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Abstract 
In this work, we study an analytical procedure for evaluation of the displacement and stresses in 
fibre-reinforced anisotropic elastic media under effects of rotation and initial magnetic field, and 
due to the application of the rotation and initial magnetic field. Effects of rotation and initial mag-
netic field are analyzed theoretically and computed numerically. Numerical results have been given 
and illustrated graphically. Comparison was made with the results obtained in the presence of ro-
tation and initial magnetic field in fibre-reinforced anisotropic and isotropic elastic media. The re-
sults indicate the effect of rotation and initial magnetic field. 
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1. Introduction 
The linear theory of elasticity of paramount importance in the stress analysis of steel is the commonest engi-
neering structural material. To a lesser extent, linear elasticity describes the mechanical behavior of the other 
common solid materials, e.g. concrete, wood and coal. The problem of rotating disks or cylinders has its appli-
cation in high-speed cameras, steam and gas turbines, planetary landings and in many other domains. Various 
authors have formulated these generalized theories on different grounds. Lord and Shulman [1] have developed 
a theory on the basis of a modified heat conduction law which involves heat-flux rate. Green and Lindsay [2] 
have developed a theory by including temperature-rate among the constitutive variables. Lebon [3] has formu-
lated a theory by considering heat-flux as an independent variable. Also some problems in thermoelastic rotating 
media are due to Roychoudhuri and Debnath [4] [5]. These problems are based on more realistic elastic model 
since earth, moon and other planets have angular velocity. Abd-Alla et al. [6] study effects of the rotation on an  
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infinite generalized magneto-thermoelastic diffusion body with a spherical cavity. Effects of rotation and initial 
stress on generalized-thermoelastic problem in an infinite circular cylinder are due to Abd-Alla et al. [7]. Bayones 
[8] studied effects of rotation and hydrostatic initial stress on propagation of Raylegh in waves in an elastic so-
lide half-space under the GN theory. The solution to the problems of homogeneous isotropic rotating cylinders 
may be found in Love [9] and Sokolnikoff [10]. Abd-Alla and Abo-Dahab [11] and Sharma et al. [12] studied 
the effect of the time-harmonic source in a generalized thermoelasticity. Chandrasekharaiah [13], Green and Nagh-
di [14], and Hossen and Mallet [15] discussed the problem of thermoelasticity without energy dissipation. Abd-
Alla et al. [16] studied M. I. Helmy’s Propagation of S-Wave in a Non-Homogeneous Anisotropic Incompressi-
ble and Initially Stressed Medium under Influence of Gravity Field. Effects of the rotation on a non-homogeneous 
infinite cylinder of orthotropic material are due to Abd-Alla et al. [17]. 

Fibre-reinforced composites are used in a variety of structures due to their low weight and high strength. The 
mechanical behavior of many fibre-reinforced composite materials is adequately modeled by the theory of linear 
elasticity for transversely isotropic materials, with the preferred direction coinciding with the fibre direction. In 
such composites, the fibres are usually arranged in parallel straight lines. The characteristic property of a rein-
forced composite is that its components act together as a single anisotropic unit as long as they remain in the 
elastic condition. 

The idea of introducing a continuous self-reinforcement at every point of an elastic solid was discussed by 
Belfied et al. [18]. The model was later applied to the rotation of a tube as discussed by Verma and Rana [19]. 
The problem of surface waves in fiber-reinforced anisotropic elastic media was discussed by Sengupta and 
Nath [20]. The elastic moduli for fiber-reinforced materials was given by Hashin and Rosen [21]. The problem 
of reflection of plane waves at the free surface of a fiber-reinforced elastic half-space was discussed by Singh and 
Singh [22]. The dispersion of Loves waves in a self-reinforced layer over an elastic non-homogeneous half-
space was studied by Pradhan et al. [23]. The propagation of plane waves in a fiber-reinforced media was dis-
cussed by Chattopadhyay et al. [24]. The problem of wave propagation in thermally conducting linear fiber-
reinforced composite materials was discussed by Singh [25]. Recently, the effect of rotation on plane waves at 
the free surface of a fiber-reinforced thermoelastic half-space using the finite element method was studied by Oth-
man and Abbas [26]. 

In this paper, we studied an analytical procedure for evaluation of the displacement, and stresses in fibre-
reinforced anisotropic elastic media under effect of rotation and initial magnetic field. Using the harmonic vibra-
tions, we found the general solution, determining the displacements and stress components. The special case was 
studied in isotropic generalized elastic medium with rotation and initial magnetic field. Finally, we represented 
this case graphically. 

2. Formulation of the Problem (Figure 1) 
The propagation of general surface waves is examined here for a fiber-reinforced elastic solid semi-infinite me-
dium M  covered by another fiber-reinforced elastic medium 1M  ( 1M  above M  and mechanical properties dif-
ferent from M  and which is welded in contact with M  to prevent any relative motion or sliding during distur-
bance). We consider an orthogonal Cartesian coordinate system 1 2 3ox x x  with origin O  at the common plane 
boundary surface and 2ox  directed normally into M. The elastic medium is rotating uniformly with angular ve-
locity n= ΩΩ  where n  is a unite vector representing the direction of the axis of rotation ( )0,0,≡ ΩΩ . 

Both media are under the primary magnetic field oH  acting on Z-axis, ( )0,0, HO≡HO . The displacement 
equation of motion in the rotating frame has two additional terms ( )uΩ∧ Ω∧  is The centripetal acceleration 
due to time varying motion only, and 2 ∧ uΩ  is the Coriolis acceleration. 

The electromagnetic field is governed by Maxwell equations , under the consideration that the medium is a 
perfect electric conductor taking into account the absence of the displacement current ( )SI  (see work of Muk-
hopadhyay [27]): 

curl ,

curl ,

div 0,
div 0,

.

e

e

t

t
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=
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= −
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Figure 1. Schematic of the problem.                      

 
where 

( ) ( ) ( )0 0 0 0curl ,    ,    ,    0,0,e Hµ= ∧ = ∧ = + ≡h u H f J H H H h H                 (2) 

where h  is the perturbed magnetic field over the primary magnetic field vector, E  is the electric intensity, J  is 
the electric current density, eµ  is the magnetic permeability, oH  is the constant primary magnetic field vector, 
u  the displacement vector. 

The constitutive equation for the fiber reinforced linearly elastic anisotropic medium with respect to preferred 
direction a  is Belfied et al. [28] 

( )
( )( ) ( )

2

2

ij kk ij T k m km ij kk i j

L T i k kj j k ki k m km i j

e eij a a e e a a

a a e a a e a a e a a

τ λ δ µ α δ

µ µ β

= + + +

+ − + +
                        (3) 

where are ijτ  components of stress, 

( ), ,
1
2ij i j j ie u u= +                                           (4) 

Are the components of strain, ,  Tλ µ  are elastic parameter; ( ),  ,  L Tα β µ µ−  are reinforced anisotropic elas-
tic parameters; ju  are the displacement vector components and ( )1 2 3, ,a a aa  where 2 2 2

1 2 3 1a a a+ + =  if a a  has 
components the are (1,0,0) so that the preferred direction is 1x -axis, (3) simplifies as given below: 
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The equations of motion are: 
2

21311 12 1
2 12

1 2 3

2x
uF u u

x x x t
ττ τ

ρ
 ∂∂ ∂ ∂

+ + + = − Ω −Ω ∂ ∂ ∂ ∂ 
�                             (6) 
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1 22
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ττ τ
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2
31 32 33 3
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1 2 3

z
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F
x x x t
τ θτ τ

ρ
 ∂ ∂ ∂ ∂

+ + + =  ∂ ∂ ∂ ∂ 
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where, 

( )e Hµ= ∧F J  

2 2 2 2 2 2
2 21 2 1 1 2 2
0 02 2 2 2

1 2 1 23 2 3

,    ,0e e
u u u u u uH H

x x x xx x x x
µ µ
    ∂ ∂ ∂ ∂ ∂ ∂

≡ + − + +     ∂ ∂ ∂ ∂∂ ∂ ∂ ∂    
F  

where ρ  is the density of the elastic medium. Using (5)-(8) and assuming all derivatives with respect to 3x  va-
nish, the equations of motion become 
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                                   (11) 

To examine dilatational and rotational disturbances, we introduce two displacement potentials φ  and ϕ  by 
the relations: 

1 2
1 2 2 1

,    u u
x x x x
φ ϕ φ ϕ∂ ∂ ∂ ∂

= + = −
∂ ∂ ∂ ∂

                               (12) 

The component 3u  is associated with purely distortional movement. Using (12) in (9) we obtain the following 
equation in M  satisfied by φ  and ϕ  as: 
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And for medium 1M : 
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( )
2 2 2

21 1 1 1
1 1 1 1 1 12 2 2

1 2

3 2 2L T L tx x t
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α µ µ β µ ρ ϕ
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          (16) 

3. Boundary Conditions 
The boundary conditions for the titled problem are: 

a) The component of displacement at the boundary surface between the media M  and 1M  must be continues 
at all times and places. 

1 1 2 2 3 3 2,    ,    at   0u u u u u u x′ ′ ′= = = =  

( )1
3 3

1 1 2
2 2

   at   0T T
u u

x
x x

µ µ
∂ ∂

= =
∂ ∂

 

b) The stress components 21 22τ τ  and 23τ  must be continuous a crass the interface of M  and 1M  at all times 
and place s. 

( ) ( ) ( ) ( )11 1 1
21 21 22 22 23 23 2,    e ,    at 0i x ctH xωτ τ τ τ τ τ−= − = = =  

where 21 22,  τ τ  and 23τ  can be written in terms of φ  and ϕ  in medium M  from (5) to (12)  
2 2 2 2
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φ ϕ φ ϕτ λ φ α µ
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                                                  (19) 

where 2∇  is the two dimensional Laplaci an operator given by  
2 2

2
2 2
1 2x x

∂ ∂
∇ = +

∂ ∂
 

Similar relations in 1M : 
2 2 2

1 1
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τ µ
′∂′ =

∂
                                                   (22) 

4. Solution of the Problem 
We seek harmonic solutions for (11), (13) and (14) in the form (see Bullen [29]) 

( ) ( ) ( ) ( ){ } ( )1
3 2 2 3 2, , , , eiw x ctu x x u xφ ϕ φ ϕ −=                            (23) 

where is a complex frequency. In M and similar relations in M1 with the factions φ , ϕ , 3u  being replaced by  

1φ , 1ϕ , 3u′ . This leads us to a particular solution corresponding to group of wavelength 2π
ω

 traveling forward  

with speed C. It is convenient to introduce ,  ,  h r s  where 
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
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                     (24) 

And similar expressions 1h , 1r  and 1s  for the medium 1M . The positive value of the square root being taken 
in each case. 

Now substituting from (23) into (11), (13) and (14), we obtain for the medium M  

( ) ( )
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3 22
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22
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;
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;
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ω ϕ


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                                   (25) 

Equation (25) has solutions: 

( )( )
( )( )
( )( )

3 2 1

2 1

2 1

exp ;

exp ;

exp ;

u C i hx x ct

A i rx x ct

B i sx x ct

ω

φ ω

ϕ ω

= − + −
= − + − 
= − + − 

                               (26) 

And for the medium 1M  
( )( )
( )( )
( )( )

3 1 1 2 1

1 1 2 1

1 2 1

exp

exp
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u C i h x x ct

A i r x x ct

B i sx x ct

ω

φ ω

ϕ ω

′ = + −
′ = + − 
′ = + − 

                                (27) 

In the above, for the effect to be essentially a surface one ,each expression must diminish indefinitely with in-
creasing distance from the boundary this with be the case if each expression contains an exponential factor in 
with the exponent is teal and negative. Hence, ,  ,  h r s  and similarly 1 1 1,  ,  h r s  are taken to be imaginary. From 
(12), we have 

( ) ( ) ( ) ( )2 1 2 1
1 e ei rx x ct i sx x ctu A i B i sω ωω ω− + − − + −= + −                          (28) 

( ) ( ) ( ) ( )2 1 2 1
2 e ei rx x ct i sx x ctu A i r B iω ωω ω− + − − + −= − −                          (29) 

( ) ( ) ( )1 2 1 1 2 1
1 1 1 1e ei r x x ct i s x x ctu A i i s Bω ωω ω+ − + −′ = +                             (30) 

( ) ( ) ( ) ( )1 2 1 1 2 1
2 1 1 e ei r x x ct i s x x ctu A i r B iω ωω ω+ − + −′ = + −                          (31) 
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ω
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− + −
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− + −
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( ) ( ) ( ) ( )2 1 2 12 2 2
33 e eiw rx x ct iw sx x ctr r A i s Bτ λ α ω λω λ α ω ω λ+ − − + −   = + + + + +                 (34) 

( ) ( ) ( ) ( )2 1 2 12 2
12 e ei rx x ct i sx x ct

L i s A i s Bω ωτ µ ω ω ω ω+ − − + − = + + +                           (35) 

Similar relations in 1M  with ,  ,  ,  L Tµ λ α µ  are replaced by 
11 1 1,  ,  ,  L Tµ λ α µ . 

By using the boundary conditions a and b, we can determined the constants A , B , 1A  and 1B . 
We can study the components of displacement and stresses in fibre-reinforced anisotropic elastic media under 

effect of rotation and initial magnetic field from Equations (28)-(35) by using Maple program, is clear up from 
Figures 2-9. 

5. Particular Case: Isotropic Generalized Elastic Medium with Rotation and Initial  
Magnetic Field 

In this case, substituting L Tµ µ µ= =  and 0β =  in Equations (28)-(35), we obtain the corresponding expres-
sions of displacement and stress in isotropic generalized elastic medium with rotation and initial magnetic field, 
is clear up from Figures 10-17. 

6. Numerical Results and Discussions 
To study the surface waves in fibre-reinforced we use the following physical constants for anisotropic elastic 
media under the in influence of rotation and initial magnetic field, are considered [18] [19], for mediums M  
and 1M  respectively. 
 

 
Figure 2. Effects of rotation Ω on displacements with change values of complex frequency Ω, Ω = 0.1, Ω = 0.5, Ω = 0.9.        
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Figure 3. Effects of initial magnetic field H on displacements with change values of complex frequency Ω, H = 0.1, H = 0.4, 
H = 0.9.                                                                                                     
 

9 2 9 2 9 2
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T L

T L

λ µ µ

α β ρ

λ µ µ

α β

= × = × = ×

= − × = × =

= × = × = ×

= − × = × 2,    7800 Kg m ,ρ =

 

The numerical technique outlined above was used to obtain of the displacement, stresses in fibre-reinforced 
anisotropic and isotropic elastic media under effect of rotation and initial magnetic field. These distributions are 
shown in Figures 2-17. For the sake of brevity some computational results are being presented here. 

6.1. Effect of Rotation and Initial Magnetic Field in Fibre-Reinforced Anisotropic Elastic  
Media 

Figure 2 shows that the components of displacement in fibre-reinforced anisotropic elastic media under effect of 
rotation, we find that in medium M , the components of displacement 1u  and 2u  are decreasing with increasing 
values of the rotation Ω , put in medium 1M , 1u′  decreasing and 2u′  increasing with increasing values of Ω  re-
spectively. 

Figure 3 shows that the components of displacement in fibre-reinforced anisotropic elastic media under effect 
of initial magnetic field, we find that in medium M , the components of displacement 1u  increasing and 2u  de-
creasing with increasing values of initial magnetic field H  respectively, put 1u′  decreasing and 2u′  increasing 
with increasing values of H . 

Figure 4 shows that the components of stresses in fibre-reinforced anisotropic elastic media under effect of  
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Figure 4. Effects of rotation Ω on stresses with change values of complex frequency Ω, Ω = 0.1, Ω = 0.5, Ω = 0.9.   
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Figure 5. Effects of initial magnetic field H on stresses with change values of complex frequency Ω, H = 0.1, H = 0.4, 
H = 0.9.                                                                                                      
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Figure 6. Displacements distribution with change values of rotation and complex frequency Ω.                    

 

 
Figure 7. Displacements distribution with change values of initial magnetic field and complex fre-
quency Ω.                                                                                                                                                           
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Figure 8. Stresses distribution with change values of rotation and complex frequency Ω.                
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Figure 9. Stresses distribution with change values of initial magnetic field and complex frequency Ω.                              
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Figure 10. Effects of rotation Ω on displacements with change values of complex frequency Ω, Ω = 
0.1, Ω = 0.5, Ω = 0.9.                                                                          

 

 
Figure 11. Effects of initial magnetic field H on displacements with change values of complex fre-
quency Ω, H = 0.1, H = 0.4, H = 0.9.                                                          
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Figure 12. Effects of rotation Ω on stresses with change values of complex frequency Ω, Ω = 0.1, Ω = 0.5, Ω = 0.9. 
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Figure 13. Effects of initial magnetic field H on stresses with change values of complex frequency Ω, H = 0.1, H = 
0.4, H = 0.9.                                                                                           
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Figure 14. Displacements distribution with change values of rotation and complex frequency Ω.                              

 

 
Figure 15. Displacements distribution with change values of initial magnetic field and complex frequency Ω.  
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Figure 16. Stresses distribution with change values of rotation and complex frequency Ω.                                                 
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Figure 17. Stresses distribution with change values of initial magnetic field and complex frequency Ω.                               
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rotation, we find in medium M  the components of stresses 11τ , 22τ  and 33τ  are increasing with increasing val-
ues of the rotation Ω , put 12τ  decreasing  with increasing values of Ω . While, in medium 1M  the components 
of stresses 11τ ′ , 22τ ′ , 33τ ′  and 12τ ′  are decreasing with increasing values of Ω . 

Figure 5 shows that the components of stresses in fibre-reinforced anisotropic elastic media under effect of 
initial magnetic field, we find in medium M  the components of stresses 11τ , 22τ , 33τ  and 12τ  are decreasing  
with increasing values of initial magnetic field H . While, in medium 1M  the components of stresses 11τ ′  and 

12τ ′  are decreasing with increasing values of initial magnetic field H , put 22τ ′  and 33τ ′  are increasing  with in-
creasing values of values of H . 

Figure 6 shows that the displacements distribution with change values of rotation and complex frequency ω  
in fibre-reinforced anisotropic elastic media, we find in medium M  the components of displacement 1u  and 2u  
are decreasing with increasing values of the rotation Ω , put in medium 1M , 1u′  decreasing  and 2u′   increasing 
with increasing values of Ω  respectively. 

Figure 7 shows that the displacements distribution with change values of initial magnetic field H  and com-
plex frequency ω  in fibre-reinforced anisotropic elastic media, we find we find that that in medium M , the 
components of displacement 1u  increasing  and 2u  decreasing with increasing values of initial magnetic field 
H , put in medium 1M , 1u′  decreasing and 2u′  increasing with increasing values of H , respectively. 

Figure 8 shows that Stresses distribution with change values of rotation and complex frequency Ω in fibre-
reinforced anisotropic elastic media under effect of rotation, we find for the medium M  the components of 
stresses 11τ , 22τ , 33τ  and 12τ  are increasing  with increasing values of the rotation Ω . While, for the medium 

1M  the components of stresses 11τ ′  and 12τ ′  are increasing with increasing values of Ω , put the components of 
stresses 22τ ′ and 33τ ′  are decreasing with increasing values of Ω . 

Figure 9 shows that Stresses distribution with change values of initial magnetic field and complex frequency 
Ω in fibre-reinforced anisotropic elastic media under effect of rotation, we find in the medium M  the compo-
nents of stresses 11τ , 22τ  and 33τ  are increasing with increasing values of the initial magnetic field H , put 12τ  
decreasing with increasing values of H . While, in the medium 1M  the components of stresses 11τ ′ , 33τ  and 12τ ′  
are increasing with increasing values of Ω , put 12τ ′  decreasing with increasing values of H .  

6.2. Effect of Rotation and Initial Magnetic Field in Fibre-Reinforced Isotropic Elastic  
Media 

Figure 10 shows that the components of displacement in fibre-reinforced isotropic elastic media under effect of 
rotation, we find in tow medium M  and 1M , all components of displacement are increasing with increasing 
values of the rotation Ω . 

Figure 11 shows that the components of displacement in fibre-reinforced anisotropic elastic media under ef-
fect of initial magnetic field, we find that in the medium M  the components of displacement 1u  and 2u  are de-
creasing and increasing with increasing values of initial magnetic field H ,  put 1u′  and 2u′  are decreasing and 
increasing with increasing values of H , respectively . 

Figure 12 shows that the components of stresses in fibre-reinforced isotropic elastic media under effect of ro-
tation, we find in tow medium M  and 1M  all  components of stresses are increasing  with increasing values of 
the rotation Ω . 

Figure 13 shows that the components of stresses in fibre-reinforced isotropic elastic media under effect of ini-
tial magnetic field, we find for the medium M  the components of stresses 11τ , 22τ , 33τ  and 12τ  are increasing 
with increasing values of initial magnetic field H . While, for the medium 1M  the components of stresses 11τ ′  
increasing with increasing values of initial magnetic field H , put 22τ ′ , 33τ  ans 12τ ′  are  decreasing  with increas-
ing values of values of H . 

Figure 14 shows that the displacements distribution with change values of rotation and complex frequency ω  
in fibre-reinforced isotropic elastic media, we find in tow medium M  and 1M , all components of displacement 
are increasing with increasing values of Ω .  

Figure 15 shows that the displacements distribution with change values of initial magnetic field H  and com-
plex frequency ω  in fibre-reinforced isotropic elastic media, we find the components of displacement 1u , 2u  
and 1u′  are decreasing with increasing values of the initial magnetic field H ,  put 2u′  increasing with increasing 
values of H . 

Figure 16 shows that stresses distribution with change values of rotation and complex frequency ω  in fibre-
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reinforced isotropic elastic media, we find in tow medium M  and 1M , all components of stresses are increasing  
with increasing values of the rotation Ω . 

Figure 17 shows that stresses distribution with change values of initial magnetic field H  and complex fre-
quency ω  in fibre-reinforced isotropic elastic media, we find in medium M , all components of stresses are in-
creasing  with increasing values of H , put in medium 1M , 11τ ′  and 12τ ′  are increasing with increasing values of 
H  and 22τ ′  and 33τ ′  are decreasing with increasing values of H . 

7. Conclusions 
In the light of the above analysis, the following conclusions may be made: 
- Effects of rotation and initial magnetic field are cleared on the components of displacement and stresses; 
- Effect of complex frequency is cleared on the components of displacement and stresses; 
- There is a clear difference in the two cases, anisotropic and isotropic elastic media; 
- Deformation of a body depends on the nature of the forces applied as well as the type of boundary condi-

tions. 
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