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Abstract 

The Bianchi type-III and Kantowski-Sachs (KS) Universes filled with dark energy from a wet dark fluid has 
been considered. A new Equation of state for the dark energy component of the universe has been used. It is 
modeled on the Equation of state = ( )p     which can describe a liquid, for example water. The exact 
solutions to the corresponding field Equations are obtained in quadrature form. The solution for constant 
deceleration parameter have been studied in detail for power-law and exponential forms both. The case 

= 0 , = 1  and 
1

=
3

  have been also analysed. 
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1. Introduction 
 
The nature of the dark energy component of the universe 
[1-3] remains one of the deepest mysteries of cosmology. 
There is certainly no lack of candidates: cosmological 
constant, quintessence [4-6], k-essence [7-9], phantom 
energy [10-12]. Modifications of the Friedmann Equa- 
tion such as Cardassian expansion [13,14] as well as 
what might be derived from brane cosmology [15-17] 
have also been used to explain the acceleration of the 
universe. A particular case of the linear Equation of state 
has used in the cosmological context by Xanthopuolos 
[18], he considered space-times with two hypersueface 
orthogonal, spacelike, commuting killing fields.  

In this work, we use Wet Dark Fluid (WDF) as a 
model for dark energy. This model is in the spirit of the 
generalized Chaplygin gas (GCG) [19], where a phy- 
sically motivated Equation of state is offered with pro- 
perties relevant for the dark energy problem. Here the 
motivation stems from an empirical Equation of state 
proposed by Tait [20] and Hayword [21] to treat water 
and aqueous solution. The Equation of state for WDF is 
very simple, 

=WDF WDFp                  (1) 

and is motivated by the fact that it is a good 
approximation for many fluids, including water, in which 

the internal attraction of the molecules makes negative 
pressures possible. One of the virtues of this model is 
that the square of the sound speed, 2

sc , which depends 
on p   , can be positive (as opposed to the case of 
phantom energy, say), while still giving rise to cosmic 
acceleration in the current epoch.  

We treat Equation (1) as a phemenological Equation 
[22]. Holman et al. [23] have shown that this model can 
be made consistent with the most recent SNIa data [24], 
the WMAP results [25,26] as well as constraints coming 
from measurements of the matter power spectrum [27]. 
The parameters   and   are taken to be positive and 
we restrict ourselves to 0 1  . Note that if sc

2
 

denotes the adiabatic sound speed in WDF, then = sc . 
(refer Babichev et al. [28]).  

To find the WDF energy density, we use the energy 
conservation Equation 

 3 =WDF WDF WDFH p   0         (2) 

From Equation of state (1) and using 3 =H V V  in 
above Equation, we have 

 1
=

1WDF

C

V 

 
 


 å          (3) 

where C is a constant of integration. Here V is volume 
expansion. 

WDF naturally includes two components: a piece that 



R. CHAUBEY 26 
 
behaves as a cosmological constant as well as a standard 
fluid with an Equation of state =p 

0

. We can show 
that if we take , this fluid will not violate the 
strong energy condition 

> 0C
p   : 

 = 1WDF WDF WDFp          1
= 1 0

C

V 



   (4) 

Chaubey and Chaubey et al. ([29,30]) have studied 
some anisotropic cosmological universes with wet dark 
fluid. In this paper we study the Bianchi type- III and 
Kantowski-Sachs Universes with matter term with dark 
energy treated as a Dark Fluid satisfying the Equation of 
state (1). The solution has been obtained in the qua- 
drature form. The models with constant deceleration 
parameter have been studied in detail. 
 
2. Basic Equation 
 
2.1. Bianchi Type - III Universe 

We take Bianchi type- III metric in form 
2 2 2 2 2 2 22

1 2d = d d d dsinhs t a r a           (5) 

where the metric functions  and  are functions of 
t only.  

1a 2a

The Einstein field Equations for the metric (5) are 
written in the form 

2

12 2
12

2 2 2

1
2

a a
T

a a a


 
  
 

 
= .              (6) 

21 2 1 2
2

1 2 1 2

=
a a a a

T
a a a a

 
   

.                (7) 

2

01 2 2
02

1 2 2 2

1
2

a a a
T

a a a a


 
  
 

  
= .             (8) 

Here  is the gravitational constant and overhead 
dot denotes differentiation with respect to .  


t

The energy-momentum tensor of the source is given by 

 = .j j
i WDF WDF i WDFT p u u p j

i          (9) 

where  is the flow vector satisfying iu

= 1.i j
ijg u u                     (10) 

In a co-moving system of coordinates, from Equation 
(9) we find  

0 1 2
0 1 2= , = =WDF WDFT T T p  .        (11) 

Now using Equation (11) in Equations (6)-(8) we obtain 
2

2 2
2

2 2 2

1
2 = WDF

a a
p

a a a


 
   
 

 
         (12) 

1 2 1 2

1 2 1 2

= WDF

a a a a
p

a a a a
  

   

2

1 2 2
2

1 2 2 2

1
2 = WDF

a a a
p

a a a a


 
   
 

  
.      (14) 

Let  be a function of  defined by V t
2

1 2=V a a                     (15) 

Now adding three times Equation (14), two times 
Equatin (13) in Equation (12), we get 

 
2

1 2 2 1 2
2 2

1 2 1 22 2

2 3
2 2 2 = .(16) 

2 WDF WDF

a a a a a
p

a a a aa a

 
 

     
 

    

From Equations (15) and (16) we have 

2
2

2 3
=

2 WDF WDF

V
p

V a

  


         (17) 

The conservational law for the energy-momentum 
tensor gives 

=WDF WDF WDF

V
p

V
  


          (18) 

Case 1: When  1

Then Equation (17) reduces to 
=a V

3
2 =

2 WDF WDF

V
p

V

  






        (19) 

From Equations (18) and (19) we have 

 2
1= 3 4WDFV C V          (20) 

with  being an integration constant. 1

Rewriting (18) in the form 
C

=
WDF WDF

V

p V








.            (21) 

and taking into account that the pressure and the energy 
density obeying an equation of state of type 

 =WDF WDFp f  , we conclude that WDF  and WDF , 
hence the right hand side of the Equation (17) is a 
function of  only. 

p

V

   3
= 2 .   (22) 

2 WDF WDFV p V V F V
    

From the mechanical point of view Equation (22) can 
be interpreted as Equation of motion of a single particle 
with unit mass under the force  F V . Then  

 = 2 .V U  V              (23) 

Here   can be viewed as energy and  U V  as the 
potential of the force F . Compairing the Equations (20) 

and (23) we find 1=
2

C
  and 

  23
=.         (13) 4

2 WDFU V V .
   

         (24) 

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Finally, we write the solution to the Equation (20) in 
quadrature form 

 
02

1

d
=

3 4WDF

V
t t

C V


 
 .        (25) 

where the integration constant 0t  can be taken to be 
zero, since it only gives a shift in time. 

From Equations (3) and (25) we obtain 

 
0

12
1

d
=

3
4 3

1

V
t t

V CV C  





.
 

    

 (26) 

Case 2: When 2 =a V  
Then Equation (17) reduces to 

2 3
=

2 WDF WDF

V
p

V V

  


         (27) 

After simlification, we get 

0
2 (1 )

1

d
=

3
3 4

1

V
t t

V CV V C  





.
  



  (28) 

 
2.2. Kantowski-Sachs Universe 
 
We take Kantowski-Sachs metric in form 

2 2 2 2 2 2 22
1 2d = d d d dsins t a r a            (29) 

where the metric functions  and  are functions of 
 only.  

1a 2a
t

The Einstein field Equations for the metric (29) are 
written in the form  

2

12 2
12

2 2 2

1
2

a a
T

a a a


 
  
 

 
= .           (30) 

21 2 1 2
2

1 2 1 2

=
a a a a

T
a a a a

 
   

.              (31) 

2

01 2 2
02

1 2 2 2

1
2

a a a
T

a a a a


 
  
 

  
=           (32) 

Here  is the gravitational constant and overhead 
dot denotes differentiation with respect to .  


t

Now using Equations (9)-(11) in Equations (30)-(32) 
we obtain 

2

2 2
2

2 2 2

1
2 = WDF

a a
p

a a a


 
   
 

 
.          (33) 

1 2 1 2

1 2 1 2

= WDF

a a a a
p

a a a a
  

   
.            (34) 

2

1 2 2
2

1 2 2 2

1
2 .WDF

a a a
p

a a a a


 
   
 

  
          (35) 

Let  be a function of  defined by V t
2

1 2=V a a                         (36) 

Now adding three times Equation (35), two times 
Equation (34) in Equation (33), we get 

 
2

1 2 2 1 2
2 2

1 2 1 22 2

2 3
2 2 2 =

2 WDF WDF

a a a a a
p

a a a aa a

 
 

     
 

    
(37) 

From Equations (36) and (37) we have 

2
2

2 3
= .

2 WDF WDF

V
p

V a

  


         (38) 

Case 1: When  1

Then Equation (38) reduces to 
=a V

3
2 = .

2 WDF WDF

V
p

V

  


          (39) 

After simplification, we get 

 
0

12
1

d
= .

3
4 3

1

V
t t

V CV C  






 

    

  (40) 

Case 2 When 2 =a V  
Then Equation (38) reduces to 

2 3
=

2 WDF WDF

V
p

V V

  


          (41) 

After simlification, we get 

0
2 (1 )

1

d
=

3
3 4

1

V
t t

V CV V C  





.
  



   (42) 

 
3. Some Particular Cases 
 
3.1. Bianchi Type - III Universe 
 
Case 1: When  1

Case I 
=a V

= 0  (Dust Universe) 
Equation (26) reduces to 

2
1

=
4 3

dV
t

V CV C 
            (43) 

which gives 

 
2 2

1

1 9 3
= sinh 2

2 16

C C
V C t

8

 
  , 

when  
2 2

1

9
>

16

C
C


               (44) 

2 3
=

8
t C

V e
  

 
, 
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when 

2 2

1

9
=

16

C
C


               (45) 

 
2 2

1

1 9 3
= cos h 2

2 16 8

C C
V C t

 
  , 

when 
2 2

1

9
<

16

C
C


                (46) 

We consider these subcases separately. 

Case I (a) when 
2 2

1

9
=

16

C
C


 

From Equations (15) and (45), we get 

  2
1

3
=

8
t C

a t e


              (47) 

 2 = 1a t                    (48) 

From Equation (3) and (45) we have 
1

2 3
=

8
t

WDF

C
C e




 
 


            (49) 

and from Equation (1) and (49) we get 

= 0WDFp                   (50) 

The physical quantities of observational interest in 
cosmology are the expansion scalar  , the mean aniso- 
tropy parameter A , the shear scalar 2  and the de- 
celeration parameter . They are defined as [31,32], q

= 3 .H                     (51) 
2

3

=1

1
=

3
i

i

H
A

H

 
 
 

 .                (52) 

 32 2 2
=1

1
= 3 =

2 2ii
23
.H H AH         (53) 

1
=

d
q

dt H
 

1. 
 

                (54) 

With the use of Equations (51)-(54) we can express 
the physical quantities as 

2

2

2
=

3
8

t

t

e
C

e


  
 

                 (55) 

= 2A                     (56) 
4

2
2

2

4
=

3
3

8

t

t

e

C
e


  

 

               (57) 

29
=

8
tC

q e
  1                 (58) 

For large , the shear dies out. t

Case I (b) when 
2 2

1

9
>

16

C
C


 

Then for small  (i.e. near singularity ), t = 0t

 sinh 2 2t  t                (59) 

Then Equation (44) reduces to 

2 2

1

9 3
=

16 8

C
V C t

C 
            (60) 

From Equations (15) and (60), we get 

 
2 2

1 1

9 3
=

16 8

C
a t C t


 

C
        (61) 

 2 = 1a t                  (62) 

From Equations (3) and (60), we have 
1

2 2

1

9 3
=

16 8WDF

C C
C C t

 


 
  

  
      (63) 

and from Equations (1) and (63) we get 

= 0WDFp                 (64) 

With the use of Equations (51)-(54) we can express 
the physical quantities as 

2 2

1

2 2

1

9

16=
9 3

16 8

C
C

C C
C t




 



 

          (65) 

= 2A                   (66) 
2 2

1
2

2
2 2

1

9

16=
9 3

3
16 8

C
C

C C
C t




 



 
  

  

        (67) 

= 2q                   (68) 

For large , the shear dies out. t

Case I (c) when 
2 2

1

9
<

16

C
C


 

Then for small  (i.e. near singularity ), t = 0t

  2cosh 2 1 4t   t             (69) 

Then Equation (46) reduces to 

2 2 2 2
2

1 1

9 1 9
= 2

16 2 16 8

C C
V C t C

3 C   
    
 
 

 (70) 

From Equations (15) and (70), we get 

 
2 2 2 2

2
1 1

9 1 9
= 2

16 2 16 8

C C
a t C t C1

3 C   
    
 
 

(71) 
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 2 = 1a t                  (72) 

From Equations (3) and (70) we have 
1

2 2 2 2
2

1 1

9 1 9
= 2

16 2 16 8WDF

C C
C C t C

  3 C


  
     
    

 

(73) 

and from Equations (1) and (73) we get 

= 0WDFp                  (74) 

With the use of Equations (51)-(54) we can express 
the physical quantities as 

2 2

1

2 2 2 2
2

1 1

9
4

16=
9 1 9

2
16 2 16 8

C
C t

C C
C t C




 



 
    
 
 

3 C
(75) 

= 2A                  (76) 

2 2
2

1
2

2
2 2 2 2

2
1 1

9
4

4
=

9 1 9
3 2

16 2 16 8

C
C t

C C
C t C




 

 
 

 
 3 C 
     
    


 

(77) 

2 2

1

2 2
2

1

3 9 9
1 2 16 8=
2 9

4
16

C C
C

q
C

C t

 



 


 
 
 
 

         (78) 

For large , the shear dies out. t
Case II = 1  (Zeldovich Fluid) 
Equation (26) reduces to 

2
1

d
=

3
4 3

2

V
t

V C C
  

    
 

       (79) 

which gives 

13 3
= sinh

3 24
2

C C
V

  
 





 


 
4 t      (80) 

Then for small  (i.e. near singularity ), t = 0t

3 3
sinh 4 4

2 2
t t

  

   
      

   
       (81) 

Then Equation (80) reduces to 

 1= 3V C C   t               (82) 

From Equations (15) and (82), we get 

  1 = 3a t C C t 

 2 = 1a t                    (84) 

From Equations (3) and (82) we have 

  1

1= 3WDF C C C t 


             (85) 

and from Equations (1) and (85) we get 

= 0WDFp                   (86) 

With the use of Equations (51)-(54) we can express 
the physical quantities as 

1
=

t
                     (87) 

= 2A                     (88) 

2
2

1
=

3t
                   (89) 

= 2q                     (90) 

For large cosmic time, the shear dies out and ,  
 and the model reduces to vacuum. 0p 

Case III 
1

=
3

  (Radiation) 

For , Equation (26) reduces to 1 = 0C

2 2/3

d
=

3
4 3

4

V
t

V CV
  

   
 

       (91) 

which gives 
3/2

3 1612
= sinh

3 16 3

C
V t








  
      

  (92) 

Then for small  (i.e. near singularity ), t = 0t

3 16 3 16
sinh

3 3
t

  
  

  
 

t        (93) 

Then Equation (92) reduces to 
3/2

2 3
=

3

C
V


t

 
 
 

            (94) 

From Equations (15) and (94), we get 

 
3/2

1

2 3
=

3

C
a t t

 
 
 

             (95) 

 2 = 1a t                    (96) 

From Equations (3) and (96) we have 
3/2

2 3
=

3WDF

C
C t




 
 
 

           (97) 

and from Equations (1) and (97) we get 
1              (83) = 0WDFp                   (98) 
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With the use of Equations (51)-(54) we can express 
the physical quantities as 

3
=

2t
                     (99) 

= 2A                     (100) 

2
2

3
=

4t
                   (101) 

= 1q                      (102) 

For large cosmic time, the shear dies out and ,  
 and the model reduces to vacuum. 0p 

Case 2: When 2 =a V  
Case I: = 0  (Dust Universe) 
Equation (28) reduces to 

1

d
=

3
4

2

V
t

C V C   
 

          (103) 

which gives 
2

2
1

3
2

4
=

3
4

2

C
t C

V
C





   
 

  
 

           (104) 

From Equations (15) and (104), we get 

 1 = 1a t                    (105) 

 

1/22
2

1

2

3
2

4
=

3
4

2

C
t C

a t
C





     
 
    

  




         (106) 

From Equations (3) and (104) we have 
12

2
1

3
2

4
=

3
4

2

WDF

C
t C

C
C







     
 
    

  




         (107) 

and from Equations (1) and (107) we get 

= 0WDFp                  (108) 

With the use of Equations (51)-(54) we can express 
the physical quantities as 

2

2
2

1

3
2 2

4
=

3
2

4

C
t

C
t C






  
 

   
 

            (109) 

1
=

2
A                   (110) 

22

2
2

2
1

3
2

1 4
=

3 3
2

4

C
t

C
t C






    
  

     
  

           (111) 

1
2

2

1
=

2 3
2

4

C
q

C
t



  
 

            (112) 

For large cosmic time, the shear dies out. 
Case II = 1  (Zeldovich Fluid) 
Equation (28) reduces to 

2
1

d
=

3 3
4

4 2

V
t

V V C C 
    
 

      (113) 

which gives 

 16 3 2 64 3 8
= sinh

3 2

C C
V t

  
3 

 

 

   
  

 
, 

when 

 1

32
>

3 3 2C C


 
           (114) 

3

2
2 8

=
33

t
V e









 
 
 
 

, 

when  

 1

32
=

3 3 2C C


 
           (115) 

 164 6 3 2 3 8
= cosh

3 2

C C
V t

  
3 

 

 

   
  

 
, 

when  

 1

32
<

3 3 2C C


 
           (116) 

We consider these subcases separately. 

Case II (a) 
 1

32
=

3 3 2C C


 
 

Then 

 1 = 1a t                 (117) 

 
1/2

3

2
2

2 8
=

33

t
a t e









 
 
 
 

       (118) 

From Equations (3) and (115), we have 
2

3

2
2 8

=
2 33

t

WDF C e












 
  
 
 

    (119) 

and from Equations (1) and (119), we get 
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2
3

2
2 8

=
2 33

t

WDFp C e











 
   
 
 

   (120) 

With the use of Equations (51)-(54) we can express 
the physical quantities as 

3

2

3

2

3

2=
4

3

t

t

e

e





















             (121) 

1
=

2
A                    (122) 

2

3

2

2

3

2

3
1 2=

12 4

3

t

t

e

e



















 
 


  
 


            (123) 

3

2
4 3

=
t

q e








1             (124) 

The model has no singularity. 

Case II (b) 
 1

32
>

3 3 2C C


 
 

Then for small  (i.e. near singularity ), t = 0t

3 3
sin h

2 2
t t

 
 

  
 

           (125) 

Then Equation (114) reduces to

  13 2 16 8
=

2 3 3

C C
V t


  


        (126) 

Then 

 1 = 1a t                   (127) 

   
1/2

1
2

3 2 16 8
=

2 3 3

C C
a t t


  

 
  
  

    (128) 

From Equations (3) and (126), we have 

 
2

13 2 16 8
=

2 2 3 3WDF

C C
C t




 





 

 
   
 

(129) 

and from Equations (1) and (129), we get 

 
2

13 2 16 8
=

2 2 3 3WDF

C C
p C t


 





 

 
    
  

 (130) 

With the use of Equations (51)-(54) we can express 
the physical quantities as 

 

 

1

1

3 2 16

2 3
=

3 2 16 8

2 3 3

C C

C C
t







 



 





 

       (131) 

1
=

2
A                  (132) 

 

 

2

1

2

1

3 2 16

2 31
=

12 3 2 16 8

2 3 3

C C

C C
t







 



 

 
 

 
   
  

     (133)  

= 2q                   (134) 

The model has no singularity. 

Case II (c) 
 1

32
<

3 3 2C C


 
 

Then for small  (i.e. near singularity ), t = 0t

23 3
cosh 1

2 4
t

  
 

   
 

t           (135) 

Then Equation (116) reduces to 

 

 

2
1

1

3
= 4 3 2

8

64 6 3 2 8

3

V C

C C

 

 








  C t

  


          (136) 

Then        1 = 1a t                 (137) 

   

 

2
2 1

1/2

1

3
= 4 3 2

8

64 6 3 2 8

3

a t C C t

C C

 

 









 



  



      (138) 

From Equations (3) and (136), we have 

 
 

2

12
1

=
2

64 6 3 2 83
4 3 2

8 3

WDF

C C
C C C t




 
 














   
   
  

 

(139) 

and from Equations (1) and (139), we get 

 
 

2

12
1

=
2

64 6 3 2 83
4 3 2

8 3

WDFp

C C
C C C t



 
 












 

   
   
  

 

(140) 
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With the use of Equations (51)-(54) we can express 
the physical quantities as 

 

   

1

12
1

=

3
16 3 2

2

64 6 3 2 83
4 3 2

8 3

C C t

C C
C C t



 

 
 










 

 
  


 

            (141) 

1
=

2
A                 (142) 

2

2

1

12
1

=

3
16 (3 2 )

1 2
12 64 6 (3 2 ) 83

4 (3 2 )
8 3

C C t

C C
C C t



 

 
 










 
  
 
   
   
  

 
(143) 

 

 

1

2
1

64 6 3 2 81
=

2 3
16 3 2

2

C C
q

C C t

 

 





 


 


       (144) 

The model has no singularity. 
 
3.2. Kantowski-Sachs Universe 
 
Case 1: When  1 =a V

Case I = 0  (Dust Universe) 
Equation (2.40) reduces to 

2
1

d
=

4 3

V
t

V CV C  
          (145) 

which gives 

 
2 2

1

1 9 3
= sin 2

2 16

C
V C t




8

C
        (146) 

From Equations (36) and (146), we get 

   
2 2

1 1

1 9 3
= sin 2

2 16

C
a t C t




8

C
       (147) 

 2 = 1a t                   (148) 

From Equations (3) and (146) we have 

 
1

2 2

1

1 9 3
= sin 2

2 16 8WDF

C C
C C t

 



 







 (149) 

and from Equations (1) and (149) we get 

= 0WDFp                 (150) 

With the use of Equations (51)-(54) we can express 
the physical quantities as 

 

 

2 2

1

2 2

1

9
4 cos 2

4=
9 3

sin 2
16 8

C
C t

C C
C t




 



 

       (151) 

= 2A                  (152) 

 

 

2 2
2

1
2

2
2 2

1

9
4 2cos

4
=

9 3
3 sin 2

16 8

C
C t

C C
C t




 

 
 

 
 

  
  

     (153) 

     2

2 2

1

9
= 3 2 sec 2 tan 2 1sec

9
4

16

C
q t t t

C
C




 



 (154) 

Case II = 1  (Zeldovich Fluid) 
Equation (40) reduces to 

2
1

d
=

3
4 3

2

V
t

V C C
  

    
 

      (155) 

which gives 

13 3
= sinh

3 24
2

C C
V t

  
 





 


 
4       (156) 

Then for small  (i.e. near singularity ), t = 0t

3 3
sinh 4 4

2 2
t t

  

  
      

  






    (157)  

Then Equation (156) reduces to 

 1= 3V C C  t             (158) 

From Equations (36) and (158), we get 

   1 = 3a t C C t  1             (159) 

 2 = 1a t                 (160) 

From Equations (3) and (158) we have 

  1

1= 3WDF C C C t 


           (161)  

and from Equations (1) and (161) we get 

= 0WDFp                 (162) 

With the use of Equations (51)-(54) we can express 
the physical quantities as 

1
=

t
                   (163) 

= 2A                   (164) 
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2
2

1
=

3t
                  (165) 

= 2q                    (166) 

For large cosmic time, the shear dies out and ,  
 and the model reduces to vacuum. 0p 

Case III 
1

=
3

  (Radiation) 

For , Equation (40) reduces to 1 = 0C

2 2/3

d
=

3
4 3

4

V
t

V CV
  

   
 

      (167) 

which gives 
3/2

3 1612
= sinh

3 16 3

C
V t








  
      

  (168) 

Then for small  (i.e. near singularity ), t = 0t

3 16 3 16
sinh

3 3
t

  
  

  
 

t      (169) 

Then Equation (168) reduces to 
3/2

2 3
=

3

C
V

 

 

t               (170) 

From Equations (36) and (170), we get 

 
3/2

1

2 3
=

3

C
a t t

 

 

             (171) 

 2 = 1a t                      (172) 

From Equations (3) and (170) we have 
3/2

2 3
=

3WDF

C
C t




 
 
 

           (173) 

and from Equations (1) and (173) we get 

= 0WDFp                   (174) 

With the use of Equations (51)-(54) we can express 
the physical quantities as 

3
=

2t
                    (175) 

= 2A                     (176) 

2
2

3
=

4t
                   (177) 

= 1q                     (178)  

For large cosmic time, the shear dies out and 
, p 0   and the model reduces to vacuum. 
Case 2: When 2 =a V  
Case I = 0  (Dust Universe) 

Equation (42) reduces to 

1

d
=

3
4

2

V
t

C V C   
 

          (179) 

which gives 
2

2
1

3
2

4
=

3
4

2

C
t C

V
C





   
 

  
 

           (180) 

From Equations (36) and (180), we get 

 1 = 1a t                   (181) 
1/22

2
1

2

3
2

4
( ) =

3
4

2

C
t C

a t
C





     
  
    

  

         (182) 

From Equations (3) and (180) we have 
12

2
1

3
2

4
=

3
4

2

WDF

C
t C

C
C







     
  
    

  

        (183) 

and from Equations (1) and (183) we get 
= 0WDFp                 (184) 

With the use of Equations (51)-(54) we can express 
the physical quantities as 

2

2
2

1

3
2 2

4
=

3
2

4

C
t

C
t C






  
 

   
 

             (185) 

1
=

2
A                   (186) 

22

2
2

2
1

3
2

1 4
=

3 3
2

4

C
t

C
t C






    
  

     
  

          (187) 

1
2

2

1
=

2 3
2

4

C
q

C
t



  
 

             (188) 

For large cosmic time, the shear dies out. 
Case II = 1  (Zeldovich Fluid) 
Equation (42) reduces to 

2
1

d
=

3 3
4

4 2

V
t

V V C C 
    
 

      (189) 
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which gives 

 16 3 2 64 3 8
= sinh

3 2

C C
V t
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 

 
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when  
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3 3 2C C

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           (190) 
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, 

when 
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
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           (191) 

 164 6 3 2 3 8
= cosh

3 2
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V
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3

t
 

 

 
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 
, 

when 

 1

32
<

3 3 2C C

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          (192) 

We consider these subcases separately. 

Case II (a) 
 1

32
=

3 3 2C C


 
 

Then 

 1 = 1a t                 (193) 
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      (194) 

From Equations (3) and (191), we have 
2

3

2
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
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      (195) 

and from Equations (1) and (195), we get 
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
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     (196) 

With the use of Equations (51)-(54) we can express 
the physical quantities as 
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2
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            (197) 

1
=

2
A                   (198) 
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         (199) 
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=
t

q e



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

1            (200) 

The model has no singularity. 

Case II (b) 
 1

32
>

3 3 2C C


 
 

Then for small  (i.e. near singularity ), t = 0t

3 3
sinh

2 2
t t

  
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         (201) 

Then Equation (190) reduces to 

 13 2 16 8
=

2 3 3

C C
V t


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
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Then 

 1 = 1a t                (203) 
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
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From Equations (3) and (202), we have 
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and from Equations (1) and (205), we get 
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With the use of Equations (51)-(54) we can express 
the physical quantities as 

 
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1
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A                    (208) 
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= 2q                   (210) 
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Then Equation (192) reduces to The model has no singularity. 

Case II (c) 
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Then for small  (i.e. near singularity ), t = 0t
(212) 
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From Equations (3) and (212), we have 
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and from Equations (1) and (215), we get 
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With the use of Equations (51) - (54) we can express the physical quantities as 
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Case I (a) When 1 =a V   
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      (220) From (221), we get 

  1/2 /2
1 = ba t a t                (222) 

  1/4 /4
2 = ba t a t               (223) 

The model has no singularity. 
From (3) and (221), we have  

4. Models with Constant Deceleration 
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 and from (1) and (224), we get 
Case I Power-Law 
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= bV at ,                  (221) 
where  and b  are constants, a With the use of Equations (51) - (54) we can express 

the physical quantities as Here we discuss three interesing cases 
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and from (1) and (232), we get 
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With the use of Equations (51)-(54) we can express 
the physical quantities as 
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and from (1) and (240), we get 
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With the use of Equations (51) - (54) we can express 
the physical quantities as 
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For large t, the shear dies out and m
singularity. 

              (245) 

odel has no 

Case II Exponential-Type 
Here we take 

=V te ,              (246) 
where   and   are constants. 

Here  disc s three interesin
 II e
 we us g cases 
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With the use of Equations (51)-(54) we ca
the physical quantities as 
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With the use of Equations (51) - (54) we can
the physical quantities as 

 express 
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Case II (c) When 
From (246), we get
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and from (1) and (265), we get 
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With the use of Equations (51) - (54) we c
the physical quantities as 
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The model has no singularity. 
 
5.

I and Kantowski-Sachs (KS) unive
dered for a new Equation of stat

t al., “Observational Evidence from Super-
ccelerating Universe and Cosmological 

               (270) 

 Conclusions 
 
The Bianchi type-II
s have been consi

rs- 
e e for 
the Dark Energy component of the universe (known as 
dark wet fluid). The solution has been obtained in 
quadrature form. The models with constant deceleration 
parameter have been discussed in detail. The behaviour 
of the models for large time have been analyzed. 
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