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Abstract 
A new alternative approach to the statistical behavior of particle-particle collisions is introduced. 
The alternative approach is derived rigorously from well known mechanical laws; and the results 
given by it, quantitatively and qualitatively different from what the standard kinetic theory yields, 
can be directly checked with computer-simulated or realistic experiments. More importantly, from 
the introduction of it, a number of new concepts and new methodologies emerge, which might 
turn out to be very significant to the future development of nonequilibrium statistical mechanics. 
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1. Introduction 
It is commonly believed that the statistical behavior of classical particle-particle collisions has been adequately 
codified into the equations of nonequilibrium gas dynamics (kinetic theory), and there is nothing truly new to 
today’s physicists. However, as has been pointed out by us [1] [2], this belief is questionable. 

What made us question the validity of the standard theory might be summarized as the following. In the con-
text of gas dynamics, particle-particle collisions are supposed to be examined in the six-dimensional position- 
velocity phase space, but the space, though superficially simple, is inherently counterintuitive. When a six-  
dimensional statistical dynamics is of concern, it is often the case that our attention is invited to certain incom-
plete and misleading pictures. To get a taste of such trickiness, let’s briefly review a long-neglected fact asso-
ciated with the Boltzmann equation [3]: while the differential operator on its left-hand side enjoys a relatively 
obvious position-velocity symmetry, the integral operator on its right-hand side does not exhibit any form of po-
sition-velocity symmetry. In this regard, one may reasonably wonder: How can the equation’s two sides be al-
ways equal when they behave themselves so differently? 
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In this paper, after advancing several typical examples, an alternative approach is proposed, which takes care 
of the position space and the velocity space in a relatively balanced way. The proposed formalism is strictly 
based on well-known mechanical laws, and the results given by it can be directly compared with computer si-
mulations. More importantly, from the introduction of this alternative approach, a number of new concepts and 
new methodologies emerge, which might turn out to be very significant to the future development of nonequili-
brium statistical mechanics. 

The structure of this paper is the following. In Section 2, several examples are advanced in which particle- 
particle collisions cannot be well treated by the standard kinetic theory. In Section 3, an alternative approach is 
proposed. In Section 4, the newly proposed alternative approach is extended to more general situations. In Sec-
tion 5, a brief summary is provided. 

2. Typical Examples of Particle-Particle Collisions 
To investigate the collective behavior of particle-particle collisions, we shall in this paper concern ourselves 
with three different, but interconnected, situations shown in Figure 1. They are a) a parallel beam of particles 
scattered by a group of resting particles, b) two parallel beams of particles colliding in the head-on manner, and 
c) two ordinary gases colliding with each other. 

To begin with, let’s first look at the simplest situation illustrated in Figure 1(a). Suppose that the parallel 
beam on the left side is moving in the z -direction (rightwards), and the distribution function of it is 

( ) ( ) ( ) ( )0 0z x yf n g v v vδ δ′ ′ ′ ′ ′ ′= − −v                             (1) 

where ( ),n n x y′ ′=  is considered to be time-independent and z -independent and ( )dz zg v v′ ′∫  over ( )0,∞  is 
equal to 1. The resting particles on the right side are described by the distribution function 

( ) ( ) ( ) ( )1 1 1 1 1 1, , , 0 0 0x y zf x y z n v v vδ δ δ′ ′ ′ ′ ′ ′= − − −v                         (2) 

where ( )1 1 , ,n n x y z′ ′=  is time-independent. 
 

 
Figure 1. Various setups: (a) A parallel beam of particles scattered by 
resting particles; (b) Two parallel beams colliding in the head-on man- 
ner; (c) Two ordinary gases colliding with each other. 



C. Y. Chen 
 

 
774 

There are several reasons why we start our investigation with this particular example. Firstly, this is the case 
to which the standard collision theory is presumably applicable. Secondly, this is the case that we, as physicists, 
can easily realize and easily monitor in computer simulation. Thirdly, this is the case in which the complexity of 
the subject is largely reduced but the statistical characteristics of the subject remain intact (so the insight gained 
will be generally instructive). 

It is further assumed that a virtual detector, marked as 1D  in the figure, is placed at the position where the 
local distribution function is of interest. This arrangement possesses great importance in this paper; and the basic 
idea behind it is that the distribution function determines, almost uniquely, the local flux, and hence the distribu-
tion function should be directly computable if the flux information gathered by the detector situated there is 
somehow known. It will be seen that with certain improvement and refinement this simple idea works nicely. In 
contrast with that, the basic idea of the standard theory seems rather cumbersome. According to the standard 
theory, to determine the distribution function at a place we are supposed to investigate how the distribution 
function varies at the place, and to determine how the distribution function varies at the place we are supposed 
to investigate virtually all the fluxes around the place (eventually 12 coming-or-going fluxes are examined). 

Before entering the next section, where a new alternative approach will be introduced, let’s briefly go through 
what the Boltzmann equation has to say about the situation. Referring to Figure 1(a), suppose that the symmetry 
axis of 1D  is the positive ξ -coordinate axis and the origin of the ξ -coordinate starts from the bottom of the 
collision region. Thus, the distribution function of the collision-produced particles moving along the ξ -axis 
obeys (with no external forces) 

( )
( ) ( )1 1 1

,
, , 2 d dc c

f v
v f f uξ
ξ

ξ
ξ ξ σ

ξ

∂
′ ′ ′ ′= Ω

∂ ∫ v v v ,                     (3) 

in which ′v  and 1′v  are the initial velocities of two colliding particles while vξ  and 1v  stand respectively 
for the final velocities of the two particles, 12u ′ ′= −v v , cσ  is the cross section of the scattering and d cΩ  is 
the solid angle of the scattering. (Notably, cσ  and cΩ  are defined in the so-called center-of-mass frame.) 
From Equation (3), ( ),f vξξ  for a definite vξ  can be determined by 

( ) ( )1 1 1
1 d , , 2 d dc cf f u
vξ

ξ ξ ξ σ′ ′ ′ ′ Ω∫ ∫ v v v .                           (4) 

In writing these two formulas, it is understood that the two initial gases are dilute enough so that the collision 
probability between f ′  and 1f ′  is a first-order quantity and the collision probability between f  and f ′  
(or 1f ′ ) can be ignored. It is also understood that the relationship between vξ , 1v , ′v  and 1′v  in Equation 
(3), or (4), obeys the energy-momentum conservation law, which in general consists of four independent 
equations. 

Surprisingly, although formally pertinent, expression (4) yields no meaningful result for the situation. Firstly, 
if we wish to compute the integral involved, we find no attainable way to get rid of the five δ -functions in f ′  
and 1f ′ . Secondly, if we assume that the five δ -functions disappear simply due to the five-fold velocity inte-
gration of Equation (4), the role played by the four equations of the energy-momentum conservation law be-
comes unknown. Finally, if we somehow managed to make Equation (4) mathematically evaluable, the issue 
would become even more puzzling in the sense that the result of Equation (4) can be schematically represented 
by the dotted curve in Figure 2 (reflecting the fact that the integrand of the integral is positive-definite), while 
our physical and geometrical intuition, as well as a well-performed computer simulation, tells us that the real 
distribution function varies according to the solid curve given in Figure 2 (the asymptotic behavior of f  must 
obey the inverse-square law). 

When treating the examples shown in Figure 1(b) and Figure 1(c), similar difficulties will be met with. In 
particular, the difficulty shown in Figure 2 is always there. 

There has been a detailed investigation about the sources of the aforementioned problems [1]. In this paper, 
we shall focus ourselves on proposing a new alternative approach. 

3. An Alternative Approach 
In connection with the situation shown in Figure 1(a), we now look at Figure 3(a) and Figure 3(b), in which  
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Figure 2. The qualitative illustration of the distribution func- 
tion along the axis of the detector in Figure 1(a). 

 

 
(a)                                 (b) 

Figure 3. Aftermath of a collision: (a) In the position space 
one of the two colliding particles starts to move toward the de- 
tector; (b) in the velocity space the two particles get new 
velocities, v  and 1v  respectively. 

 
the aftermath of a collision is illustrated in the position space and in the velocity space respectively. The two 
figures are drawn quite generally and their full implications will manifest themselves in this and the next 
sections. 

In Figure 3(a), suppose that ( ), ,x y z≡r  is the position of the detector’s inlet, and that the velocities of the 
particles recorded by the detector fall into a definite speed range vδ  and a definite solid angle δΩ . Then, the 
distribution function at the inlet can be roughly expressed as 

( )
( ) ( )2

, Nf
v t s v v

δ
δ δ δ δ⋅ Ω

r v  ,                                (5) 

where sδ  is the area of the detector’s inlet, tδ  is the time interval of recording, Nδ  is the number of the 
particles recorded by the detector. Expression (5) can be interpreted as saying that there is a direct connection 
between the flux detected by the detector and the distribution function of our primary concern. It is this direct 
connection, though still primitive at this stage, that will guide us to the very end of our investigation. 

Concerning expression (5), there are essential things worth discussing. To ensure that the right side of the ex-
pression stands for the “exact” distribution function at the position point r , the quantities tδ , sδ , vδ  and 
δΩ  have to be infinitely small. (By the term exact, we mean that the right side of the expression can be quali-
fied as a strict mathematical limit.) However, allowing all these quantities to be simultaneously infinitesimal 
gives rise to practical problems. For instance, if both sδ  and δΩ  are indeed infinitely small, dN  in expres-
sion (5) receives contribution only from the collision region that is limited to a one-dimensional straight line, 
which is nothing but the very symmetry axis of the detector. Obviously, this type of approach can be accom-
plished only in mind. 

To make expression (5) physically meaningful in rather general situations, we shall adopt the following two 
assumptions: 1) sδ  is very small, infinitesimal in the theoretical sense, and 2) vδ  and δΩ  are finite and de-
finite (still small though). It turns out, to describe force-free Boltzmann gases, accepting these two assumptions 
is convenient and largely necessary. 

Under these two assumptions, we redefine the distribution function as a mathematical hybrid: 

( )2
2 0, 0

1 d, lim
t s

Nf v v
v t sv v δ δ

δ δ
δ δδ δ → →

Ω =
Ω ∫r ,                        (6) 
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where ( )2 2 2 3i i i i
v v v v v∗ ∗≡ + +  with iv  and 

i
v ∗  being respectively the lower and upper bounds of vδ , and 

dN  includes all the particles recorded during tδ  whose velocities fall in vδ  and δΩ . Namely, this distri-
bution function is a mathematical limit in the position space, but a mathematical average in the velocity space, 
averaged over the finite volume element ( )2 3 3 3ii

v v v vδ δ δ∗Ω = − Ω . 
At this point, one remark seems in order. In the standard theory the distribution function, as the primary con-

cept of the theory, is often defined or interpreted in intentionally vague language. For instance, in one of the 
books on nonequilibrium statistical mechanics [4] it is stated that the distribution function, denoted as F  
therein, is the ratio ( )Nδ δ δr v  in which rδ  and vδ  are supposedly “large enough to contain a lot of par-
ticles, but small compared to the range of variation of F ′′ . Then, an interesting question about expression (6) 
arises. Why does the approach herein define the distribution function in such clear and strict mathematical terms? 
To this question, the answer given by us is simply the following: to compute a distribution function certain li-
miting processes need to be invoked; but if there is not an adequate set of mathematically well-defined quantities 
those limiting processes may lose their validity explicitly or implicitly. 

We take three steps to compute expression (6): 1) finding out the position region in which particle-particle 
collisions may possibly give contribution to dN ; 2) formulating the collision number in this position region; 
and 3) investigating how collision-produced particles spread in the position space and in the velocity space, and 
then determining in what portion those collision-produced particles will indeed be recorded by the detector. 

The first two steps can be accomplished rather easily. Since the solid angle δΩ  has been assumed to be de-
finite and finite and the inlet area sδ  has been assumed to be very small (infinitesimal), we find the trajectory 
cone denoted by { }rδ− Ω  in Figure 3(a) to be the position region in which collisions may directly give contri-
butions to dN . In this particular sense, the cone will be named as the upstream path zone, or up-zone for short. 
The number of the collisions taking place inside the up-zone can be expressed by 

( ) ( )0 1 1 12 d d d c ct uf fδ σ δ′ ′ ′ ′ ′ ′⋅ ⋅ Ω      ∫ v v r v v                         (7) 

where 0dr  stands for an infinitesimal region in { }rδ− Ω . Inserting Equations (1) and (2) into Equation (7), we 
obtain 

[ ] [ ]0 12 d dz c ct un g v nδ σ δ′ ′ ′⋅ ⋅ Ω∫ r .                             (8) 

To accomplish the third step aforementioned, let’s first note that the information concerning how the scattered 
particles spread in the position space and the velocity space is stored in c cσ δΩ . Since c cσ δΩ  is conveniently 
defined in the center-of-mass frame, and the position and velocity spaces we care about are defined in the labor-
atory frame, an extra examination is needed. 

Referring to Figure 3(a) and Figure 4(a), we find that there is an infinitely sharp cone formed by the point 
0r , as the apex, and the area element sδ , as the base. So, the solid angle bounded by the cone, δω , is equal to 

2
0sδω δ= −r r .                                   (9) 

Since sδ  is infinitely small, δω  is infinitely small to δΩ . Thus, if a particle can enter the detector from 
the up-zone, the particle’s velocity will definitely falls in δΩ . Namely, from now on, the only thing we need to 
make sure is that the collision-scattered particles emerge within vδ  and δω  in the laboratory frame. 

To connect the center-of-mass frame and the laboratory frame, we have to deal with the energy-momentum 
 

 
Figure 4. Schematic of (a) how the scattered particles with 
+ =c u v  enter the detector, and (b) how zvδ ′  in this section 

can be determined by vδ  in view of 1 0zv′ = . 
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conservation law explicitly. Let all the particles in our consideration have the same mass (for simplicity); and let 
′v  and 1′v  be the initial velocities of two colliding particles and v  and 1v  be the final velocities of the two 

particles respectively. The energy-momentum conservation law then takes the form 

and u′ ′= = =c c u u ,                               (10) 

where 

( ) ( )
( ) ( )

1 1

1 1

2, 2,

2, 2.

′ ′ ′ ′ ′ ′≡ + ≡ −

≡ + ≡ −

c v v u v v

c v v u v v
                           (11) 

The above expressions show that for a pair of ′v  and 1′v , the final velocities v  and 1v  have only two 
degrees of freedom, distributing on an infinitely thin energy-momentum (EM) membrane in the velocity space, 
as has already been illustrated in Figure 3(b). Referring to Figure 3(b) and Figure 4(a) simultaneously, we find 
out that in the velocity space, for the fixed ′=c c , 

( )2 2 2
0 0cos coscu v vδ δω θ θ δω θΩ = − = ,                        (12) 

in which v = v  and 0 2θ θ=  ( u=c  in this section). This relationship defines the patch of the EM mem-
brane on that the scattered particles will indeed be recorded by the detector. Finally, by virtue of Figure 4(b), 
we have 

( )0 0 02 cos cos cos 2zv u vθ θ θ′= ⋅ = =c .                        (13) 

With help of Equations (8), (9), (12) and (13), the limit-average-hybrid distribution function defined by 
Equation (6) is 

( ) ( )2 1
02 2

0

41, d d c
z z

n n
f v v v g v

v v
σ

δ δ
δ δ

′ ′
′ ′Ω =

Ω −
∫r r

r r
,                     (14) 

in which the integration region of 0dr  is over the up-zone { }rδ− Ω , the integration range of d zv′  is 
0coszv vδ δ θ′ =  in which 0θ  is the angle between 0−r r  and the z-axis, and ( )cσ θ  is the function of 

02θ θ= . In this formula only the particles coming from f ′  are taken into account. 
Unlike expression (4), expression (14) is obviously computable. It yields a finite and definite result no matter 

whether r  is inside or outside the collision region. When r  is located at a place remote to the collision region 
(which defines the asymptotic behavior of the particle-particle collisions), f  in Equation (14) obeys the in-
verse-square relationship, thus ensuring the conservation of particle number globally. 

4. Extensions of the Alternative Approach 
Now, we look at how to extend our proposed approach to the cases shown in Figure 1(b) and Figure 1(c). 

Let the gas on the left-hand side of Figure 1(b) be represented by 

( ) ( ) ( ) ( )0 0z x yf n g v v vδ δ′ ′ ′ ′ ′= − −v'                           (15) 

where n′  is time- and z -independent and ( )dz zg v v′ ′∫  over ( )0,+∞  is equal to 1; let the gas on the right- 
hand side of Figure 1(b) be represented by 

( ) ( ) ( ) ( )1 1 1 1 1 1 10 0z x yf n g v v vδ δ′ ′ ′ ′ ′ ′= − −v ,                        (16) 

where 1n′  is also time- and z -independent and ( )1 1 1dz zg v v′ ′∫  over ( ),0−∞  is equal to 1. 
Again, we are interested in determining ( )2,f v vδ δΩr  defined by Equation (6), where r  stands for the  

position of the detector’s inlet in Figure 1(b). 
By defining the up-zone, { }rδ− Ω , around the symmetry axis of the detector, we know that the collision 

number taking place in the zone can still be expressed by Equation (7). So, the collision-produced particles that 
can enter the detector are 
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[ ] [ ]0 1 1 12 d d d dz z c ct un g v n g vδ σ′ ′ ′ ′⋅ ⋅ Ω∫ r ,                          (17) 

in which d cΩ  is limited to the patch on that the scattered particles will move almost exactly toward the detec-
tor in the laboratory frame. 

Now, the energy-momentum conservation law shows us that 

andz zc c u u′ ′= = =c .                               (18) 

and Equation (17) becomes 

0 1 1d 2 d d dz c ct uJn n gg c uδ σ′ ′ ′ ⋅ Ω∫ r ,                             (19) 

in which 

( )
( )

1,
2

,
z z

z z

v v
J

c u
′ ′∂

= =
′ ′∂

                                  (20) 

is the Jacobian of the variable transformation. Notice that Figure 4(a) makes sense generally as long as we dis-
regard =c u  in it. (Obviously, =c u  holds only for the case discussed in the last section.) It is then ob-
vious that Equation (9) still holds. Furthermore, for the fixed ′=c c  in that figure, we have 

2 2d d d dcu u v v ωΩ =∫ ,                                (21) 

where 2d dv v ω  is the infinitesimal volume element into which the particles recorded by the detector are sup-
posed to fall. Eventually, with help of Equations (9), (19) and (21) the distribution function defined by Equation 
(6) becomes 

( ) ( )1
0 1 12 2

0

41 d d d c
z z z

v n n
v c g v g v

v v u
σ

δ δ
′ ′

′ ′ ′
Ω −
∫ r

r r
,                       (22) 

in which the integration region of 0dr  covers the up-zone { }rδ− Ω , the integration range of d zc′  is from −∞  
to +∞  and cσ  is the function of ( ),θ θ ′= u u . Other quantities should be determined with care, and the fol-
lowing diagram may provide an additional help 

( )0 1,

                                      
                              

z z z

z

u u v v

v c

′ ′ ′− → → → = →

↑ ↑ ↑
′ ′=

r r v u

c c
                         (23) 

namely, by 0−r r  and v  we obtain v , by geometrically subtracting c  from v  we get u , with help of 
u = u  the function ( )zg v′  and ( )1 1zg v′  can be determined. 

As for the general case shown in Figure 1(c), the formulation is about the same. Firstly, the collision number 
taking place in the up-zone can be represented by 

( ) ( )0 1 1 12 d d d dc cuf fτ τδτ σ′ ′ ′ ′ ′ ′ ⋅ Ω      ∫ v v r v v .                     (24) 

where fτ′  and 1f τ′  are the distribution function at the collision position 0r  and at the collision time τ . By 
invoking the variable transformation defined by Equation (11), we arrive at 

1 02 d d d dc cuJf fτ τδτ σ′ ′ ′ ′ ⋅ Ω∫ r c u ,                           (25) 

in which 

( )
( )

1,
8

,
J

′ ′∂
= =

′ ′∂
v v
c u

.                               (26) 

Notice that in Equation (25) d ′u  can be replaced by 2d du u ′Ω  where ′Ω  stands for the direction of ′u . 
Also notice that Equations (9) and (21) hold significance in this general situation. Eventually, we find that the 
distribution function defined by Equation (6), at a particular time t , is 
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( ) ( )0 1 12 2
0

161 d d d d cuv
v f f

v v τ τ
σ

δ δ
′ ′ ′ ′ ′ ′Ω

Ω −
∫ r c v v

r r
,                     (27) 

in which 0t vτ = − −r r , 3
0d∫ r  is over the upstream path zone, dv∫  is over vδ , 3d ′∫ c  is over the entire  

velocity space, d ′Ω∫  is over [ ]0,4π , and cσ  is the function of ( ),θ θ ′= u u . Other quantities in this expres-  

sion can be determined by 

( ) ( )0 1,

                                     
                                

u

v

′ ′ ′− → → → → →

↑ ↑ ↑ ↑
′ ′ ′= Ω

r r v u u v v

c c c
                        (28) 

which is interpreted similarly to the diagram given in expression (23). 
Obviously, both expressions (22) and (27) are directly computable, and ready to be checked with comput-

er-simulated or realistic experiments. 
It is easy to see that if Ωδ  in the formulas of this paper is allowed to approach zero, the whole formalism 

makes no sense, which again says that the “exact” distribution function is inherently indeterminable. More than 
that, this formalism has actually shown that, if we are a weightless and infinitely small observer moving together 
with a group of collision-produced particles, the distribution function observed by us is, in general, not path-  
invariant, which in turn challenges the long-held tacit assumption that any distribution function, produced by 
whatever mechanisms, is a continuous one or can be treated as a continuous one. 

5. Summary 
In this paper, to formulate the statistical behavior of particle-particle collisions, a new alternative integral for-
malism has been introduced. The results given by the new formalism are quantitatively and qualitatively differ-
ent from what the standard theory yields. If interested, readers may confirm or deny them by applying their own 
theoretical and/or numerical approaches. 

More importantly, along with the introduction of the new approach, a set of new concepts and methodologies 
are proposed, which might turn out to be very significant to the future development of nonequilibrium statistical 
mechanics. Some of them are: 
 Due to the discontinuity concern, the distribution function in a nonequilibrium approach should be defined as 

an average in the position-velocity phase space, at least partially. 
 Instead of using differential-integral equations, approaches of completely integral type should be employed. 
 Instead of examining the events in a control volume element, what takes place in an upstream path zone 

should be investigated. 
 Collisional effects should be studied in both the position space and the velocity space. The energy- 

momentum conservation law should be fully incorporated. 
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