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Abstract 
Energy consumption reduction efforts in the residential buildings sector represent socio-eco- 
nomical, technological and environmental preoccupations which justify advanced scientific re-
search. These lead to use inverse models to describe thermal behavior and to evaluate the energy 
consumption of buildings. Their principal goal is to provide supporting evidence of enhanced 
energy performances and predictions. More specifically, research questions are related to build-
ing thermal modeling which is the most appropriate in a smart grid context. In this context, the 
models are reviewed according to three categories. The first category is based on physical and ba-
sic principle modeling (white-box). The second offers a much simpler structure which is the statis-
tical models (black-box). The black-box is used for prediction of energy consumption and heating/ 
cooling demands. Finally, the third category is a hybrid method (grey-box), which uses both physical 
and statistical modeling techniques. In this paper, we propose a detailed review and simulation of 
the main thermal building models. Our comparison and simulation results demonstrate that the 
grey-box is the most effective model for management of buildings energy consumption. 
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1. Introduction 
Energy policies in the Nordic countries, such as Canada, stipulate that 50% of the energy consumed by 2025 
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should come from renewable and CO2-free energy sources [1]. By 2050 the aim is to be independent of fossil 
fuels. This transition of the energy systems towards renewable sources is needed to reduce CO2 emissions and 
consequently reduce the speed of global warming. Moreover, this transition is a contributing factor to protect 
Nordic economies from the consequences of sharply rising prices of fossil fuels which can be attributed to an 
increasing demand and depletion of these non-renewable resources [1]. Transition to renewable energy sources 
are not only preoccupations for Nordic countries. Indeed, all industrialized countries [1], including China and 
the United States, are concerned about these. For example, in the United States alone the total energy consump-
tion increased from 78.3 quads in 1980 to over 100 quads in 2008. Of this amount, buildings are responsible for 
more consumption than transportation or industry sectors, accounting for nearly 40% [2] of the total non-re- 
newable energy consumption in the U.S. The building sector is also responsible for almost 40% of greenhouse 
gas emissions and 70% of electricity use in this particular country.   

Buildings energy consumption is imputable mainly to heating/cooling, lighting, and electrical appliances. In 
Nordic countries, heat pumps, water based heating systems, water heater and electric baseboard heaters are of 
the main loads for heating [1]. As a result of the efforts towards the renewable energy transition, the U.S. and 
other countries are committed to invest into smart grid technologies to minimize the overall energy cost of elec-
tricity. Smart grid can reduce energy consumption, increase the efficiency of the electricity network, and man-
age electricity generation from renewable technologies. In fact, as illustrated in Figure 1, China is in the lead 
position for renewable energy investments, with about $7.3 billion stimulus spending in 2010. More specifically, 
China developed a large, long-term stimulus plan in water systems, rural infrastructures and power grids, in-
cluding a substantial investment in smart grid technologies [2]. Several Nordic countries, such as Canada, while 
having different priorities for defining their clean energy strategies, are having an important role in the imple-
mentation of smart grid technologies [3]. In Canada, the various government electricity ventures are to invest 
$11 billion in total towards innovative infrastructure replacement for the next 20 years. For this effort, there are 
also The Canadian Smart Microgrid Research Network and the Smart Grid Standards Task Force [2], which is 
contributing to providing leadership through their participation in new initiatives [2]. Canada has a leadership 
role to play in energy efficient building in North American, as well as around the world, for smart grid imple-
mentation. In fact, this leadership is already evidenced by the innovative culture and the technical expertise 
available in many areas across the country [2]. However, the ways to make use of smart grid technologies to 
improve building energy efficiency is still an open issue. For example, energy efficiency of buildings, in thermal 
and electric aspects, can be leveraged to improve the smart grid efficiency and reliability. 

The study of buildings and grid interactions in the new smart grid scenario is then necessary. This study starts 
with a thermal and electric modeling of buildings. Its goal is to provide a review of the subject of energy effi-  

 

 
Figure 1. Ranking of top 10 countries receiving smart grid federal stimulus investments in 
2010. (From Zpryme Research and Consulting, 2010) [3].                                     
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ciency and buildings modeling in the context of smart grid. In Section 1, the state of the art is presented. Section 
2 gives a review of the most important approaches used in thermal modeling of buildings. Section 3 provides a 
condensed comparison of the white, black and grey-boxes modeling approaches. Section 4 is devoted to summa-
rizing the importance of the thermal modeling in the implementation of prediction techniques of energy con-
sumption taking into account weather predictions to increase energy efficiency of buildings. Section 5 gives an 
example of simulation of black and grey-boxes approaches. Finally, Section 6 presents concluding remarks and 
identifies a number of research and policy needs. 

2. Approaches of Thermal Modeling of Buildings 
In recent years, a variety of works in the area of thermal modeling of buildings has been done and can be found 
in the literature [4]-[6]. This review focuses on the model structure, more specifically the analysis of imposed 
information flow path between the thermal inputs and the thermal outputs of buildings. These thermal models 
are used to identify energy savings or efficiency of buildings [7]. 

As such, many models have been made to improve the energy efficiency in buildings. Some aim for residen-
tial buildings, some for commercial buildings, and some for both [8]. Not all of these models are cost-effective 
for all cases. Indeed, it is important to analyze the different modeling approaches to ensure increased efficiency 
of buildings’ system, because space and water heating along with air conditioning are the main residential loads 
[9]. Those three are the major energy consumption devices [8]. Consistently to these main residential loads, a 
variety of thermal models have been proposed [10]-[12].  

Generally, the proposed models are characterized by two thermal behaviors. The first one is a static behavior, 
while the second one is dynamic. The static behavior is applied to simplify the thermal model and to overcome 
the limitations of computing resources. The dynamic behavior is interested in understanding the phenomenon of 
thermal exchange for simulation purposes. 

2.1. Modeling Approaches 
The static behavior approach is used for steady state conditions of buildings, when all the internal and external 
inputs are controllable. The dynamic behavior approach is related to the transition of internal and external inputs 
and outputs of the building system [13]. Thus, a substantial number of models of the static and dynamic ap-
proaches have been used in the presentation of the thermal behavior of buildings. It was proposed to classify the 
sets of these models into three categories, the white, the black and the grey boxes models as illustrated in Figure 
2. Depending on the static and dynamic approaches, some of the models have been very successful in describing 
the thermal behavior of large residential buildings. Others have been used to estimate the thermal-energy de-
mands or in the prediction of heat consumption and reducing energy consumption. However, in the context of 
energy efficiency of buildings and smart grid implementation, our study focuses only on dynamic models. 
Therefore, it is using the dynamic behavior approach only that the black, white and grey boxes models are de-
scribed in the present study. 
 

 
Figure 2. Black box, white box and grey box behavior [14] [15].                    
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In fact, considerable attention has been placed on the black, white and grey models in dynamic approach 
which include the thermal networks, modal analysis, differential equations, autoregressive moving average 
model (ARMA), Fourier series [11]-[13] [16] [17], and the transfer functions [18]. While other studies use these 
models for the prediction of heat consumption, few comparisons exist for their robustness to new control situa-
tions [9] [19]-[21], or their applications to smart grid building types [12]. Comparisons between approaches are 
important since, at some stages in the future of smart grid and buildings efficiency, these may become unattrac-
tive for energy management of peak demand at the residential level. This will likely be the case for scheduled of 
household appliances or other situations for which power consumption levels within predefined operation dura-
tion are the main decision variables [22]. Also, high occupancy levels and great number of technical devices, 
such as computers and printers, cause high internal loads [13] [23]. Therefore, for a successful modeling of a 
building, it is critical to consider how much we know about these variables. 

2.2. Discussion on the Physical and Statistical Models 
In practice, residential buildings are more variable in occupancy and internal heat gains due to appliances and all 
other electrical driven equipment. Appliances driven loads and gains are divided into two classes. The first one 
corresponds to the responsive loads which indicate that the customer is able to modify the behavior of the ap-
pliance due to a price signal. This class includes lights, plug loads, clothes washers, clothes dryers, dishwashers, 
cooking ranges, and microwaves. The second class is the unresponsive loads appliances, which indicate that the 
customer is typically not able to modify the behavior without investment in additional technologies. This class 
includes refrigerator and freezer loads [24]. In regards to electric heaters, with a responsive thermostat which 
controls the output of the heater effectively and maintains a more consistent room temperature, the electric hea-
ters models without a thermostat require closer monitoring by the customer, and therefore are associated with 
unresponsive loads [8]. 

Considering thermal phenomena, heat transmission, heat storage, fluid flow and heat flux represent the fun-
damental thermal properties of building elements. These phenomena are highly time-sensitive [25]. Conse-
quently, the question of which model structure is required for thermal description of residential buildings with 
the presence of all phenomena cited above arises. Also, the question about the deterministic and stochastic pa-
rameters also arises to perform the system identification. Finally, the last question is about which models should 
be used in an energy consumption prediction framework. As a rule of thumb, if enough building knowledge is 
available to describe the set of heat transmission, heat storage and heat flux, and the corresponding parameters 
with physical significance, then these can be described by fundamental physical principles. In this case, the an-
swer to the question regarding model structure and the parameters are answered by the “white-box” models, 
which will best describe all the phenomena and predict heat consumption efficiently [26]. Indeed, the white-box 
models can be constructed from the prior information without the need of any observation. However, if the 
phenomena of residential building are too complex to be described by physical fundamental principles, but can 
be observed or measured, then the “black-box” models are appropriate. These models are characterized by an 
input-output behavior without any detailed information about the structure. Finally, if the set of phenomena of 
residential building are both directly observable and have physical meaning, the “grey-box” can be applied to 
estimate the thermal-energy demands and predict the heat consumption. 

3. Comparative Study of White, Black and Grey Box Modeling Approaches 
3.1. White-Box Model 
In the case of physical model with parameters of physical significance, we speak of a white-box (physical and 
basic principle modeling) approach, which require a significant amount of building knowledge [14] [27]. 
White-box models can be defined by the equations in Table 1. These models they are based on:  
• Static and dynamic models;  
• Linear, nonlinear models;  
• Differentiable, continuous, non-continuous models. 

In static models the output of system does not depend on the time. While in dynamic models, the output is 
time varying due to the dynamic heat balance time evolution. These dynamic white-box models are typically 
represented by differential equations. However, their mathematical representation also depends on the relation  
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Table 1. Examples of different equation types of white-box model [28].                                                     

Type Example Application 

Static linear equations 
( )a sq L T T A I ε= − − +  

( )21 2 1 q h A T T= ⋅ −  
Transmission through component 

q : Power (W); L: Coefficient of static losses (W/˚C); 2 1T T− : Difference between indoor and outdoor temperature (˚C); 

sA : Equivalent surface (m2); I : Solar energy received by a vertical wall (W/m2), ε : Depends by the state of variables measured at the 
beginning and end of the period observational (W). 

21q : Heat transfer coefficient (W) 2 1T T− : Difference between the boundary and ambient temperature (˚C); 
h: Convective heat transfer coefficient (W/m2∙˚C) and A: heat transfer area of the surface (m2). 

Static nonlinear equations ( )4 4
21 2 1q A T Tε σ= ⋅ ⋅ ⋅ −  Building simulation radiation 

exchange (walls and ceilings) 

21q : Emitted heat transfer rate (W); ε : Surface emissivity; σ : Stefan-Boltzmann constant ( 8 2 45.669 10 m K−× ) A: Radiation surface. 

Dynamic linear equation 
Ordinary differential  

equation 

( )d
d a

TC U T T
t

⋅ = ⋅ −  

Heat storage 

Passive/active 
Energy storage 

C : Thermal capacity (J/˚C) 

Dynamic linear equation 
Partial linear 

( ) ( )
2

2, ,u x t a u x t
t t
∂ ∂

=
∂ ∂

 

Heat conduction equation 
Dynamic heat flux 

( ),u x t : Temperature at position x and time (t) and a: Thermal conductivity (W m−1∙˚C) 

 
between the parameters. These relations can be ordinary, partial, linear and non-linear differential equation, we 
propose to sum up these mathematical representations in Table 1. 

The complexity of white-box modeling depends mainly on the chosen precision`s levels of the known phe-
nomena associated with the building system to be modeled [28]. White-box models can be usually even the 
classical error calculation methods which are applied to determine predictive accuracy of the models. That is, 
even if the parameters of white-box models have physical significance (e.g. thermal conductivities of certain 
materials), and fundamental physical principles are used, there are always errors associated with random va-
riables that are not represented in the known parameters (e.g. window openings and air exchange rates in natural 
ventilation) [28]. When calibrating white-box models, it is useful to make sense to adapt the less precisely 
known parameters (i.e. heat transmission, heat storage and heat flux), where usually plausible constraints on 
these parameters are determined. 

If the model cannot be calibrated, this suggests that the model structure has to be questioned. In the literature, 
it is suggested that a too high number of parameters can be a significant source of error [29] [30]. 

Black-box models are empirical models (statistical) without physically significant parameters. That is, con-
trary to the white-box, when little is known about the inner workings of the building system. This means that 
black-box models are derived the inputs-outputs thermal behavior. This case is black-box approach [14] [31]. 
Their internal structure of black-box model does not reflect the structure of the building system phenomena. 
Black-box models focus on finding the relationships between input and output variables, independently of the 
building system phenomena or random variables, which are affecting the predictive efficiency of the white-box 
approach. 

3.2. Black-Box Model 
In the black-box, the parameters are generally adjusted automatically [32]. This automatic adjustment of calibra-
tion of black-box parameters provides the greatest benefit over white-box models. However, a disadvantage is 
their implicit relationship with physical fundamental principles. Indeed, black-box model identification is found 
to be inconsistent with physical reality when applied under hard conditions (little building system data) [33]. 
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Therefore, black-box models are mainly used for error detection, but not for the optimization. Their advantage is 
the rapid and automated identification of outputs of thermal energy building consumption. With respect to the 
model internal structure of black-box models it can be static and dynamic, linear and nonlinear models, just as 
the white-box models. The structure depends on the relationships between the input and output data. Depending 
on these relationships, various black-box methods for estimating the parameters (calibration) are available. Ta-
ble 2 gives an overview of the different approaches. 

In thermal modeling of buildings, it is reasonable to combine the relative strengths of black-box coming from 
the statistical with the white-box strengths based on physical interpretation [31] [33] in order to obtain an a hy-
brid model. In that sense, the standard “grey-box” approach is based on both, a statistical method and physical 
properties that meets the physical fundamental principles. 

3.3. Grey-Box Model 
Grey-box models are therefore mixed or transitional forms of white-box and black-box models. There are in the 
literature several definitions; the following are the most frequently encountered: 
• Definition 1 (type of parameters)  

Grey-box parameters are both empirical and have a physical significance [29].  
• Definition 2 (determination of the parameters) 

Grey-box models are characterized by the fact that all their parameters or a part of them are determined on the 
basis of measured data of real system [6] [30]. 

Definition 2 does not define any kind of model, but rather the manner of determining the parameters of a 
model. It should be mentioned that in the literature, often the term Hybrid model emerges. Independently of the 
terms or definition used, grey or hybrid models, this approach cannot inform on the particular composition of 
various phenomena parameters from the white or black models. That is, we just know that there is a mixture of 
both models without knowing which one dominates in the combination of white-box and black-box models [6] 
[30],. This combination is automatically done, depending on the problem and the choice of basic functions for 
example (linear, polynomial or harmonic functions) adapted to the simulation results. Grey box models can be 
developed for the individual components or for a larger complex system. Table 3 provides an overview of the 
most important properties regarding the three different modeling approaches (white-box, grey-box and black- 
box) discussed above including calibration, and application. 

 
Table 2. Overview on black-box models [27].                                                                        

Type of model 
            Model structure                      Parameter estimation    Example 

Static 

Linearly 
Linear function  

 
Linear regression 

(Least Squares method) Energy signature of weekly values 

Nonlinear 
Polynomials 

 
Any nonlinear function 

Linear regression 
(Least Squares Method) 

Iterative process, 
Levenberg Marquardt 

Pump curve 

 Dynamic 

Linearly 
Transfer functions  

models (ARMA, ARMAX, etc.) 

Linear regression 
(least square method), 
an iterative procedure 

Heat flow through a plane wall 

Nonlinear 

Neural Networks  
(sigmoid, wavelet, radial basis 

networks) 

Damped Gauss-Newton 
backpropagation Arbitrary non-linear systems 

Polynomials (Wiener 
/Hammerstein model,  

 Volterra model) 

Linear regression 
(least squares method) 

Linear system with static 
nonlinearities at the input or output 

(control element with saturation 
behavior) 
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Table 3. Summary of the advantages and disadvantages of different types of models [28] [31].                                  

 White-Box Grey-Box Black-Box 

Internal structure of the model + 0 − 

Number of parameters Source of error − 0 + 

Formulation of the model + − + 0 + 

Processing speed + 0 + 0 + 

Required training data + 0 − − 

Calibration effort + − + − + 

Extrapolation + 0 − 

Suitable for optimization + 0 − 

Parameters physical meaning + + − − 

Formulation system equations + − + 0 + 

(+) Advantages 
(−) Drawbacks 
(0) Not available 

   

 
As illustrated in Table 3, white-box models have good analysis skills, but, they require an increased effort in 

the calibration of parameters. Also, white-box models with a simple structure model have possibly lower predic-
tion accuracy. White box models are initially very useful for the understanding of physical fundamental system. 
On the other hand, black-box models are well suited to existing patterns (e.g. to identify quickly the consump-
tion profiles for building) [28]. 

Grey-box modeling can be useful to understand the parameters which can lead to significant errors in predict-
ing units’ consumption [34]. They are particularly useful in the following cases. First, when there is a lack of 
detailed information building phenomena and the thermal mass, e.g., walls, floor, ceiling, room air, etc. This in-
formation affects the thermal dynamics of the building [22]. Secondly, when there is uncertainty of the end 
usage and behavior of the occupants. Finally, when there is limited capacity of the means of calculation and ex-
perimental building [24]. For all of these cases, grey-box modeling can increase the optimality of the energy 
management of other loads, such as HVAC and water heating. In fact, such modeling can smooth the load factor 
during peak hours, enhance reliability and efficiency in power networks and reduce operational costs [35]. 

The next section focuses on the link between the grey-box models and the model predictive control of build-
ing systems. We will briefly describe the need of a structural model based on semi-physical laws and the basic 
ideas lying behind the prediction method in building to improve performance buildings and reduce the energy 
consumption of heating and cooling systems [36]. 

4. Finding a Thermal Model for Energy Prediction 
The key to the sustainability of the energy efficiency of buildings [37] is the analogy between the thermal mod-
els and the prediction methods of energy consumption. This analogy is the most important goals of smart grid 
technologies [38]. However, it is important to analyze the relation between the whole of phenomena of heat 
transmission, heat storage, and the variation of the demand of cooling and heating of residential building to pre-
dict the energy consumption. Also, black-box, white-box or grey-box thermal models are trained using these re-
lations [39]. In smart grid context, the application of accurate and complete thermal model, conduct to increas-
ing the efficiency of HVAC systems by natural ventilation. Indeed, reducing the heat consumption returns to the 
ability of the model to describe the different internal and external phenomena of building. For this point, it must 
have a good thermal behavior representation of building through the fundamental physical concepts by the sta-
tistical models or rather a mixture of the both. 

There are several completely different approaches to system identification (see e.g. [40]-[42]). Some of them 
exploit both the principle physical and statistical data of building system. For example, grey-box [43] [44] (some 
prior information such as system structure is known in advance) or black-box identification [45]. Dynamics be-
havior of building is argued that the residence includes three intrinsic factors on its structure. First, when the 



F. Amara et al. 
 

 
102 

group includes the composition, the surface to be heated, etc. Secondly, when the group includes the phenome-
non related to the weather/climate data, such as solar radiation I (W/m²), wind speed (m/s) and the outdoor tem-
perature out 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜 (˚C) [23]. Finally, when the group represents the interactions factors with the building, the oc-
cupant profile, the power Q (W) demanded by HVAC, and water heating systems [13]. 

We addressed the question: how to describe the response of the indoor temperature in the presence of the dif-
ferent internal phenomena such as the heat transmission, heat storage, and the external phenomena of consump-
tion able to improve the energy performance of a building, in order solar gains, wind speed and outdoor temper-
ature? [27]. In parallel, define the predictive method of energy to improve the energy performance of a building, 
conserve energy, reduce environmental impact, control the use of energy over time, move energy consumption 
to off-peak periods [46]. One of the basic tenets to minimize energy consumption is the understanding of build-
ings thermal phenomena is the usage patterns (profiles), and local environment. This information is frequently 
not known a priori [47]. 

Generally, the need of a complete and detailed heat balance equation should incorporate the effects of differ-
ent sources: the weather (temperature, humidity, solar radiation and wind speed) [48], and the calculation of the 
heat flow within a building such as internal gains from waste heat generated by loads. These sources and sinks 
of heat constitute the total heat energy exchange in the house as illustrated in Figure 3. Although, the flow of 
heat is divided between the air and the mass of the house (i.e., walls and furniture), a portion of the incident so-
lar energy through a window will heat the interior air of the house, while the remaining incident energy will be 
absorbed by the walls, floors, and furniture. 

As it was discussed above, it is easier in this case to describe these phenomena by grey-box modeling ap-
proach [4]. This approach is based on semi-physical laws analog circuit model such as the equivalent electric 
circuit (RC). The (RC) model can be presented as form as mathematical expressions (algebraic, differential equ-
ations) in which can distinguish between deterministic and stochastic parameters. These parameters cannot be 
directly observable (indirect measurement) and estimated [26] [50] depending on the a-priori and a posterior in-
formation of building system. 

Describing the transit thermal behavior by grey-box and capture the evolution of the indoor temperature of 
building is presented in section V. Thus, it is convenient to introduce the concept of thermal capacity of building 
denoted by rC , in the electric circuit analog model (RC) that is used to describe heat flow and heat transfer 
phenomena as illustrated in Figure 4. Where, rC  equal to the air mass ( )m  in the room times the specific 
heat capacity of air ( )pc  which change with timeas shown in the following Equations (1) and (2): 

 

 
Figure 3. Simplified diagram of sources and sinks of heat in a house [49]. 
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Figure 4. The RC model of residences heating/cooling system [52] [53]. 

 

r paC m c= ⋅                                          (1) 

With 

am Vρ= ⋅                                          (2) 

And aρ  is the density of air at the room temperature. V is the volume of the room [2] [50]. The heat transfer 
properties in this case are represented by equivalent electrical components with associated parameters for mod-
eling the thermostatically controlled HVAC system. The thermal model building proposed in [51] assumes that 
only envelope characteristics, solar gain through windows and internal gain contribute to the heating, ventilation, 
and air conditioning (HVAC) load.: 
where: 

AC : air heat capacity (Btu/˚F or joules/˚C); 
MC : mass (of the building and its content) heat capacity (Btu/˚F or joules/˚C); 
AU : the gain/heat loss coefficient (Btu/˚F.hr or W/˚C) to the ambient; 
MH : the gain/heat loss coefficient (Btu/˚F.hr or W/˚C) between air and mass; 

0T : outdoor temperature (˚F or ˚C); 
AT : air temperature inside the house (˚F or ˚C); 
MT : mass temperature inside the house (˚F or ˚C); 
AQ : heat added to the indoor air; 
MQ : heat added to the building mass. 

Heat balance equation solved of the (RC) model for the air temperature node ( )AT  is given by the Equation 
(3) [53] 

( ) ( )0
d

0
d

A
A M A M A A A

TC H T T U T T Q
t
− − − − − =                          (3) 

And the heat balance for the mass temperature node ( )MT  is given by the Equation (4) [53] 

( )d
0

d
M

M M M A M
TC H T T Q
t
− − − =                               (4) 

Depending to the application, to the complexity of modeling and to the set of phenomena of residential build-
ing to described. The (RC) model parameters can be used to represent all homes in the population for simplicity. 
Or if there is a need, multiple RC models with different thermal parameters can be used. In addition to changing 
input parameters while simulating a population of homes, the (RC) model can also be changed to accurately 
represent a given building stock [51]. 

Hence, the prediction models are needed to enable optimal control of buildings phenomena [54] and also, to 
predict dynamic cooling and heating requirements for the building. In particular the thermostat controllable 
loads such as electric water heater, heat-ventilation air conditioning (HVAC) system which are the three impor-
tant loads consuming major portion of electric energy [38] [52] [53]. One of the crucial contributors to the qual-
ity of the prediction is a well identified model which will be later used for control in prediction algorithm [45]. 

In the literature grey-box thermal models using MPC [55], ARX, ARMAX , OE and others techniques are 
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well established among the practitioners as well as theoreticians [45]. It was found that grey-box model is used 
to obtain a model of building in [40]. With this model, the resistance-capacitance (RC) networks and the predic-
tion model MPC [55] are often used by the leading projects dealing with predictive control of buildings. The 
grey-box modeling is very common and useful in modeling of low complexity buildings with few inputs and 
states. It may be even a preferable way of modeling for low complex buildings as it retains the physical proper-
ties and structure of the modeled system [45].  

On the other hand, in the case when multiple inputs multiple outputs (MIMO) systems are considered [45], 
but when a large building with tens or even hundreds inputs/states is considered, the grey-box model is not a vi-
able. However, the anymore and statistically-based approaches such as Subspace Methods (4SID) [57] which 
belongs to the black-box identification algorithms and that provides a model in a state space form, thus, it be-
comes a very useful tool [57]. 

They have the ability to handle large amount of data. This was demonstrated for instance in the identification 
of a thermodynamic model of a small residential building that was equipped with tens of wireless sensors col-
lecting temperatures, humidity and solar radiation [58]. But the main disadvantage of 4SID is that it does not 
preserve a physical structure during modeling phase, which causes deteriorating predictions for a larger horizon 
[45]. 

5. Example of Grey Box Approach: Equivalent Electric Circuit 
5.1. Building under Study 
In order to compare the approaches, we have assumed that the building under study can be estimated as having a 
single zone. The equivalent (RC) electric circuit of the global thermal zone can be represented as is shown in 
Figure 5. An additional assumption considers the electric heater at (10,000 Watts) for one single floor of the 
building. The objective is to develop black, white and gray boxes approaches for the modeled building in Matlab 
Simulink software. Also, to analyze the behavior of the indoor temperature simulate when recursive least square 
(RLS) method and artificial neural networks are employed. 

The physical model used to reproduce the behavior of the indoor temperature is based on the fundamental 
laws of thermodynamics, heat transfer, and thermo-physical variables. For this example, the thermal mass, the 
thermal resistance, and the building dimensions are presented in Table 4. information corresponds to a residen-
tial building (isolated home) which meets the Quebec Construction Code specifications [59], with taken into 
account all segments of the Canadian construction community and building located in a municipality whose 
number of degree-days below 18˚C is less than 6000.  

Physical approaches are mostly applicable to contexts in which building design data are available. However, 
they are handier in scopes where interpretation of physical phenomena is desired [60]. The white-box model in 
this example, relied on quite detailed descriptions of modeled building, notably entailing geometry, material 
properties, and energy systems features. But this information can be considered to be easily extractable from de-
sign data in the case of a new building. This is less than obvious for existing building presented in our example, 
while it is more tedious to build or simulate and computation times are higher. 

 

 
Figure 5. Equivalent thermal model (RC) of first-order used 
in the simulation.                                              
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Table 4. Modeled building parameters.                                                                                

Building dimensions (Pi) (m) 

Height 8 2.44 

Length 38 11.58 

Width 29 8.84 

Thermal building parameters 
rC  (J/˚C) eqR  (˚C/J/s) 

295585.31 0.0180 

5.2. Simulation of Grey and Black-Boxes Models 
We can develop the grey box model from the combination of physical and statistical models. For the black-box 
model which is based on a function deduced only, is implemented from samples of training data describing the 
behavior of the modeled building. 

5.2.1. Grey-Box Model 
Accordingly, in grey-box model to capture the evolution of indoor temperature of modeled building, we have 
supposed that, the envelope of the building is modeled by the set of ( ),r eqC R , and the resistance eqR  (˚C/J/s) 
is a parallel of four resistors of walls, doors, windows, and roof of building as shown in the following Equation 
(5): 

1 1 1 1 1

eq wa d wi rR R R R R
= + + +                                    (5) 

Here, the modeled building consists of the known and unknown components. Furthermore, the corresponding 
model parameters such as, the thermal capacity ( )rC , and equivalent thermal resistance ( )eqR  have a physical 
meaning compared to the black-box modeling approach. But they can be also observables or statistical parame-
ters derived from physical models. In this example, the modeled building includes several blocks in one subsys-
tem. The heating, the set-point temperatures variations between 19˚C and 21˚C and the outdoor temperature, 
over a period of 24 hours. We use estimation for the indoor temperature and the parameters of the thermal model 
online from the measured data taken from the local weather station which are available from SIMEB (Hy-
dro-Québec). Website automatically offers real hourly weather data files for more than 50 areas in Québec 
(Canada) from January, 1995 until now [61]. 

We describe in the Figure 6, the inputs of the (RC) model to get the measured data correspond to the indoor  

temperature inT . In this we note that ind
d
T
t

 
 
 

 is the variation of the indoor temperature, characterized by the  

difference between the variation of heat flow from electric heater and heat loss, multiplied by the inverse of rC . 

( )in
radiator losses

d 1
d r

T q q
t C
= −                                     (6) 

And the heat losses equivalent to the difference between the indoor and the outdoor temperature, divided by 
the equivalent thermal resistance of the building. 

in out
losses

eq

T T
q

R
−

=                                       (7) 

1) Finding the parameters of RC model: RLS 
The (RC) model parameters ( )or  r eqC R  can be determined and estimated on line by RLS adaptation algo-

rithm. In this method it is assumed that measurement indoor temperature to be estimated is obtained from the 
model in Figure 6. We have also, introduced a jump of [−25˚C to 8˚C] on the outside temperature, to test the 
extremes cases and to describe the behavior of the indoor temperature estimated when RLS and Neural Net-
works are used. 

Now we precede the discretization of the variation of the indoor temperature associated with Equation (7): 
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Figure 6. Building thermal model implemented using MATLAB-Simulink 
software.                                                              

 

( ) ( ) ( )( ) ( )in
out in radiator

d 1
d

eq

r r

RT t
T t T t q t

t C C
= − +                           (8) 

The resulting differential equation can be approximated by the Equation (9) 

( ) ( ) ( ) ( ) ( )in in out in radiator1 eq eq s
s s

r r r

R R t
T k T k t T k t T k q k

C C C
− − − +                     (9) 

where, st  is the sampling time. We replace s

r

t
C

 
 
 

 by ( )τ , the Equation (9) becomes: 

( ) ( ) ( ) ( )in in out radiator
1 1

1 eq
eq

T k T k R T k q k
R

τ τ
τ

= − + +
+

                      (10) 

Following in the RLS method, the error considered the total error from the measurement and estimated indoor 
temperature is calculated using the formula of Equation (11): 

( ) ( )( )2

in in
1

ˆ
N

i i
i

E T T
=

= −∑                                     (11) 

where N , is the number of measuring samples and inT̂  is the estimated indoor temperature. We now focus our 
attention on sets of the parameters rC  and eqR  of the thermal model, which represents the weight adaptation 
vector taken at discrete intervals of time of Equation (10): 

( ) ( ) ( ) T
1 2,w k ww k k=                                      (12) 

where 

( )1 2
1    and    

1 eq

w
R

kw w= = =
+

τ
τ

                              (13) 

To adjust the weights of the adaptive linear combiner in the purpose adaptive algorithm RLS a general 
expression for mean square error as a function of the weight values has been given by Equation (11).  

The input of RLS is given by the vector, ( )x k : 

( ) ( ) ( ) ( )in radiator out1x k T k q k T k= −                                (14) 

Which include the previous indoor temperature of moment ( )1k − , the heat flow from radiator at moment 
( )k  and the meteorological data of the hourly outdoor temperature at moment ( )k  obtained in January 2013 
[61]. The weight adjustment is performed during the on line training process of RLS. In this algorithm the filter 
weight vector is updated using Equation (15): 

( ) ( ) ( ) ( )1w k w k K k e k= − +                                 (15) 

( )e k  is the error between the estimated and measured indoor temperature of modeled building, and the expres-
sion of ( )K  is given as following: 



F. Amara et al. 
 

 
107 

( ) ( )
( ) ( ) ( )

1

1

1

1 1

P k x k
K

x k P k x k

−

−

−
=

′+ −

λ

λ
                               (16) 

where λ  is the forgetting factor between 0 and 1. By using Equations (14) and (15) can be writing as: 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
1

1

1
1

1 1

P k x k
w k w k e k

x k P k x k

−

−

 − = − +
 ′+ − 

λ

λ
                      (17) 

The adaptation of the matrix P  is given as following: 

( ) ( ) ( ) ( ) ( )1 11 1P k P k K k x k P k− − ′= − − −λ λ                          (18) 

where ( ) 10P Iδ −= , δ  is a small positive constant, I  is the identity matrix and x  is given by the Equation 
(14). 

Finally, the filter output is calculated using the filter weights of previous iteration and the current input vector, 
we obtain the estimated indoor temperature of building as Equation (19): 

( ) ( ) ( )inT̂ k w k x k ′=                                     (19) 

5.2.2. Black-Box Model 
In contrast, the fact that we do not require any physical information, the black-box models compared to the 
grey-box methods, stay totally based on measures or empirical parameters. However, one among of different 
black-box tools employed to estimate and describe the indoor temperature of modeled building. We propose to 
use RPROP stand for “Resilient backpropagation” for artificial neural networks. The Rprop was used to perform 
a local adaptation of the weight-updates according to the behavior of the total squared error. To get the behavior 
of indoor temperature of building, we have based on [62] [63] in all our simulation of black-box and to under-
stand the basic principle of Rprop, as described below. 

1) Description of Rprop 
Rprop is used to eliminate the harmful influence of the size of the partial derivative on the weight step. As a 

consequence, only the sign of the derivative is considered to indicate the direction of the weight update [63]. 
This leads to an efficient and transparent adaptation process [62]. To achieve this, we introduce for each weight 
its individual update-value ijw , which solely determines the size of the weight-update. This adaptive up-
date-value evolves during the learning process based on its local sight on the total squared error E, according to 
the following learning rule: 

( )

( )
( ) ( )

( )
( ) ( )

( )

1
1

1
1

1

, if  0;

, if  0;

, else.

t t
t

ij
ij ij

t t
t t

ij ij
ij ij

t
ij

E Ew
w w

E Ew w
w w

w

−
−+

−
−−

−

 ∂ ∂
>

∂ ∂


∂ ∂= <
∂ ∂





η

η                              (20) 

where 0 1η η− +< < <  
Every time the partial derivative of the corresponding weight ijw  changes its sign. This indicates that the last 

update was too big and the algorithm has jumped over a local minimum. The update-value ijw  is decreased by 
the factor η− . The choice of decrease factor η−  and increase factor η+  0.5 and 1.2, respectively. To allow a 
fair comparison between the several learning procedures of artificial neural network, a wide variety of parameter 
values was tested for this algorithm. It use more than one parameter in which there is a lot of expense neglected 
that arise when searching for the other parameter values. 

5.2.3. Simulation Results 
In order to select a “best” model based on the test comparison by means of two suitable estimators of the beha-
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vior of the indoor temperature of modeled building. First, when grey-box is tested and RLS method is employed 
for the estimation of parameters. Secondly, when black-box is tested and the artificial neural networks are used 
for estimation of indoor temperature. 

The results of simulations illustrated in Figure 7, showing the capabilities of grey-box modeling approach to 
capture the behavior of the indoor temperature of building obtained by means of RLS algorithm. The test, gives 
good tracking of the indoor temperature measured of the modeled building. The estimated parameters rC  and 

eqR  observed in the graphic of the Figure 8, shows the produces significant convergence in the estimation of 
parameters compared with the original parameters of modeled building. Taking into account the speed of RLS 
technique algorithm which gives good tracking of estimation. 

In on the other side in the Figure 9, show the indoor temperature of building obtained by black-box by using 
artificial neural network. It is clearly seen that for the case of black-box modeling approach the behavior of in-
door temperature deviates from its true indoor temperature behavior. We observe an important variation in  

 

 
Figure 7. Behavior of indoor temperature, obtained by grey-box model.                                   

 

 

Figure 8. Convergence of ( )rC , and ( )eqR , obtained by means of the RLS algorithm.                      
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Figure 9. Behavior of indoor temperature, obtained by black-box model.                                  

 
comparison with the measured indoor temperature. Although a wide variety of parameter values has been used, 
that means that artificial neural network was not able to find the correct value of the indoor temperature. More-
over, it is the presence of the nonlinearity of the power of electric heater which complicates the behavior of in-
door temperature. Whereas, with this a simple neural networks structure, we cannot remain the indoor tempera-
ture from its true behavior. On the one side, the algorithm converges considerably slowly compared to the 
grey-box model. But only when varying the initial parameters of the Rprop, the convergence algorithm accelera-
tion could be changed. 

6. Conclusion 
In this paper, we have proposed a review of black, white and grey-boxes modeling approaches of building sys-
tems and the predictions methods enabling to improve energy efficiency of buildings. These approaches have 
been introduced and compared into three categories. Each of them was associated to specific paradigms and 
field. First approach, relying on physical models “white-box”, it is mainly correspond to a gradual rise of the 
level of details of building models. It is based on the laws of physics to describe the set of phenomena of resi-
dential building and to permit high fidelity modeling of the building system. Second approach, is based on ob-
servations of “black-box”, which relies on statistical and measurements treatments to describe the set of the 
phenomena. Those can provide little insight into the dynamics dictating the system behavior of building. It is, 
however, quite difficult to perform a qualitative and comparative assessment of the various techniques devised 
in this field. Since again their performances will depend on the training data used as input. The great power of 
these models is the fact that they do not need to have much knowledge on the building geometry or the detailed 
physical phenomena to deduce the indoor temperature. Compared to physical approaches, black-box requires 
less information about the building and may appear as easier to deploy. Finally, the very natural question arises, 
when combining between the two models to obtain a simplified model structure (grey-box) suitable for the 
physics principle and of the observations of phenomena of building system. Grey-box approaches appear as a 
very promising field for the near future. They can be appreciated in situations where a building physical model 
is available. Grey-box models could be of great help if there is difficult to rebuild detailed physical model. 
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