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Abstract 
In this paper, we construct and implement a new architecture and learning method of customized 
hybrid RBF neural network for high frequency time series data forecasting. The hybridization is 
carried out using two running approaches. In the first one, the ARCH (Autoregressive Conditional-
ly Heteroscedastic)-GARCH (Generalized ARCH) methodology is applied. The second modeling ap-
proach is based on RBF (Radial Basic Function) neural network using Gaussian activation function 
with cloud concept. The use of both methods is useful, because there is no knowledge about the 
relationship between the inputs into the system and its output. Both approaches are merged into 
one framework to predict the final forecast values. The question arises whether non-linear me-
thods like neural networks can help modeling any non-linearities being inherent within the esti-
mated statistical model. We also test the customized version of the RBF combined with the ma-
chine learning method based on SVM learning system. The proposed novel approach is applied to 
high frequency data of the BUX stock index time series. Our results show that the proposed ap-
proach achieves better forecast accuracy on the validation dataset than most available techniques. 
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1. Introduction 
One of the reason computers started to apply in time series modeling was the study of Bollershev [1] where he 
proved the existence of nonlinearity in financial high frequency data. Over the past ten years statisticians and 
academics of computer science have developed new forecasting techniques based on probabilistic theory such as 
the use of Kalman filter, threshold autoregressive models, the ARCH/GARCH family of models, and latest in-
formation technologies respectively such as probabilistic or believe networks, soft, neural and granular compu-
ting that help to predict future values of high frequency financial data. At the same time, the field of financial 
econometrics and statistics have undergone various new developments, especially in financial models, stochastic 
volatility such as models for managing financial risk [2]-[4], methods based on the extreme value theory [5], 
Lévy models [6], methods to assess and control financial risk, methods based on time intensity models, usage 
copulas and implementing risk systems [7]. 
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The first techniques of machine learning applied into time series forecasting were artificial neural networks 
(ANN). As ANN was an universal approximator, it was believed that these models could perform tasks like pat-
tern recognition, classification or predictions [8]. Today, according to some studies [9], ANNs are the models 
having the biggest potential in predicting financial time series. The reason for attractiveness of ANNs for finan-
cial prediction can be found in works of Hill et al. [10], where authors showed that ANNs works best in connec-
tion with high-frequency financial data. Lately, time series prediction becomes one of the most important as-
pects of time series Data Mining, which has received a growing attention. While the first application of ANNs 
into financial forecasting perceptron’s network the simplest feed forward neural network was used [11], nowa-
days it is mainly RBF network [12] that is being used for this as they showed to be better approximators than the 
perceptron type networks [13]. 

Firstly, in this article we analyse, discuss and compare the forecast accuracy from models which are derived 
from competing statistical and neural network specifications. Secondly the hybrid ARCH-GARCH and RBF NN 
(Radial Basic Function Neural Network) architectures for time series prediction are proposed and their forecasting 
performance is evaluated and compared with SVM (Support Vector Machines) approach. The aim of the paper is 
to explain achieved aspects of both statistical and soft computing approaches for quantifying forecast accuracy 
applied to daily BUX index time series and assess the prediction performance of novel models based on the hy-
bridization of these separate approaches. 

The paper is organized as follows. In Section 2 we briefly describe the basic knowledge of ARCH-GARCH 
models and their variants: EGARCH and PGARCH models. Section 3 presents the data, conduct some prelimi-
nary analysis of the time series and demonstrate the forecasting abilities of ARMA (AutoRegressive Moving 
Average)-ARCH/GARCH models. Section 4 introduces RBF neural networks and proposes a novel Evolutionary 
RBF Network (ERBFN) that is based on RBF network and ARCH/GARCH models. Section 5 shows the fore-
casting performance SVM system. In Section 6 we put an empirical comparison. Section 7 concludes the paper 
and proposes future work. 

2. Some ARCH/GARCH Models for Financial Data 
ARCH-GARCH models are designed to capture certain characteristics that are commonly associated with finan-
cial time series. They are among others: fat tails, volatility clustering, persistence, mean-reversion and leverage 
effect. As far as fat tails, it is well known that the distribution of many high frequency financial data have fatter 
tails than normal distribution. 

The first model that provides a systematic framework for volatility modelling is the ARCH model. This model 
was proposed by Engle [14]. Bollerslev [1] proposed a useful extension of Engle’s ARCH model known as the 
generalized ARCH (GARCH) model for time sequence { ty } in the following form 
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where { tv } is a sequence of IID (Independent Identical Distribution) random variables with zero mean and unit 
variance. iα and iβ  are the ARCH and GARCH coefficients, ht represents the conditional variance of time se-
ries conditional on all the information to time t -1, It-1. 

In the literature several variants of basic GARCH model (1) has been derived. Nelson [15] proposed the fol-
lowing exponential GARCH model abbreviated as EGARCH to allow for leverage effects in the form 
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The basic GARCH model can be extended to allow for leverage effects. This is performed by treating the ba-
sic GARCH model as a special case of the power GARCH (PGARCH) model proposed by Ding, Granger and 
Engle [16] 

∑∑
=

−
=

−− +++=
q

j

d
jtj

p

i

d
itiiti

d
t hh

11
0 )( βεγεαα                          (3) 

where d is a positive exponent, and iγ  denotes the coefficient of leverage effects. 
Another ARCH-GARCH models as the ARCH-GARCH regression and ARCH-GARCH mean model can be 
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found in [17]. 

3. An Application of ARCH-GARCH Models 
We illustrate the statistical ARCH-GARCH methodology for daily BUX stock indexes1 as a proxy to the Hun-
garian stock market to study the development of forecasting model. The sample period is from January 7, 2004 
to December 31, 2012 and has 2255 observations (see Figure 1). This period was chosen purposely to investi-
gate forecasting accuracy during time with a special emphasis on the resolution of behavior in the time during 
the global financial crisis of 2008-09, and also in post crisis period of 2010-12. To build a forecast model the 
sample period for analysis (January 2004 to June 2007 so called the training data set) was defined, i.e. the period 
over which the forecasting model can be developed and the ex post forecast period (July 2007 to December 
2012) so called validation or ex post data set. By using only the actual and forecast values within the ex post fo-
recasting period only, the accuracy of the model can be calculated. It is clear from the time plot of both datasets 
the series are not stationary since their graphs show a trend, but after differencing their become stationary. 

The main purpose of time series analysis is to understand the underlying mechanism that generates the ob-
served data, in turn, to forecast future values. Typically, these processes are described by a class of linear mod-
els called autoregressive integrated moving average (ARIMA) models. Tentative identification of an ARIMA 
time series model is done through analysis of actual historical data. The primary tools used in identification 
process are autocorrelation function (ACF) and partial autocorrelation function (PACF). The theoretical ACF 
and PACF are unknown and must be estimated by the sample ACF and PACF. 

The relevant lag structure of potential inputs was analyzed using traditional statistical tools, i.e. using the au-
tocorrelation function (ACF), partial autocorrelation function (PACF) and the Akaike information criterion 
(AIC): we looked to determine the maximum lag for which the PACF coefficient was statistically significant 
and the lag given the minimum AIC. According to these criterions the ARMA model was specified as the 
ARIMA(1,1,0) process. 

High frequency financial data, like our BUX index reflect a stylized fact of changing variance over time. An 
appropriate model that would account for conditional heteroscedasticity should be able to remove possible non-
linear pattern in the data. Various procedures are available to test an existence of ARCH or GARCH. A com-
monly used test is the LM (Lagrange Multiplier) test [14]. The LM test performed on the BUX time series indi-
cates presence of autoregressive conditional heteroscedasticity. For estimation the coefficients of an ARCH or 
GARCH type model the maximum likelihood procedure was used. The quantification of the model was per-
formed by means of the R2.6.0 software and resulted into the ARIMA(1,1,0)/EGARCH(1,1,1) model where the 
ARIMA(1,1,0) process has the form 

ttt yy εφξ +∆+=∆ −11                                    (4) 

 

 
Figure 1. Graph of real BUX index. 

 

 

1You can obtain these data from www pages at http://www.global-view.com/forex-trading-tools/forex-history. 

http://www.global-view.com/forex-trading-tools/forex-history
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where ty∆  are first differences of the BUX time series, tε  are reziuals tε , i.e. independent random variable 
drawn from stable probability distribution with mean zero and variance ht.. The estimation results of 
ARIMA(1,1,0)/EGARCH(1,1,1) process for BUX index time series are given in Table 1 and Table 2. 

Graph of the fitted and the forecast values for the estimation and ex post periods are presented in Figure 2. 

4. Evolutionary RBF Network 
The structure of a neural network is defined by its architecture. In Figure 3 the architecture is depicted for clas-
sic RBF NN where each circle or node represents the neuron. This neural network consists an input layer with 
input vector x and an output layer with the output value tŷ . The output signals of the hidden layer are calculated 
as 

( ),2 jjo wx −=ψ                                (5) 

where x is a k-dimensional neural input vector, jw  represents the hidden layer weights, 2ψ  are radial basis 
 

 
Figure 2. The actual and fitted values for BUX index–statistical approach 
(validation data set Jun 2007-Dec 2012). 

 

 
Figure 3. RBF neural network architecture. 

 
Table 1. Estimation results of ARIMA(1,1,0) model for BUX index. 

Coeff. Value St. dev. p-value D-W 

ξ
 11.6961 3.7167 0.0017 

1.936 
φ1

 −0.01567 0.0349 0.6532 
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Table 2. Estimation results of EGARCH(1,1,1) model for BUX index. 

Coeff. Value St. dev. p-value 

D-W = 1.935 
AIC = 12.500 

α0
 

0.001528 0.062564 0.9805 

α1
 

0.119249 0.032006 0.0002 

γ
 0.029683 0.012809 0.0205 

β1 0.990377 0.00732 0.0000 

 
(Gaussian) activation functions. Note that for an RBF network, the hidden layer weights jw  represent the cen-
tres jc  of activation functions 2ψ . To find the weights wj or centres of activation functions we used the adap-
tive (learning) version of K-means clustering algorithm for s clusters [17]. The RBF network computes the out-
put data set as 
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where N is the size of training data samples, s denotes the number of the hidden layer neurons (RBF neurons) 
and tŷ  corresponds to the estimated value of BUX index. To improve the abstraction ability of classic RBF 
neural networks with architecture depicted in Figure 3, we replaced the standard Gaussian activation (member-
ship) function of RBF neurons with functions based on the normal cloud concept (see [18]. Then, in the case of 
RBF network, the Gaussian membership function .)/(. 2ψ  in Equation (6) has the form [17] 
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where nE ′  is a normally distributed random number with mean En  (entropy) and standard deviation He (hy-
per entropy). E is the expectation operator. 

Recently, a lot of scholars have developed hybrid forecasting systems []. For example models for financial 
data systems which focus on parametric structural models, including logit or probit models of warning economic 
indicators to predict crises [19] [20], and models which utilize techniques of computational intelligence such 
ANN, fuzzy logic systems and genetic algorithm, artificial intelligence and machine learning [21]. 

Next, we will combine the RBF neural network according to the architecture depicted in Figure 3 with the 
statistical ARMA(1,1,0)/EGARCH(1,1,1) model and with estimated coefficients given in Table 1 and Table 2 
respectively in one unified framework. The scheme of such proposed hybrid model is depicted in Figure 4. The 
thought of this proposal consists in the economic theory of co-integrated variables which are related by an error 
correction model [22]. The simple mean Equation (4) can be interpreted as the long-run relationship and thus it 
entails a systematic co-movement between variables ty  and 3ty − . A long-run relationship will often hold “on 
average” over time [23]. If there exists a stable long-run, then error (residual) tε  from the Equation (4) should 
be a useful additional explanatory variable for the next direction of movement of ty . According to [23] this 
mechanism is called as the error correction mechanism. 

The mentioned hybrid model consists of the following components. External inputs which represent input da-
ta, in our case the BUX indexes of historical-rates. Input data enter the ARIMA forecasting model which pro-
duces one output: the ex-post residuals. These residuals enter together with external inputs the hyrid ERBF NN 
forecasting model which generates the ERBF NN ex post forecasts. 

As can be seen in Figure 4, the proposed hybrid forecasting systems are two or more prediction models. It 
can be proposed several types of hybrid forecasting systems depending on the combination and utilization of the 
various components which are included into the system. For example, we investigated also another hybrid sys-
tem in which the ERBF NN was replaced by the classic neural network of perceptron type with one hidden layer. 
The architecture of this neural network is similar to the classic RBF NN architecture. The difference is that all 
processing neurons in the hidden layer have the tanh activation functions and all the weights j

r
j wv ,  are 

adapted using classical Back-Propagation algorithm. 

5. Support Vector Machines Learning 
Despite the fact that RBF neural networks possess a number of attractive properties such as the universal  
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Figure 4. The scheme of the proposed hybrid forecasting model (see text for 
details). 

 
approximation ability and parallel structure, they still suffer from problems like the existence of many local mi-
nima and the fact that it is unclear how one should choose the number of hidden units. Support Vector Machines 
(SVM) are learning systems that use a hypothesis space of linear function in high dimensional feature space, 
trained with learning algorithm from optimization theory that implements a learning bias derived from statistical 
learning theory. Recently, SVMs have been introduced by Vapnik [24]. SVR is an extension of the support vec-
tor machine algorithm for numeric prediction. Its decision boundary can be expressed with a few support vectors. 
When used with kernel functions, it can create complex nonlinear decision boundaries while reducing the com-
putational complexity. Nonlinear Support Vector Regression (SVR) is frequently interpreted by using the train-
ing data set { kky x, } N

k 1=  with input data N
k ℜ∈x  and output data ℜ∈ky  as follows 
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where *, iξξ  are positive slack variables and C is regularization parameter which influences a trade-of between 
an approximation error and weights vector norm. 

Finally, the SVR nonlinear function estimation takes the form 
 ),(),,( bKbf ji += wxxwx                                (9) 

where so called kernel trick was applied ),( jiK xx  = )()( ji
T xφxφ  within the formulation of this quadratic 
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programming problem. Note that in the case of RBF kernels, the parameters εσ ,,C  are to be considered as 
additional tuning parameters. 

6. Results and Empirical Comparison 
ERBFN and SVM model were trained using the variables and data sets as the ARMA(1,1,0)/EGARCH(1,1,1) 
model above. In the ERBFN framework, the non-linear forecasting function f(x) was estimated according to the 
expressions (6) with RB function .)/(.2ψ  given by (7). Graphs of the forecast values for validation data sets are 
presented in Figure 5 (ERBFN model) and Figure 6 (SVM model) respectively. Table 3 presents the accuracy 
results of three prediction methods. As can be also seen from Table 3, all models are very good and follow the 
pattern of the actual very closely. The MAPE was very good, measuring approximately 1.6 percent for 
ARIMA/EGARCH model, 1.2 percent for ERBF network and 1.4 percent for SVM model. 

From Table 3 it is shown that all forecasting models used are very accurate. The development of the error 
rates on the validation data sets showed a high inherent deterministic relationship of the underlying variables.  
 

 
Figure 5. The actual and fitted values for BUX index-ERBFN model (the va-
lidation data sets Jun 2007-Dec 2012). 

 

 
Figure 6. The actual and fitted values for BUX index-SVM model (the vali-
dation data sets Jun 2007-Dec 2012). 
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Table 3. Statistical summary measures of model’s ex post forecast accuracy for ARIMA(1,1,0)/EGARCH(1,1,1) model and 
SVM model. 

Model RMSE MAPE 

ARIMA(1,1,0)/EGARH(1,1,1) 463.93 1.650 

ERBFN 295.56 1.197 

SVM 392.3 1.421 

 
Though promising results have been achieved with both approaches, for the chaotic financial time markets a 

purely linear (statistical) approach for modeling relationships does not reflect the reality. The hybrid system 
based on ERBFN not only detected the functionality between the underlying variables and the BUX indexes as 
well as the short-run dynamics. 

7. Conclusions 
In the present paper we proposed two approaches for predicting the BUX time series. The first one was based on 
the latest statistical ARIMA/ARCH methodologies, the second one was on neural version of the statistical model 
and SVR. 

After performed demonstration it was established that forecasting model based on SVR model is better than 
ARIMA/ARCH one to predict high frequency financial data for the Malaysia KLCI-Price Index time series. The 
direct comparison of forecast accuracies between statistical ARCH-GARCH forecasting models and its neural 
representation, the experiment with high frequency financial data indicates that all investigated methodologies 
yield very little MAPE (Mean Percentage Absolute Error) values. Moreover, our experiments show that neural 
forecasting systems are economical and computational very efficient, well suited for high frequency forecasting. 
Therefore they are suitable for financial institutions, companies, medium and small enterprises. In the future re-
search we plan to extend presented methodologies by applying fuzzy logic systems to incorporate structured 
human knowledge into workable learning algorithms. 
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