  

( )1 21
2 1

1 ,
8πn n

m m nM B
Gt t αρ+

+  −
Π = − + 

 
                               (43) 

where ( )22 2
1 1 2 1 2 1 22 .

9
M m m m m m mβ

= + + − +  

By use of Equation (20), Equation (43) gives 

( )
( ) ( )

1
1 1 1

3 1

1 1

exp

exp

n n

n

C t M B C Dt B
M U t

B C Dt

α

α
α

− − +

− +

  − +   Π = +
−    + 

                  (44) 

( ) ( ) { }2 1
3 1 2 12

1, expn nC m m n U t t D t
a

−= + =  

 

 
Figure 5. Shows variation of gravitational constant with respect to cosmic time t. Here we 
consider B = 1, C = 1, n = 1.5, m1 = 2, m2 = 1, 0.5α = , r = 1.5, a = 1 and 0 1η = .             
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(i) Evaluation of Bulk viscosity in Truncated Causal Theory 
Now we study variation of bulk viscosity coefficient η  and relaxation time τ  with respect to the cosmic 

time. It has already been mentioned that for truncated theory 0ε =  and hence Equation (13) reduces to  
3 .Hτ ηΠ + Π = −                                       (45) 

In order to have exact solution of the system of equations one more physically plausible relation is required. 
Thus, we consider the well known relation  

.ητ
ρ

=                                          (46) 

Using Equations (17), (20), (44) and (46) in Equation (45) one can obtain 

( ) ( )( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )( )
( ) ( ){ }

1
11 1 11 1

3 1

2 12 131 1 1 13 14
4

1
2 1 1 13 1 1 2

122

exp exp

1
exp exp exp exp

22 exp 2 exp

n n n

n n
n n n n n

n
n n n n

n

C t M M U t B C Dt B B C Dt

C n t C t MCC t Dt B C Dt Dt B C Dt
M U t B M U t

C t M m mnt Dt m t Dt
ta M U t

α
α α

η

α

−
−− − −+ +

− −− −
− − − − −

−
− − −

   − − + + +   =
− −   + + − +   − −

− +
+ − +

−

 

(47) 

where ( )4 1 22 .C BC m mα= +   
(ii) Evaluation of Bulk Viscosity in Full Causal Theory 
It has already been mentioned that for full causal theory 1ε =  and hence Equation (13) reduces to  

3 3
2

TH H
T

τ τ ητ η
τ η

 Π
Π + Π = − − − − − 

 





                                 (48) 

On the basis of Gibb’s inerrability condition, Maartens [40] has suggested the equation of state for tempera-
ture as 

dexp ,pT
pρ

∝
+∫                                           (49) 

which with the help of Equation (16) gives 

( )1 1
0 1 .T T B

α
α αρ− + + = −                                       (50) 

using Equations (20), (40), (46) and (50) in Equation (48) one can obtain 

1 2 1 22 2
,

2n n

m m m m T
Tt t

η η ρη
ρ ρ ρ

 + +Π
Π + Π = − − − − 

 





  

which on simplification yields the expression for bulk viscosity 

( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )( )
( ) ( ){ }

1
11 1 11 1

1 3

2 12 11 1 1 13 3 14
4

1
2 1 1 13 1 1 2

122

exp exp

( 1)exp exp exp exp
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4. Discussion 
In this paper we have studied bulk viscous Bianchi type III space-time geometry with generalized Chaplygin gas 
and time-varying gravitational and cosmological constants. We have obtained a new set of Einstein’s equations  

by considering 1 2 1

1 2
n

R R m
R R t

= =
 

 and nt
m

R
R 2

3

3 = . In all cases energy density, bulk viscosity and cosmological  

constant are decreasing as gravitational constant G(t) is increasing with time. Shear dies out with evolution of 
the universe for large value of t. For accelerating model of the universe, the deceleration parameter q < 0  

for 

1
11 22

3
nm mt

n
−+ <  

 
. We find that ( )

( )
1 2

1 2

2
constant

3 2
m m
m m

σ
θ

−
= =

+
. Thus anisotropy is maintained throughout. 

However, if  1 2 ,m m=  then 0σ
θ
= , and then the model isotropizes. In case II for n = 1, we have 1H

t
∝   

which is considered to be fundamental and match with the observations. In order to have clear idea of variation 
in behavior of cosmological parameters, relevant graphs have been plotted. All graphs of cosmological parame-
ters go with cosmological observations. 
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