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Abstract 
The inverter-fed induction motor drive system may become unstable at low frequencies and light 
load, and phase current and speed of the induction motor may oscillate periodically, which will 
threaten safety and reliability of the system. This paper chooses nine-phase induction motor si-
mulated propulsion system as the research object, small disturbance model of three-phase induc-
tion motor is built, and average equivalent model of the converter is built by introducing switch 
function. On the basis above, small disturbance mathematic model of the whole system is obtained. 
As for the limitation of parameters adjustment method of restrain low-frequency oscillation, the 
restrain method combining current close-loop with dead-time compensation is put forward. Fi-
nally, the proposed restrain method is verified respectively on the built simulation and experi-
mental analogue platform. And the simulation and experimental results indicate that the proposed 
method can not only satisfy the requirement of low-frequency oscillation restraining, but also be 
expanded widely, and the stability of the system can get improved greatly.  
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1. Introduction 
For the industrial application of induction motor system powered by inverters, the oscillation phenomenon ex-
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isted in many low frequency situations. Regular inverter-powered induction motor system usually worked at 50 
Hz, and in this situation the oscillation problem could be solved by frequency-skip method. But it is not suitable 
for electrical propelling in ship, whose propulsion motor is designed to work at low speed and frequency. The 
low frequency oscillation problem threatened the safety of crew and equipments [1] [2].  

Some papers have studied the reasons of low frequency oscillation. Reference [3] regarded the exchange be-
tween filter device and motor magnetic field as the reason, and its author established the small-signal model of 
inverter-powered induction motor and analyzed the influence from motor and filter parameters to system stabil-
ity. And on the basis of this method, many other references studied the oscillation problem in various aspects 
[4]-[9]. But until now the researchers around the world do not make an agreement on the oscillation problem.  

Although the reason of low frequency oscillation is not clear until now, researchers still work out some me-
thods to restrain this problem. Just as said in reference [10], the method of regulating stator frequency is used, 
and when the motor speeds up, input frequency and power are all decreased and when the motor speeds down, 
input frequency and power are all increased, and the system oscillation is restrained. The shortage of this method 
is that the control parameters need to be adjusted constantly. Reference [11] provided a method called “DPWM” 
regulate strategy, and this method was effective in some occurrence, but could not be applied in all working 
ranges. In addition, references [11] [12] weakened the oscillation using dead zone compensation method, but it 
was difficult to restrain the oscillation in a widen speed range.  

In this paper, the mathematical model of inverter-induction motor system is established, the small-signal 
model is analyzed, and the influence from dead zone to system is discussed. In addition, aimed at the characte-
ristic of inverter, the oscillation restrain strategy based on current closed loop and dead zone compensation is 
presented. At the end of this paper, the strategy given above is verified through simulation and experiment, 
which suggest the effectiveness and prosperity of this method.  

2. Small Signal Model of Induction Motor Powered by Inverter 
In this paper, a 9-phase induction motor system is studied, and its system structure is shown in Figure 1. The 
system consists of rectifier, LC filter, 9-phase inverter and 9-phase induction motor. In Figure 1, DZ1~DZ6 are 
diodes of 3-phase rectifier unit; Lf and Cf are filter inductance and capacitance on the DC output side; VT1~ 
VT6 are switches in a 3-phase inverter unit.  
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Figure 1. Structure of converter-fed nine-phase induction motor variable-frequency driven system. 
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2.1. Mathematical Model of 9-Phase Induction Motor 
The stator winding of 9-phase induction motor is composed by three 3-phase windings, and each 3-phase 
winding is apart from others with 20 degree. The rotor can be equaled with 3-phase winding. The relationship 
between stator and rotor winding is shown in Figure 2.  

Considering the convenience for analysis, transform matrix is introduced, and the formulation in natural coor-
dinate system is transformed into de-coupling form. Transform matrix in stator side is as follows: 

1
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3

s
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dqs s
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                                 (1) 
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C , 

1, 2,3i = .  

We can obtain the formulations of induction motor as follows: 
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Figure 2. Position relationship of nine-phase 
induction motor between stator and rotor. 
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1) Flux formulation: 
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( )
3

1

3
2em p dsi qsi qsi dsi

i
T n i iψ ψ

=

= −∑                               (5) 

2.2. Small Signal Model of Induction Motor 
The 9-phase induction motor in this paper can be regarded as three individual 3-phase windings, and through 
controlling 3-phase winding, the control of 9-phase induction motor can be realized. So it is convenient to start 
with small-signal model of 3-phase induction motor to analyze the 9-phase motor.  

The mathematical model in d-q coordinate system of single 3-phase motor is as follows: 
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Make the p in formula (6) equal to 0, and we can obtain the following result: 
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When disturbing signal is applied at stable working point ( )0p = , the system parameters would generate 
some gain nearby the stable working point ( )0p = . So we can obtain formulation (8): 
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(8) 
which, Δ means the variable quantity gain at small disturbance.  

By solving formulation (9), we can obtain the small disturbance model of single 3-phase induction motor as 
follow: 

d
dt

= +
X AX BU                                      (9) 

which: 
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2.3. Small Signal Model of Inverter 
By introducing switch function, inverter can be equivalent as voltage source or current source circuit, and its 
mathematical model can be further transformed in d-q coordinate system, which is shown in Figure 3. In the 
figure above, dd and dq are duty function of inverter switch device in d-q rotating coordinate system.  

Suppose the phase voltage of stator winding as is ( )cosas su U tω= , and it is easy to obtain follow result, 
namely ds s cfu U mu= = , 0qsu = .  

From Figure 3, we can obtain the small signal model of inverter as follows: 

( )2
0

0

31
2

ds
dc f f f d ds

d

u
u L C p L p d i

d
∆

∆ = + + ∆                          (10) 

 

dqucf

iqs

uqs+-

+-
uds

ids

dducf

ip

ddids
ucf dqiqs

iDC

udc(t)

Lf

Cf

 
Figure 3. Average model of three-phase con-
verter. 
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In which 0dd∆ = , 0
0

0 0

ds dc
d

cf cf

u mu
d

u u
= =  

Suppose the DC voltage is constant, namely dc DCu U= , and we can get: 0 cf DCu u= , 0dcu∆ = , 0dd m= .  
The small signal model of inverter can be further expressed as: 
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In actual system, formula (11) can be simplified as follows: 

( )23
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Dead time td need to be set in order to avoid that the two switches in the same bridge of inverter open at the 
same time. When the switch frequency is pretty high, deviation voltage ( )su tε  could be decomposed and its 
fundamental component is: 
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In the rotating system, deviation voltage of inverter caused by dead time effect is: 
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The dead time can be regarded as cascading a resistance ( )eqr  in stator winding: 
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2.4. Small Signal Model of Induction Motor System 
On the basis above, we can obtain the state formulation of 3-phase unit as follow: 

d
dt

′ ′= +
X A X B U                                    (16) 

( ) 22
0 00 0

0

2 2
0 0 0 0

0

0 00 0
0

0 0
0

r s eq m qs m r qrr m m r r m r
e

r m r s r m r m r m ds m r dr
e

s m qs s r qrm s r s m s r r s r
e

r s m m s r s r s r
e

L r r L i L L iL L r L L

L L r L L L r L i L L i

L L i L L iL r L L L r L L

L L L r L L L r L

ω ωω
σ σ σ σ σ

ω ωω
σ σ σ σ σ

ω ωω
σ σ σ σ σ

ω ωω
σ σ σ σ

− + +
+

  − +
− + − − 
 

+′ = − − − −

 − − − 
 

A

0 0

2 2 2 2

0 0 0 0
3 3 3 3
2 2 2 2

s m sd s r dr

p p p p p
m qr m dr m qs m ds f

L i L L i

n n n n n
L i L i L i L i B

J J J J J

σ

 
 
 
 
 
 
 
 
 
 
 + 
 
 
 

− − 
 

 



H. Y. Zeng et al. 
 

 
279 

02

0

0

0

2 0 0 0
3

0 0 0

0 0 0

0 0 0

0 0 0 0 0

mr
qs

f

mr
ds

m s
qr

m s
dr

p

LL i
m L

LL i

L L i

L L i

n
J

σ σ

σ σ

σ σ

σ σ

 − − − 
 
 

− 
 
 ′ = − − 
 
 

− 
 
 

− 
 

B  

3. Low Frequency Oscillation Restrain of Induction System 
Parameter match of motor and inverter is the main reason to cause low frequency oscillation of system. Two 
kinds of methods are available: 1) adjusting motor parameters (such as stator resistance and inductance) to wea-
ken system oscillation; 2) dead time compensation can be adopted to make the output voltage more ideal. How-
ever, the methods above can only weaken the oscillation but cannot eliminate it.  

After analyzing lots of low frequency oscillation phenomenon of induction motor system, we can conclude 
that the characteristic of this phenomenon is the period variation of stator phase current and line-line voltage. 
Aiming at the characteristics of low frequency oscillation and influence from inverter dead time to system sta-
bility, this paper presents the restrain policy, which is based on current closed loop and dead time compensation.  

3.1. Dead Time Compensation Based on Current Feed Back 
The error voltage expression of 3-phase unit in α-β coordinate system is given in formula (18): 

2 1
3 2

2 3 3
3 2 2

a b c

b c

u u u u

u u u

αε ε ε ε

βε ε ε

  = − −   
   = −    

                               (17) 

The error voltage vector in α-β coordinate system is shown in Figure 4. The current vector plane is divided 
into 6 sectors (I~VI), corresponding with 6 output voltage error vector ΔUs (001~110).  
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Figure 4. Relationship between current polarity and 
dead-time error voltage. 
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According to the sector of current vector, output voltage vector is compensated to offset the influence of dead 
time effect. Table 1 gives the relationship between stator current ( ), ,as bs csi i i  and voltage vector (ΔUs) and output 
error voltage ( ), ,as bs csu u u∆ ∆ ∆ .  

The way to judge sector of current vector is: 

1,    0
2 4 ,    ,    , ,

0,    0
ks

ks

i
Sec c b a k k a b c

i
>

= + + = = <
                       (18) 

From Table 1, we know that in order to get compensation voltage, stator current polarity must be judged cor-
rectly. If we judge the current polarity by detecting stator current directly, the error would be quite large. To 
avoid this risk, this paper provides a new method, which combines the coordinate transformation with low pass 
filter. Its theory chart is given in Figure 5.  

The detected 3-phase unit phase current is transformed into d-q coordinate system to get ids and iqs compo-
nents, which are filtered to get DC component (idfs and iqfs) of stator current. Then, idfs and iqfs are transformed in 
natural coordinate system to obtain phase current iafs, ibfs and icfs. In the end, according to filtered current polarity, 
output voltage is compensated.  

3.2. Low Frequency Oscillation Restrain Strategy 
Figure 6 is theory picture of low frequency oscillation restrain strategy, which combines closed current loop and 
dead time compensation. There is no speed loop of rotor in this method, so it is actually a open loop to some de-
gree, but it can be easily realized and has a good effect.  

4. Simulation and Experiment 
In order to imitate real ship propulsion and verify the effectiveness of restrain strategy proposed above, test 
platform of electrical ship propulsion system is designed and manufactured, and the test experiment concludes 
generator unit, 9-phase inverter, 400 kW 9-phase induction motor and power measurement in Figure 7.  

Parameters of multi-phase induction motor propulsion system are shown in Table 2.  

4.1. Simulation 
A 3-phase unit in the 9-phase induction motor system is chosen to be analyzed, and the fundamental frequency 
is 10 Hz. The system has no load, in which situation it is more likely to oscillate. Figure 8(a) shows the system 
simulation results with no restrain measure. Figure 8(b) shows the system experiment results with the restrain  
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Figure 5. Schematic diagram of current polarity identification. 

 
Table 1. Relationship between current vector and error voltage vector. 
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III + + − −Uε −Uε Uε 001 
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V + − + −Uε Uε −Uε 010 

VI − + + Uε −Uε −Uε 100 
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Figure 6. Schematic diagram of the restrain method based on current close-loop and dead- 
time compensated. 

 
Table 2. Parameters of the propulsion system. 

Parameter type Parameter Value 

Motor parameters 

Rated power (P/kW) 400 

Rated phase voltage (Us/V) 260 

Rated phase current (Is/A) 200 

Rated frequency (fe/Hz) 50 

Stator resistance (rs/Ω) 0.009 

Stator leakage (lsl/H) 6.73 × 10−4 

Main inductance (lms/H) 0.0341 

Rotor equivalent resistance (rr/Ω) 0.0131 

Rotor equivalent leakage (lrl/H) 3.78 × 10−4 

Pare of poles (np) 2 

Momentum (J/kg∙m2) 15.25 

Inverter parameters 

Dead time (td/µs) 10 

Switch frequency (fc/kHz) 2 

DC voltage (V) 700 

DC capacitance (mF) 27.2 

DC filter inductance (mH) 2 
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(a)                                          (b) 

Figure 7. Experimental platform of nine-phase induction motor propulsion system. (a) 9- 
phase inverter; (b) 9-phase induction motor and power testing machine.  

 

 
(a) 

 
(b) 

Figure 8. Simulation results of induction motor before and after using proposed restrain me-
thod at no-load. (a) with no restrain measure; (b) use the restrain measure in this paper. 
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measure proposed in this paper. From comparison of these two results we can see the effectiveness of the me-
thod in this paper.  

4.2. Experiment 
In order to verify the effectiveness of method in this paper, a single 3-phase unit and the whole 9-phase motor 
system are both tested.  

1) A single Y unit system experiment 
Figure 9(a) and Figure 9(b) are experiment results of single Y unit system, respectively without oscillation 

restrain strategy and with restrain strategy. In Figure 8(a), oscillation appears in stator current, line voltage and 
speed. From Figure 9(b) we can see that there is no oscillation in stator current, voltage and speed after the re-
strain strategy mentioned above is used, suggesting the effectiveness of this method. In addition, the simulation 
in Figure 8 coincides with experiment results in Figure 9 very well.  

2) Experimental of 9-phase system 
The three 3-phase units are controlled respectively in 3 groups to simulate the 9-phase system. The voltage of 

group 2 and group 3 lag out 20 and 40 degree of group 1. Experiment results are shown in Figure 10. In Figure 
10, the CH1 represents filtered line-line voltage of phase as1 and bs1; CH2 represents line-line voltage of phase cs1  
 

输出频率：10Hz
横坐标t：0.1s/格  

输出频率：10Hz
横坐标t：0.1s/格  

(a)                                                       (b) 

Figure 9. Experimental waveforms of single Y-system. (a) with no restrain measure; (b) with restrain measure. 
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(a)                                                       (b) 

Figure 10. Experimental waveforms of 9-phase system. (a) with no restrain measure; (b) with restrain measure. 
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and bs1; CH3 and CH4 represent current of phase as1 and bs1; CH5 and CH6 represent current of phase as2 and 
bs2.  

From Figure 10, we can see that the low frequency oscillation restrain measure proposed in this paper is ef-
fective and can obtain good control performance.  

5. Conclusions 
Aiming at the problem that oscillation was likely to occur when induction motor system works at a low fre-
quency range, this paper established the small-signal model of induction, and studied how to restrain the oscilla-
tion, and obtain some conclusions: 

1) Analyzing the average model of induction motor-inverter system, and establishing the small-signal model 
of the whole motor system;  

2) During the low frequency oscillation, the stator current varied in a period. Based on this, the oscillation re-
strain strategy combining closed current loop with dead time compensation is proposed in this paper. Simulation 
and experiment results verify the effectiveness of this method.  
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