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Abstract 
This paper is devoted to the development of new theory of orthotropic thick plates with account of 
internal forces, moments and bimoments. An equation of motion of plates is described by two sys-
tems with nine equations each. Boundary conditions depended on displacements, forces, moments 
and bimoments are given. An exact solution of the bending of thick plate under the effect of sine 
load is built. Numerical results for maximal values of displacements and stresses of the plate are 
obtained. 
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1. Introduction 
Specified theories of plates are widely used in analysis of structure elements. Review and general technique for 
constructing a specified theory can be found in [1] [2]. In spatial case of bending and vibrations along the thick-
ness of the plate, the displacements vary according to nonlinear law, and classical theories of plates and shells 
become unacceptable. In general case the field of displacement of thick plates does not obey to any simplifying 
hypotheses. It is necessary to take into account all the components of the tensor of stress and strain:  

( ), , , 1,3ij ij i jσ ε = ; by them we will introduce tensile and crosscutting forces, bending and torsion moments and 
the concept of bimoments [3], generated due to nonlinear law of distribution of displacements in cross-sections 
of the plate. 

This article briefly describes a method of constructing a theory of plates with bimoments. Determinant corre-
lations of forces, moments, bimoments and the equations of motion in relation to these types of force factors are 
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given. 

2. Statement of the Problem 
Consider orthotropic thick plate of constant thickness 2H h=  and dimensions ,a b  in plan. Introduce the 
signs: 1 2 3, ,E E E —elasticity modulus and 12 13 23, ,G G G —shear modulus; 12 13 23, ,ν ν ν —Poisson’s ratio of plate 
material.  

Introduce Cartesian system of coordinates 1 2,x x  and z. Axis oz  is directed vertically downwards. Let dis-
tributed surface normal and tangential loads are applied to the lower and the upper face surfaces of the plate  
z h=  and z h= − . Normal loads in oz  axis we will designate as ( ) ( )

3 3,q q+ − , tangential loads in direction 

1 2,ox ox – ( ) ( ) ( ), , 1, 2k kq q k+ − = . Vlasov B. F. [4] has built an exact analytical solution of this problem in trigono- 

metric series. 
Components of the vector of displacement are determined by the functions of three spatial coordinates and 

time ( ) ( ) ( )1 1 2 2 1 2 3 1 2, , , , , , , , , , ,u x x z t u x x z t u x x z t . Components of the tensor of strain are determined by Cauchy 
correlation. The plate is considered as a three-dimensional body, its material obeying Hooke’s generalized law: 

11 11 11 12 22 13 33 22 21 11 22 22 23 33

33 31 11 32 22 33 33 12 12 12 13 13 13 23 23 23

, ,
, 2 , 2 , 2 ,

E E E E E E
E E E G G G

σ ε ε ε σ ε ε ε
σ ε ε ε σ ε σ ε σ ε

= + + = + +

= + + = = =
            (1) 

where 11 12 33, , ,E E E —are elastic constants, defined by Poisson’s ratio and elasticity modulus in the form:  

11 1 11 22 2 22 33 3 33, , ,E E g E E g E E g= = =  

12 21 1 12 2 21 13 31 1 13 3 31 23 32 2 23 3 32, , ,E E E g E g E E E g E g E E E g E g= = = = = = = = =  

23 32 13 31 12 21
11 22 332 2 2

1 1 1
, , ,

1 1 1
g g g

ν ν ν ν ν ν
µ µ µ

− − −
= = =

− − −
 

12 13 32 21 31 23 13 21 32 31 12 23
12 21 13 312 2 2 2, ,

1 1 1 1
g g g g

ν ν ν ν ν ν ν ν ν ν ν ν
µ µ µ µ

+ + + +
= = = = = =

− − − −
 

223 13 12 32 31 21
23 32 12 21 23 32 13 31 12 23 312 2 , 2 .

1 1
g g

ν ν ν ν ν ν
µ ν ν ν ν ν ν ν ν ν

µ µ
+ +

= = = = + + +
− −

 

As an equation of motion of the plate we will use three-dimensional equations of motion of the theory of elas-
ticity: 

( )1 2 3

1 2

, 1,3 .i i i
iu i

x x z
σ σ σ

ρ
∂ ∂ ∂

+ + = =
∂ ∂ ∂

                                 (2) 

here ρ —is a density of plate material. 
Boundary conditions on the lower and the upper surfaces z h=  and z h= −  have the form: 

( ) ( ) ( )
33 3 31 1 32 2, , , at ;q q q z hσ σ σ+ + += = = =                           (3.a)

 ( ) ( ) ( )
33 3 31 1 32 2, , , at .q q q z hσ σ σ− − −= = = = −                          (3.b) 

3. Method of Solution 
Methods of constructing a bimoment theory of plates is based on displacements expansions in infinite series, 
Hooke’s generalized law (1), three-dimensional equations of the theory of elasticity (2) and boundary conditions 
on face surfaces (3). Components of the vector of displacements are expanded in Macloren’s series in the form 
[3]-[7]: 

( ) ( ) ( ) ( ) ( ) ( )
2 3

0 1 2 3 , 1, 2 ,
m

k k k k k
k m

z z z zu B B B B B k
h h h h

     = + + + + + + =     
     

 
              (4.а) 
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2 3

3 0 1 2 3 ,
m

m
z z z zu A A A A A
h h h h

     = + + + + + +     
     

 
                 (4.b) 

here ( ) ,k
m mB A —are unknown functions of two spatial coordinates and time:  

( ) ( ) ( ) ( )1 2
0

, , , 1, 2 ,
!

mm
k k k

m m m
z

uhB B x x t k
m z

=

 ∂
= = = 

∂ 
 ( ) 3

1 2
0

, , .
!

mm

m m m
z

uhA A x x t
m z

=

 ∂
= =  

∂   

Offered bimoment theory of plates [5]-[8] is described by two unrelated problems, each of which is formu-
lated on the basis of nine two-dimensional equations with corresponding boundary conditions. It should be noted 
that proposed bimoment theory of plates presents a two-dimensional theory of elastic orthotropic layer, which is 
deformed in general three-dimensional form.  

The first problem is described by two equations relative to longitudinal and tangential forces, by four addi-
tionally constructed equations in relation to bimoments and three equations obtained from the boundary condi-
tions (3) on the basis of expansion (4). The forces, moments and bimoments of the plate are determined by nine 
unknown kinematic functions from relationships [5]-[8]:  

( ) ( )
( )2

3

1 1, d , d , 1,2 ,
2 2 2

h h
k k

k k k k k
h h

u u
u u z u z z k

h h
ψ β

+ −

− −

+
= = = =∫ ∫                    (5.а) 

( ) ( )
33 3

3 32 4

1 1, d , d .
2 2 2

h h

h h

u u
W r u z z u z z

h h
γ

+ −

− −

−
= = =∫ ∫                        (5.b) 

We will get the equations of equilibrium relative to longitudinal and tangential forces by integrating two first 
equations of the theory of elasticity in coordinate z (2): 

11 12 21 22
1 1 2 2

1 2 1 2

2 , 2 ,
N N N Nq H q H
x x x x

ρ ψ ρ ψ
∂ ∂ ∂ ∂

+ + = + + =
∂ ∂ ∂ ∂

                       (6) 

where 11 12 22, ,N N N —are longitudinal and tangential forces determined from relationships 

1 2
11 11 11 12 13

1 2

d 2 ,
h

h

N z E H E H E W
x x
ψ ψ

σ
−

∂ ∂
= = + +

∂ ∂∫                        (7.а) 

1 2
22 22 12 22 23

1 2

d 2 ,
h

h

N z E H E H E W
x x
ψ ψ

σ
−

∂ ∂
= = + +

∂ ∂∫                        (7.b) 

2 1
12 21 12 12

1 2

d ,
h

h

N N z G H H
x x
ψ ψ

σ
−

 ∂ ∂
= = = + ∂ ∂ 

∫                         (7.c) 

( ) ( )
( )

( ) ( )
3 3

3, 1, 2 ,
2 2

k k
k

q q q q
q k q

+ − + −− +
= = = —terms of equations with external load. 

On the basis of force expression (7) two Equations (6) include three unknown functions 1 2, , rψ ψ . To derive 
additional equations we will introduce bimoments, generated in tension and cross compression of the plate. 
Longitudinal and tangential bimoments are determined by expressions: 11 22 12, ,T T T : 

2 1 2
11 11 11 12 132

1 2

1 2 4d ,
h

h

W rT z z H E E E
x x Hh
β β

σ
−

 ∂ ∂ −
= = + + ∂ ∂ 

∫                     (8.а) 

2 1 2
22 22 12 22 232

1 2

1 2 4d ,
h

h

W rT z z H E E E
x x Hh
β β

σ
−

 ∂ ∂ −
= = + + ∂ ∂ 

∫                    (8.b) 

2 2 1
12 21 12 122

1 2

1 d .
h

h

T T z z HG
x xh
β β

σ
−

 ∂ ∂
= = = + ∂ ∂ 

∫                           (8.c) 

Introduce intensities of transversal bimoments 13 23,p p  and 13 23,τ τ  on tangential stresses 13 23,σ σ : 
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( ) ( )3 3 32

21 d , 1,2 ,
2

h
k k

k k k
kh

urp z z G k
x Hh

ψ
σ

−

 −∂
= = + =  ∂ 

∫                     (9.а) 

( )
( )3

3 3 34

2 31 d , 1,2 .
2

h
k k

k k k
kh

u
z z G k

x Hh

βγτ σ
−

 −∂ = = + =
 ∂ 

∫                 (9.b) 

Introduce intensities of normal bimoments 33p  and 33τ  on normal stress 33σ  in the form of relations: 

1 2
33 33 31 32 33

1 2

1 2d ,
2

h

h

Wp z E E E
h x x H

ψ ψ
σ

−

∂ ∂
= = + +

∂ ∂∫                     (10.а) 

2 1 2
33 33 31 32 333

1 2

1 2 4d .
2

h

h

W rz z E E E
x x Hh
β β

τ σ
−

∂ ∂ −
= = + +

∂ ∂∫                    (10.b) 

Equations in relation to longitudinal and transversal bimoments, acting in plate plane are obtained in the form: 

11 12 12 22
13 1 1 23 2 2

1 2 1 2

4 2 , 4 2 ,
T T T Tp q H p q H
x x x x

ρ β ρ β
∂ ∂ ∂ ∂

+ − + = + − + =
∂ ∂ ∂ ∂

               (11) 

13 23 33 3 13 23 33 3

1 2 1 2

2 2 6 2
, .

p p p q q
r

x x H H x x H H
τ τ τ

ρ ργ
∂ ∂ ∂ ∂

+ − + = + − + =
∂ ∂ ∂ ∂

                 (12) 

By using series (4) and Formulas (5) are obtained expressions for series’ (4) coefficients  
( ) ( ) ( )1 2
2 2 2 1, , , 0,1, 2i i iB B A i+ =  via , ,k k ku ψ β  functions and boundary conditions (3) let represent as next equa-

tions:  

( ) ( )
3

1 1 121 3 , 1,2 ,
4 20 20

k
k k k

k k

HqWu H k
x G

β ψ ∂
= − − + =

∂
                   (13.а) 

( ) 31 32 31 2

33 1 33 2 33

1 121 7 .
2 30 30

E E Hqu uW r H
E x E x E

γ
 ∂ ∂

= − − + + ∂ ∂ 
                   (13.b) 

Equations (6), (11), (12) and (13) make a combined system of differential equations of motion, which consists 
of nine equations relative to nine unknown functions: 1 2 1 1 1 2, , , , , , , ,u u r Wψ ψ β β γ . 

The second problem is described by two equations of moments, one equation of crosscutting forces, three eq-
uations of bimoments and three equations, obtained from boundary conditions (3) on the bases of expansion (4). 
Here forces, moments and bimoments are determined relative to nine unknown kinematic functions in the form 
[5]-[8]: 

( ) ( )
23 3

3 33

1 1, d , d ,
2 2 2

h h

h h

u u
W r u z u z z

h h
γ

+ −

− −

+
= = =∫ ∫

                       (14.а) 

( ) ( )
( )3

2 4

1 1, d , d , 1,2 .
2 2 2

h h
k k

k k k k k
h h

u u
u u z z u z z k

h h
ψ β

+ −

− −

−
= = = =∫ ∫

                   (14.b) 

The first three of these equations are the ones relative to bending, torsion moments and an equation relative to 
crosscutting forces, the rest three equations are derived in relation to bimoments. 

Multiplying the first and the second equations of the theory of elasticity by coordinate z and integrating it by z, 
we will obtain an equation of equilibrium in moments and forces: 

2 2
11 12 21 22

13 1 1 23 2 2
1 2 1 2

, .
2 2

M M M MH HQ Hq Q Hq
x x x x

ρψ ρψ
∂ ∂ ∂ ∂

+ − + = + − + =
∂ ∂ ∂ ∂

 

                  (15.а) 

Integrating the third equation of the theory of elasticity by coordinate z (2), we will obtain an equation of 
equilibrium in forces: 
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13 23
3

1 2

2 .
Q Q

q Hr
x x

ρ
∂ ∂

+ + =
∂ ∂



                                     (15.b) 

Bending and torsion moments are determined in the form: 

( )2
1 2

11 11 11 12 13
1 2

2
d ,

2

h

h

r WHM z z E E E
x x H
ψ ψ

σ
−

 −∂ ∂ = = + −
 ∂ ∂ 

∫




 

                   (16.а) 

( )2
1 2

22 22 12 22 23
1 2

2
d ,

2

h

h

r WHM z z E E E
x x H
ψ ψ

σ
−

 −∂ ∂ = = + −
 ∂ ∂ 

∫




 

                  (16.b) 

2
1 2

12 21 12 12
2 1

d .
2

h

h

HM M z z G
x x
ψ ψ

σ
−

 ∂ ∂
= = = + ∂ ∂ 

∫
 

                           (16.c) 

Expressions for crosscutting forces have the form: 

13 13 13 1 23 23 23 2
1 2

d 2 , d 2 .
h h

h h

r rQ z G u H Q z G u H
x x

σ σ
− −

   ∂ ∂
= = + = = +   ∂ ∂   
∫ ∫

 

                  (17) 

In Equations (15) terms with external load are determined by the following formula: 
( ) ( )

( )
( ) ( )
3 3

3, 1, 2 , .
2 2

k k
k

q q q q
q k q

+ − + −+ −
= = =   

To derive other equations we will introduce the following bimoments, generated at bending and shear of the 
plate. Bimoments 11 22 12, ,P P P  are determined by the following formula: 

( )2
3 1 2

11 11 11 12 132
1 2

2 31 d ,
2

h

h

WHP z z E E E
x x Hh

γβ β
σ

−

 −∂ ∂ = = + −
 ∂ ∂ 

∫


  

                 (18.а) 

( )2
3 1 2

22 22 12 22 232
1 2

2 31 d ,
2

h

h

WHP z z E E E
x x Hh

γβ β
σ

−

 −∂ ∂ = = + −
 ∂ ∂ 

∫


  

               (18.b) 

2
3 1 2

12 21 12 122
2 1

1 d .
2

h

h

HP P z z G
x xh
β β

σ
−

 ∂ ∂
= = = + ∂ ∂ 

∫
 

                       (18.c) 

Intensity of transversal tangential and normal bimoments 13 23,p p   and 33p  are determined by expressions 

( )2
3 3 33

2 41 d , 1, 2 ,
2

h
k k

k k k
kh

u
p z z G k

H xh
ψ γσ

−

 − ∂
= = + = ∂ 

∫
 

                      (19.а) 

( )1 2
33 33 31 32 332

1 2

21 d .
2

h

h

r W
p z z E E E

x x Hh
ψ ψ

σ
−

−∂ ∂
= = + −

∂ ∂∫




 

                      (19.b) 

Equations relative to bimoments at bending and transversal shear are derived in the form: 
2 2

11 12 21 22
13 1 1 23 2 2

1 2 1 2

3 , 3 ,
2 2

P P P PH Hp Hq p Hq
x x x x

ρβ ρβ
∂ ∂ ∂ ∂

+ − + = + − + =
∂ ∂ ∂ ∂

 

 

                 (20) 

13 23
33 3

1 2

4 2 .
p p

H H p q H
x x

ργ
∂ ∂

+ − + =
∂ ∂
 



                                (21) 

From expressions for series (4) and Formulas (14) relations for series’ coefficients ( ) ( ) ( )1 2
2 1 2 1 2, , , 0,1, 2i i iB B A i+ + =  

(4) via , ,k k ku ψ β  functions and boundary conditions (3) lets represent like next equations: 
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( ) ( )
3

1 1 121 7 , 1,2 ,
2 30 30

k
k k k

k k

HqWu H k
x G

β ψ ∂
= − − + =

∂







                     (22.а) 

( ) 31 32 31 2

33 1 33 2 33

1 121 3 .
4 20 20

E E Hqu uW r H
E x E x E

γ
 ∂ ∂

= − − + + ∂ ∂ 

 



                      (22.b) 

The system of differential equations of motion (15), (20), (21) and (22) makes combined system of nine equa-
tions relative to nine unknown functions 1 2 1 2 1 1, , , , , , , ,u u r Wψ ψ β β γ  

     . 
Formula to determine the displacements and stresses in the layers of the plate z h= −  and z h=  are: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
3 3, , 1, 2 , , ,

, , 1, 2; 1,2 .
i i i i i i

ij ij ij ij ij ij

u u u u u u i u W W u W W

i jσ σ σ σ σ σ

− + − +

− +

= − = + = = − = +

= − = + = =

 

 

 

               (23) 

Thus, two unrelated problems of bimoment theory of thick plates are formulated in the paper. An accuracy of 
bimoment theory is defined in dependence on the number of held terms of the series (4). In construction of equ-
ations of equilibrium eight terms are held, while for expressions (13) and (22) six terms of each series are held 
(4). The first equation in (13) and the second equation in (22) are built up to the fourth order relative to small  

parameter of the plate 
10
H

a
. The second Equation in (13) and the first Equation in (22) are built up to the sixth  

order relative to the parameter. 

4. Solution of Tests Problem 
As an example consider the problem of static bending of the plate, loaded by normal load:  

( ) 1 2
3 0

π π
sin sin

x xq q
a b

− = −  along the upper face surface z h= − , where 0q —is a load parameter. Let the ends 

of the plate rest on the ends, then 1 constx =  and 2 constx = , and we have the conditions : 

11 11 2 2 11 20, 0, 0, 0, 0, 0, 0, 0, 0,N T u r Wψ β σ γ= = = = = = = = =               (24.а) 

22 22 1 1 22 10, 0, 0, 0, 0, 0, 0, 0, 0,N T u r Wψ β σ γ= = = = = = = = =                (24.b) 

11 11 2 2 11 20, 0, 0, 0, 0, 0, 0, 0, 0,M P u r Wψ β σ γ= = = = = = = = = 

                (25.а) 

22 22 1 1 22 10, 0, 0, 0, 0, 0, 0, 0, 0.M P u r Wψ β σ γ= = = = = = = = = 

                (25.b) 

The values 11 22 12 11 12 22, , , , ,σ σ σ σ σ σ    are determined by Hooke’s law with conditions on face surfaces (3): 

* * * *13 231 2 1 2 1 2
11 11 12 3 22 12 22 3 12 12

1 2 33 1 2 33 2 1

, , ,
E Eu u u u u uE E q E E q G

x x E x x E x x
σ σ σ

 ∂ ∂ ∂ ∂ ∂ ∂
= + + = + + = + ∂ ∂ ∂ ∂ ∂ ∂ 

      (26.а) 

* * * *13 231 2 1 2 1 2
11 11 12 3 22 12 22 3 12 12

1 2 33 1 2 33 2 1

, , ,
E Eu u u u u uE E q E E q G

x x E x x E x x
σ σ σ

 ∂ ∂ ∂ ∂ ∂ ∂
= + + = + + = + ∂ ∂ ∂ ∂ ∂ ∂ 

     

           (26.b) 

here * * *13 23 23
11 11 31 22 22 32 12 12 31

33 33 33

, ,
E E E

E E E E E E E E E
E E E

= − = − = − . 

Solution of the Equations (6), (11), (12) and (13), satisfying boundary conditions (24), is written in the form: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 2 2 2 2 1 2 3 3 1 2 1 4 1 1 2 2 5 2 1 2

1 6 1 1 2 2 7 2 1 2 8 3 1 2 9 3 1 2

, ,  , , , , , , , ,

, ,   , , , , , ,

С f x x C f x x r C f x x C f x x C f x x

u С f x x u С f x x W C f x x C f x x

ψ ψ β β

γ

= = = = =

= = = =
      (27) 

where ( ) ( ) ( )1 2 1 2 1 2
1 1 2 2 1 2 3 1 2

π π π π π π
, cos sin , , sin cos , , sin sin .

x x x x x xf x x f x x f x x
a b a b a b

           = = =           
           

 

Solution of the Equations (15), (20), (21) and (22), satisfying boundary conditions (24), has the form: 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 2 2 2 2 1 2 3 3 1 2 1 4 1 1 2 2 5 2 1 2

1 6 1 1 2 2 7 2 1 2 8 3 1 2 9 3 1 2

, ,   , , , , , , , ,

, ,    , , , , , .

С f x x С f x x r C f x x C f x x C f x x

u С f x x u С f x x W C f x x C f x x

ψ ψ β β

γ

= = = = =

= = = =

      

  

   

 

     (28) 

Substituting solution (27) into Equations (6), (11), (12) (13), we will obtain the system of linear algebraic eq-
uations relative to nine unknown constants 1 2 9, , ,C C C . In similar way, substituting solution (28) into Equa-
tions (15), (20), (21), (22), we will obtain one more system of linear algebraic equations relative to nine un-
known constants.  

Analysis for orthotropic square plate with elastic characteristics is conducted [1]: 
1 0 2 0 1 0 12 0 13 0 23 04.6 , 1.6 , 1.12 ; 0.56 , 0.43 , 0.33 ,E E E E E E G E G E G E= × = × = × = × = × = ×

 4
0 21 23 31where 10 MPa; 0.27, 0.3, 0.07.E ν ν ν= = = =  

Table 1 and Table 2 give dimensionless numerical results of calculations of displacements and stresses in 
upper and lower layers of the plate. Maximal values of displacements and stresses of the plate are reached in 
face surfaces of the pate and are determined by solutions of the first and the second problems.  

Table 3 and Table 4 give dimensionless numerical results of displacements and stresses in the middle surface. 
It should be noted that coefficients of the series with zero indices are displacements ( ) ( ) ( ) ( ) ( )1 0 2 0 0

0 1 0 2 0 3, ,B u B u A u= = =   
and kinematic functions ( ) ( )1 2

1 1 1, ,B B A , characterize rotary angle of normal vector and strain of transversal com-
pression of middle surface of the plate. 

Analysis has shown that the values of normal displacement 3u  vary considerably along the thickness of the 
plate. In [4] [8] it is shown that maximal values of stresses and displacements, obtained according to bimoment 
theory for isotropic plates with high accuracy agree with calculations of an exact solution [4]. 

 
Table 1. Values of displacements and stresses in the upper layer of the plate.                                         

H b  ( )
0 1 0E u Hq−  ( )

0 2 0E u Hq−  ( )
0 3 0E u Hq−  ( )

11 0qσ −  ( )
22 0qσ −  ( )

12 0qσ −  

1/3 

1/4 

1/5 

1/6 

1/10 

0.5282 

1.1970 

2.3131 

3.9885 

18.5117 

0.7210 

1.5193 

2.7671 

4.5727 

19.5965 

2.6566 

5.8987 

11.7869 

21.5969 

135.5503 

−2.9471 

−4.7690 

−7.1799 

−10.1601 

−27.6397 

−1.5908 

−2.2905 

−3.1620 

−4.2010 

−10.2253 

0.7326 

1.1947 

1.7875 

2.5103 

6.7043 

 
Table 2. Values of displacements and stresses in the lower layer of the plate.                                        

H b  ( )
0 1 0E u Hq+  ( )

0 2 0E u Hq+  ( )
0 3 0E u Hq+  ( )

11 0qσ +  ( )
22 0qσ +  ( )

12 0qσ +  

1/3 

1/4 

1/5 

1/6 

1/10 

−0.5119 

−1.2028 

−2.3388 

−4.0325 

−18.6193 

−0.7871 

−1.6414 

−2.9410 

−4.7958 

−20.0046 

2.2516 

5.4911 

11.3784 

21.1880 

135.1412 

2.5562 

4.4799 

6.9456 

9.9581 

27.4884 

1.3123 

2.0546 

2.9474 

4.0074 

10.0410 

−0.7618 

−1.2509 

−1.8578 

−2.5886 

−6.7951 

 
Table 3. Values of displacements and rotary angle of a normal in middle surface of the plate.                           

H b  ( )1
0 0 0E B Hq  ( )2

0 0 0E B Hq  0 1 0E A Hq  ( )1
0 1 0E B Hq  ( )2

0 1 0E B Hq  0 0 0E A Hq  

1/3 
1/4 
1/5 
1/6 
1/10 

−0.0296 
−0.0355 
−0.0409 
−0.0463 
−0.0693 

−0.0773 
−0.0970 
−0.1168 
−0.1370 
−0.2198 

−0.2054 
−0.2062 
−0.2061 
−0.2058 
−0.2051 

−0.2079 
−0.7391 
−1.7176 
−3.2571 

−17.2440 

−0.5186 
−1.2758 
−2.4808 
−4.2421 

−19.0810 

2.4322 
5.4460 
11.7303 
21.6553 
136.2752 
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Table 4. Values of stresses in middle surface of the plate.                                                        

H b  ( )0
13 0qσ  ( )0

23 0qσ  ( )0
33 0qσ  ( )0

12 0qσ  ( )0
11 0qσ  ( )0

22 0qσ  

1/3 
1/4 
1/5 
1/6 

1/10 

0.7033 
1.0019 
1.2986 
1.5921 
2.7469 

0.6492 
1.0019 
1.0357 
1.2274 
1.9995 

−0.4904 
−0.4965 
−0.4985 
−0.4992 
−0.4999 

−0.0627 
−0.0582 
−0.0555 
−0.0537 
−0.0509 

0.0089 
−0.0093 
−0.0210 
−0.0285 
−0.0410 

−0.0438 
−0.0552 
−0.0612 
−0.0647 
−0.0702 

5. Conclusion 
So on the basis of expansion method, a theory of plates is improved by consideration of bimoments. In the case 
of spatial deformation of the plate along its thickness, there nonlinear laws of displacements distribution occur, 
without any simplifying hypotheses. Consequently, existing specified theories of plates and shells, built with a 
number of simplifying hypotheses could not be used in development of methods of calculation of stresses and 
displacements of thick plates and shells under the effect of various types of external influences. Calculations of 
thick plates from anisotropic materials with low strength characteristics could not be made on the basis of clas-
sical or specified existing theory. In such cases it is advisable to conduct calculations based on rigorous metho-
dologies developed on the basis of the theory of plates and shells, which takes into account all the components 
of stress and strain tensor ( ), , , 1,3ij ij i jσ ε = . 

References 
[1] Ambartsumyan, S.A. (1987) Theory of Anisotropic Plates. Nauka, Moscow, 360 p.  
[2] Galimov, Sh.K. (1976) Specified Theories of Design of Rectangular Theory of Orthotropic Plate under Transversal 

Load. Studies on the Theory of Plates and Shells, Collection of Papers, Issue ХII, Kazan, 78-84.  
[3] Vlasov, V.Z. (1958) Thin-Walled Spatial System. Gosstroyizdat, Moscow, 503 p. 
[4] Usarov, M.K. (2011) Problem of Bending of Thick Orthotropic Plate in Three-Dimensional Statement. Engineering- 

Construction Journal, 4, 40-47. 
[5] Usarov, M.K. (2014) Theory of Thick Plates with Consideration of Bimoments. Scientific-Technical Journal of FerPI, 

3, 44-50. 
[6] Usarov, M.K. (2014) Analysis of Thick Orthotropic Plates on the Basis of Bimoment Theory. Uzbek Journal of Prob-

lems in Mechanics, 2, 41-44. 
[7] Usarov, M.K. (2014) Analysis of Orthotropic Plates on the Basis of Bimoment Theory. Uzbek Journal of Problems in 

Mechanics, 3-4, 37-41. 
[8] Usarov, M.K. (2014) Bimoment Theory of Bending and Vibrations of Thick Orthotropic Plates. Reports of National 

University of Uzbekistan, 2/1, 127-132. 


	On Solution of the Problem of Bending of Orthotropic Plates on the Basis of Bimoment Theory
	Abstract
	Keywords
	1. Introduction
	2. Statement of the Problem
	3. Method of Solution
	4. Solution of Tests Problem
	5. Conclusion
	References

