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Abstract 
The current study investigates the predator-prey problem with assumptions that interaction of 
predation has a little or no effect on prey population growth and the prey’s grow rate is time de-
pendent. The prey is assumed to follow the Gompertz growth model and the respective predator 
growth function is constructed by solving ordinary differential equations. The results show that 
the predator population model is found to be a function of the well known exponential integral 
function. The solution is also given in Taylor’s series. Simulation study shows that the predator 
population size eventually converges either to a finite positive limit or zero or diverges to positive 
infinity. Under certain conditions, the predator population converges to the asymptotic limit of the 
prey model. More results are included in the paper.  
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1. Introduction 
The predator-prey problem has been interesting to many researchers [1]-[7]. Modelling population growth of in-
teracting species involves differential equations [1] [2]. The biological species interact in many and complex 
ways that may affect the population compositions over time, due to natural or artificial or management reasons.  

Predation can increase, decrease, or have little effect on the strength, impact or importance of interspecific 
competition [3]. They indicate that there are cases in which predation has very little effect on competitive inte-
ractions. 
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It is discussed in [4] that the net effects of interspecific species interactions on individuals and populations 
vary in both sign (positive, zero, negative) and magnitude (strong to weak). Interaction outcomes are context- 
dependent when the sign and/or magnitude change as a function of the biotic or abiotic context. 

The predator-prey problem with the assumptions of little or no effect of predation on the prey population 
growth is studied in [6] [7]. In this study, the prey populations are assumed to grow according to logistic, Von 
Bertalanffy and Richards models. The results show that the predation affects the predator population in such a 
way that its growth either converges to a finite positive limit or to zero or diverges to positive infinity.  

There are several options to consider among the generalized growth models [8]. These include, for example, 
generalized logistic, particular case of logistic, logistic, Richards, Von Bertalanffy, Brody, Gompertz, genera-
lized weibull, weibull, monomolecular, mitscherlich and more. Behavior of the growth models has been further 
studied in [8]-[10].  

The following sections are presented as follows: predator-prey models are presented in Section 2; Gompertz 
model in Section 3; solution for the Predator-prey equations in Section 4; simulation study in Section 5; analysis 
of phase diagram and equilibrium points in Section 6; and conclusions in Section 7. 

2. Predator-Prey Models 
The classical Lotka-Volterra predator-prey model is given by: 

d ;
d
d .
d

x ax bxy
t
y cy dxy
t

= −

= − +
                                       (1) 

where a , b , c  and d  are positive constants. The parameter a  is intrinsic growth rate of the prey, b is rate 
of consumption of prey by predator, c is mortality rate of predator at absence of prey and d is reproduction rate 
of predator due to consumption of prey.  

In the present work, we consider the case when the interaction of the prey and predator populations leads to a 
little or no effect on growth of the prey population, that is 0b ≈ . We also assume the parameter a  is a func-
tion of time. Thus the assumptions of the classical predator-prey model are relaxed. The proposed predator-prey 
model is [6]:   

( )d ;
d
d .
d

x r t x
t
y vy sxy
t

=

= − +
                                       (2) 

where x  is population size or density of prey; y  is population size or density of predator communities in the 
system. Here we assume r  to be a relative growth rate function which is positive valued function of time t . 
The parameter 𝑠𝑠 is reproduction rate of predator due to consumption of prey and v  is mortality rate of preda-
tor at absence of prey. Both are positive constants.  

The prey Equation in (2) is the first order differential equation. The solutions of this first order differential 
equation are studied as growth models in [9]. This implies that a prey model can be selected from the large fam-
ily of growth functions in [8] [9]. Given prey’s model, we can solve the differential equation of the respective 
predator population in (2).  

The general approach for solving Equation (2) consists of the following steps:  
1) Assume that the impact of predator on prey population growth is negligible,  
2) Predator population declines in absence of prey,  
3) Predator population grows with a rate proportional to a function of both x  and y ,  
4) Assume that there is prior information about the prey population that x  follows a known growth function. 

Gompertz growth model in this case.  
5) Solve for predator population growth y .  

3. Gompertz Model for Prey Population Growth 
We assume that the growth of prey population follows Gompertz growth model and construct the corresponding 
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predator growth function. The Gompertz model is given in [9]-[12] as follows:  

( ) ( )expe B ktx t A − −=                                       (3)  

where ( )0logB A A= , ( )0 0A x=  is initial population size, A  is asymptotic growth of the population 
representing carrying capacity, and k  is absolute growth rate parameter of the prey. The respective relative 
growth rate is ( ){ }logtr k A x t= . The growth curve has a single point of inflection at time ( ) ( ){ }01 log loga k A A= . 
Detailed discussion is found in [8]-[12]. 

4. Solution of the Predator-Prey Equations 
Here, we solve the ordinary differential equations in (2), then determine intersection points at which the prey 
and predator population attain same values, and finally three special cases of predator population are considered. 

4.1. Derivation of the Model 
The solution for the ordinary differential equation in (2) is derived assuming that prey follows the Gompertz 
model in (3). After substituting (3) in (2), the corresponding predator population growth function is derived to 
be: 
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Or equivalently, 
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where ( )0 0y y=  represents initial predator population size. The detailed derivations are given in Appendix 1.  
Equation (4) is also equivalent to the following solution (6)—that can be expressed in terms of the well 

known exponential integral function Ei: 

( )
0Ei log Ei log

0e
AsA xvt

k A Ay t y
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Note that the exponential integral function is a popular function that is often useful in many applications. We 
believe that this respective predator population growth function ( )y t  can be useful as well. In fact, Equation (6) 
can be expressed algebraically as the Ei function:  

0

0

log Ei log Ei log
Ak y x kv t

As y A A As
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                          (7) 

The predator models in Equations (4-7) appear to be new functions and they do not match with any one of the 
commonly known growth models. 

4.2. Points of Intersection 
Points of intersection are the point of time at which the prey and predator populations attain the same sizes.  
Whenever it occurs, let the point of intersection be represented by pt , i.e. we must have ( ) ( )p px t y t=  in  

Equations (3) and (4). In trying to solve these equations, we get the following expression expressed explicitly as: 
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where 
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Equation (7) can only be computed numerically.  

4.3. Special Cases 
To further understand the model in Equation (4), three special cases are identified which are dependent of birth 
and death parameters of predator population. The cases are considered here below. 

Case I ( )As v= : In this case the function describing the population growth of predator in Equation (4) takes  

the form ( )
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∑ . It is further observed that the predator  

population converges to lower or upper asymptote depending on the initial value of the predator population. The 
initial population size can be larger or smaller than A . Thus, the limiting value for the predator population is  

( ) 0
0 1exp log !

n

n

AAsy y n n
Ak

∞

=

      ∞ =       
        

∑ .  

It is interesting to note that both the prey and predator population sizes converge to the same asymptote A

provided that the parameter s  is assigned the value s s∗=  where 
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predator population size converges to an asymptote above or below that of predator population size depending 
on s s∗=  or s s∗=  respectively. 

Case II ( )v As> : In this case, the predator population decays from 0y  to zero as t →∞  while the prey 
population grows from 0A  to A . 

Case III ( )v As< : In this case the predator population grows from 0y  and ultimately diverges to +∞  as 
t →∞  while the prey population grows from 0A  to A  as expected or restricted.  

The minimal point at which the predator growth curve turns or gets minimum value is found to be: 
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ferent, for example, for the case of logistic prey model [7] for which the minimum point occurs at  
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The cases can be generalized to a statement that ratio of deaths to births ( )v s  of predator growth is propor-
tional to asymptote ( )A  of prey growth. That is, v s cA=  where c  is a constant that can be related to an 
intervention factor applied on prey optimal size, or a factor that can be applied either to the predator’s birth para- 
meter ( ){ }v cs A= , or on the predator’s death parameter ( ){ }v c s A= . Such intervention can hence be ap-
plied to the prey or predator parameters. The derivations provided in this paper correspond to the case that 1c = . 
For c  different from 1, the respective derivations can similar be made. 

5. Simulation Study 
The simulation study is carried out based on Equation (4). The study is designed by varying the model parame-
ters: 0,  ,  A A k  for prey population following Gompertz model and 0 ,  ,  y s v  for predator population. The 
study design is as follows:  

Prey model: Gompertz growth model  
Prey model parameters: 100A = , 0 20A = , 0.1k = . 
Predator model parameters: 0 1.5y A=  is initial population size; birth rate s , death rate v . 
Cases: Case I: As v= , Case II: As v< , Case III: As v>  
Case I:   1e 10s= −  &   1e 8v= − ;   0.0001s=  &   0.01v= ;   0.000356s=  &   0.0356v= ;   0.001s=  & 

  0.1v= ;   0.002s=  & 0.2v =  
Case II:   0.00001s=  &   0.006v= ;   0.0001s=  &   0.02v= ;   0.001s=  &   0.105v = ;   0.002s=  & 

  0.205v=  
Case III:   0.00001s=  &   0.0005v= ;   0.0001s=  &   0.0065v= ;   0.001s=  & 0.095v = ; 0.002s =  & 

  0.195v=  
The results of the study are displayed in Figures 1-3. 
Figure 1 displays plots for the Case I, where the ratio of death to birth of predator is equal to asymptotic size 

of prey A. In the simulation, the birth rate is varied from smaller to larger values. The result reveals that the pre-
dator population size decreases and eventually converges to a positive quantity at various rates. Note that for a 
particular value of the birth parameter 𝑠𝑠, the population sizes of both prey and predator converge to same 
asymptotic value denoted by A .  

 

 
Figure 1. Plots of predator population dynamics when prey follows Gompertz 
growth model for Case I with k = 0.1, A = 100, A0 = 20, y0 = 1.5 A.            
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Figure 2. Plots of predator population dynamics when prey follows Gompertz 
growth model for Case II with k = 0.1, A = 100, A0 = 20, y0 = 1.5 A.          

 

 
Figure 3. Plots of predator population dynamics when prey follows Gompertz 
growth model for Case III with k = 0.1, A = 100, A0 = 20, y0 = 1.5 A.          
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then increases and eventually diverges to infinity. 
We have shown by simulation study that the predator population either converges to a finite limit or con-

verges to zero or diverges to infinity on the positive side depending on the parameter values under the assump-
tion that prey follows Gompertz growth model. Moreover, for a particular value of birth parameter 𝑠𝑠, the popu-
lation sizes of both prey and predator converge to same asymptote. These findings are similar with those in [7] 
[8]. 

6. Analysis of Phase Diagram and Equilibrium Points 
The newly proposed predator-prey model (2) in its full form can be expressed, in case of Gompertz growth of 
prey population, as the system of equations ( )d d logx t kx A x=  and d dy t vy sxy= − + . The two equilibrium 

points of this system are found to be ( ) ( )1 1, 0,0x y∗ ∗ =  and ( ) ( )2 2, ,0x y A∗ ∗ =  since at both these points the ne-

cessary and sufficient conditions d d 0x t =  and d d 0y t =  are satisfied. Also the Jacobian matrix of the sys-

tem of equations is ( ) ( )( )log 1 0
,

k A x
J x y

sy v sx

 −
=  

− +  
. We now analyze the nature of the equilibrium points 

below and display the summary in Table 1. 
Nature of the Equilibrium Point ( ) ( )1 1, 0,0x y∗ ∗ =  

The Jacobean matrix at this equilibrium point takes the form ( ) ( ) ( )( )0
1 1

log 1 0
, 0,0

0

k A A
J x y J

v
∗ ∗

 −
= =  

−  
 

and the corresponding eigenvalues are ( )( )11 0log 1k A Aλ∗ = −  and 12 vλ∗ = − . Recall that all the parameters 

0,  ,  k A A  and v  are positive quantities and thus here arise the following two cases for 11λ∗  while 12λ∗  is al-
ways negative. 

Condition I ( ){ }0log 1A A < : In this case, both the eigenvalues 11λ∗  and 12λ∗  are negative and hence the 

equilibrium point ( ) ( )1 1, 0,0x y∗ ∗ =  is stable. 

Condition II ( ){ }0log 1A A > : In this case, the eigenvalues 11λ∗  is positive while 12λ∗  is negative and 

hence the equilibrium point ( ) ( )1 1, 0,0x y∗ ∗ =  is unstable.  

Nature of the Equilibrium Point ( ) ( )2 2, ,0x y A∗ ∗ =  
 

Table 1. Summary of stabilities of the equilibrium points.                                                         

Equilibrium point Eigenvalue Condition Sign of eigenvalue Nature of equilibrium point 

( ) ( )1 1, 0,0x y∗ ∗ =  11
0

log 1Ak
A

λ∗
  

= −     
 

12 vλ∗ = −  

0

log 1A
A

 
< 

 
 Both 11λ∗  and 12λ∗   

are negative 
Stable 

0

log 1A
A

 
> 

 
 11λ∗  is positive and  

12λ∗  is negative 
Unstable 

( ) ( )2 2, ,0x y A∗ ∗ =  21 kλ∗ = −  

22 v sAλ∗ = − +  

As v=  
21λ∗  is negative and 

22λ∗  is zero 
Stable 

As v<  
Both 21λ∗  and 

22λ∗  are negative 
Stable 

As v>  
21λ∗  is negative and 

22λ∗  is positive 
Unstable 
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The Jacobean matrix at this equilibrium point takes the form ( ) ( )2 2

0
, ,0

0
k

J x y J A
v sA

∗ ∗ − 
= =  − + 

 and the 

corresponding eigenvalues are 21 kλ∗ = −  and 22 v sAλ∗ = − + . The parameters ,  ,  k v s  and A  are positive and 

thus implies that 21λ∗   is always negative but three cases for 22λ∗ .  

Condition I { }As v= : In this case, 22 v sAλ∗ = − +  is zero and hence the equilibrium point ( ) ( )2 2, ,0x y A∗ ∗ =  
is stable.  

Condition II { }As v< : In this case, both the eigenvalues are negative and hence the equilibrium point 

( ) ( )2 2, ,0x y A∗ ∗ =  is stable.  

Condition III { }As v> : In this case, only 22λ∗  is positive. Hence the equilibrium point ( ) ( )2 2, ,0x y A∗ ∗ =  is 
unstable. 

7. Conclusions 
Some mathematical aspect of the well known predator-prey problem is studied by modifying the respective 
classical assumptions. We assume that the prey population growths naturally with no interaction effect due to 
predation and rate of growth is non-constant. Then, the predator-prey equations are solved considering prey 
grows as Gompertz model. The solution for the predator population is found to involve the exponential integral 
function and is equivalently expressed in terms of Taylor’s series. 

The simulation studies and further analysis of the models reveal that the predator population grows in such a 
way that either converges to a finite limit or zero or diverges to positive infinity. There is a situation at which 
both prey and predator populations converge to the same limit irrespective of their initial population sizes. There 
is also a situation where the predator population attains a minimal point before it diverges to infinity. Moreover, 
two equilibrium points are identified which are stable only under some specific conditions.  
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Appendix 1 
Derivation of Predator Population Model given Prey follows Gompertz Growth Model 

Assume the prey population growth can be represented by the Gompertz function:  

( ) e

0

e ,    log
ktB Ax t A B

A
−−  

= =  
 

                                 (i) 

Then the predator equation can be solved as: 

[ ]d d d log d
d
y yvy sxy v sx t y vt s x t
t y
= − + ⇒ = − + ⇒ = − + ∫                     (ii) 

Substituting (i) in (ii) gives  
elog e d

ktBy vt sA t
−−= − + ∫  

We now introduce a new variable u  for the purpose of evaluating the integral as  

1e d d d dktu B u ku t t u
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−= − ⇒ = − ⇒ = −  

So as to get: 

elog d
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k u
= − − ∫                                    (iii) 

To evaluate the integral, we now use Taylor’s series expansion of eu  as: 
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Using (iv) in (iii), we get: 

1log log
!

n

n

sA uy vt u C
k n n

∞

=
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To determine the integral constant C  we now impose the initial conditions 0A  and 0y . That reduces (v) to 
be: 
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To eliminate C , subtract (vi) from (v) to get: 
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Thus, (vi) can be rearranged as:  
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Thus ( )y t  is predator population size at t . Using 
( )
( )0

log
e

log
kt x A

A A
−  

=  
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 in (vii), we have    
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                      (viii) 

The relationship (viii) is a phase path equation. It can be used to analyze phase path diagrams. 

Appendix 2 
Show the Solution with Exponential Integral Function and the Taylor’s Series of the Predator Population 
are Equivalent. 

Exponential integral function ( )Ei x , for small values of x , is given by Maclaurin series as:  
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Here 0.57721γ =   is called Euler’s constant. Using (i), the expressions for Ei log x
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can be obtained as follows: 
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On subtracting (iii) from (ii), we get  
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Hence, using (v) in (iv) we get 
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Using (v) in (i), we get 
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Or equivalently 
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Thus (vii) is the required predator equation expressed using exponential integral function ( )Ei x . Since (vii) 
is derived from (i), it can be understood that both the solutions obtained using Taylor’s series expansion and 
Exponential integral function agree with each other. 

Note that the indefinite integral e d
u

u
u

 
 
 
∫  together with the initial condition Lu a=  can be expressed as 

the semi-definite integral as e d
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 
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∫ . The lower limit is fixed. 
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