
Journal of Software Engineering and Applications, 2015, 8, 192-200
Published Online April 2015 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2015.84020

How to cite this paper: Emmanuel, M.M. and Ibrahim, M.N. (2015) Automatic Synchronization of Common Parameters in
Configuration Files. Journal of Software Engineering and Applications, 8, 192-200.
http://dx.doi.org/10.4236/jsea.2015.84020

Automatic Synchronization of Common
Parameters in Configuration Files
Moupojou Matango Emmanuel1, Moukouop Nguena Ibrahim2
1Department of Computer Science, University of Yaounde 1, Yaounde, Cameroon
2National Advanced School of Engineering, Department of Computer Science, University of Yaounde 1,
Yaounde, Cameroon
Email: moupojouemma@yahoo.fr, imoukouo@gmail.com

Received 6 January 2015; accepted 16 April 2015; published 17 April 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
In an information system, applications often make use of services that they access using the para-
meters described in their configuration files. Various applications then use different codes to de-
note the same parameters. When access parameters of a service are modified, it is necessary to
update them in every configuration file using them. These changes are necessary, for example be-
cause of security policies involving regular changes of passwords, or departure of some system
administrators. The database password could be changed for example. When system administra-
tors can not immediately identify all services affected by a change or when they feel they don’t
have the skills to edit these files, these parameters remain unchanged, creating critical security
flaws. This was observed in more than 80% of the organizations we studied. It then becomes ne-
cessary to ensure automatic synchronization of all affected files when changing certain settings.
Conventional synchronization solutions are difficult to apply when the relevant applications have
already been developed by third parties. In this paper, we propose and implement a solution to
automatically update all configuration files affected by a change, respecting their structure and
codification. It combines a parameters database, a mapping between the configuration files para-
meters codes and those of the database, and templates for the generation of files. It achieves the
objective for all non-encrypted configuration files.

Keywords
System Administration, Configuration File, Parameter, Update, Synchronization

1. Introduction
A configuration file is a file that contains configuration information used by a computer program to adapt or

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2015.84020
http://dx.doi.org/10.4236/jsea.2015.84020
http://www.scirp.org
mailto:moupojouemma@yahoo.fr
mailto:imoukouo@gmail.com
http://creativecommons.org/licenses/by/4.0/

M. M. Emmanuel, M. N. Ibrahim

193

customize its operation. File synchronization (or syncing) in computing is the process of ensuring that computer
files in two or more locations are updated via certain rules.

The password change of a critical service (database, email...) that can occur repeatedly (according to security
policies), or following the departure of a system administrator is a regular event. Such a change may involve
changing parameters of dozens of applications using this service. Although in theory all services affected by a
change must be documented, in practice, not only this is not always the case, but in addition to that, many ad-
ministrators are afraid to make changes in configuration files for applications they do not have control. These
manual changes may be associated with errors or false manipulations.

To better understand the problem exposed here, consider the following example which is a usual situation in
production environments: Let us consider a set of five services (or applications), each with its particular confi-
guration file that contains, among others, the access parameters to the same database. Those common parameters
have different names from one file to the other. If the administrator changes the access parameters to the data-
base, then it will require to also change them in all five configuration files, without forgetting one (if he doesn’t
use a traceability matrix1), without mistake, otherwise some services will then cease running: which turns out
being a tedious task. It would then be wise to manage those common settings on a unified way. The two-way file
synchronization is then required2, to ensure that when a parameter in a file undergoes an update, this update is
propagated to all other parameters files having a parameter supposed to contain the same value.

The MDAL3 applications have for example the following configuration files, Figure 1 and Figure 2, used by
different services:

These two configuration files used by different services, have several common configuration settings that
should have the same value at any time for the system remains in a consistent state of configuration (dbuser,
dbpassword, applipassword…). Also note that those common parameters might have different names from one
file to the other, which could in turn be in different formats as we will see in the implementation example in-
Subsection 3.2.

2. Materials and Methods
2.1. State of the Art on File Synchronization
2.1.1. Whole Files Synchronization
This approach considers that files at different locations are identical, and shall have exactly the same content
when an update is made upon one of them. Many whole file synchronization techniques and their applications
are described [1]-[3], and many tools performing this kind of synchronization are available [4]. Andrew Tridgell
proposed an efficient algorithm called rsync for performing this synchronization [5] [6]. Many rsync enhance-
ments and optimizations where also proposed [7] [8]. But rather than synchronizing the whole configuration file,
we shall synchronize only some common parameters inside those files, because of the fact that the files are dif-
ferent.

2.1.2. Synchronizing Particular Elements in Files
This is the purpose of this paper. Some elements in configuration files shall be synchronized with other elements
in other files in order to keep the consistency of the system. The parameters are semantically equivalent, but can

Figure 1. Configuration file mailerdaemonparams.txt
of MDAL applications.

1Document that correlates any two base-lined documents that require a many-to-many relationship to determine the completeness of the re-
lationship.
2Updated files are copied in both directions, usually with the purpose of keeping the two locations identical to each other.
3Megasoft Data Access Library: written in Java Framework, facilitating the development, deployment, operation and maintenance of appli-
cations accessing databases.

M. M. Emmanuel, M. N. Ibrahim

194

Figure 2. Configuration file folder mailerparams.txt of MDAL applications.

have completely different codes from one file to another.

Existing approaches to do this are:
1. Centralized configuration settings
The principle here is to have a single file containing all the parameters of all applications/services.
The various applications read their functional parameters in this file; and when an update is made, the new

value is immediately visible to all other applications. Hyena4, for example, allows centralized management of
common configuration settings to multiple services by bringing them together in a single file [9].

2. Distributed configuration files with inclusions
This approach is used to preserve the distributed aspect of configuration files; each service having its own

configuration file, but containing only its private parameters. Common settings among several configuration
files are placed in a common file, and individual files wishing to include them in their settings then have, in their
structures, inclusion directives pointing to that or those common files. Thus, when loading the parameters of a
file, they are also added, and so recursively, the parameters contained in the files to which it points. Thus, the
update of these parameters is only done in the common file and is thus taken into account in the different files
including it.

a) The JNLP Protocol5 uses this technique when loading .Jnlp files for downloading and running Java appli-
cations upon the network. Indeed, a .jnlp file may, in its structure, have a link to another .jnlp file; and when
loading the original file resources (different .jar files), the JNLP protocol also loads all the resources listed in the
referenced file.

b) The “MS CF Manager”6 application, developed during this project, also uses this technique.
Besides ordinary settings, a configuration file can also have the “mdal.include” parameter that contains the

different paths, separated by semicolons, of other configuration files whose parameters should be added to those
of the original one.

The two approaches mentioned above are valid only if they were taken into account during the development
phase of the application. Care is then taken to define how to access configuration files, taking into account their
structures. Now considering the case applications/services are already developed, and that the synchronization of
different configuration settings shall be done as described above, the problem becomes very different. Anne Jo-
nassen Hass describes the architecture and processes of a configuration manager [10] without addressing our
specific problem, which is how to ensure common parameters synchronization among many configuration files.
Bob Aiello and Leslie Sachs where able to bridge the language gap between the myriad of communities in-
volved with successful Configuration Management implementations [10]. They describe practical, real world
practices that can be implemented by developers, managers, standard makers, and even Classical CM Folk.

2.2. New Configuration files Synchronization Approach and Model
2.2.1. Identification of the Solution
Configuration Management is a multidisciplinary science (computer science, aeronautics, automobile, wea-

4Software to simplify and centralize nearly all daily management tasks of Windows network, Active Directory management and adding new
capabilities to existing native tools.
5Java Network Launching Protocol.
6MegaSoft Configuration Files Manager.

M. M. Emmanuel, M. N. Ibrahim

195

pons...) consisting in the management of the technical description of a system and its various components, as
well as change management made during the evolution of that system. The diagram showing the general struc-
ture and operation of a configurations manager is shown in Figure 3 [10]:

Used in monitoring different versions of documents in computer science, it allows archive and tracking of all
changes that have occurred in these documents. Relying on this science for which a standard exists, it will issue
to propose and implement a model of configuration files synchronization for solving the problem. This synchro-
nization should be possible even for existing applications.
Configuration management consists in four main modules:
• Unique Identification: It allows determining a configuration item’s metadata, to uniquely identify it, and to

specify its relations with the outside world and other configuration elements.
• Storage: This module ensures that a configuration item will not disappear, or will not be damaged, but it can

be found and made available in the desired state.
• Change Control: This module is fully in control of all changes requests to the system, and all implemented

changes.
In the case of our problem, this automatically implies an automatic traceability, which is not often done when

the administrator directly modifies the configuration files, and this often causes difficulties to return after unfor-
tunate changes.
• Status Reporting: It allows providing legible and useful information to ensure effective management of the

development and maintenance of a product.
In the context of the problem to solve, change control will be suitable. Indeed, it is usually a modification

proposal made by the end user, in the case where configuration management has been applied to the develop-
ment of an application for example. The problem is then found in a more specific area called “Version Control”.
Changes implemented here therefore simply consist in the various updates of different values of the configura-

Figure 3. Operation of a configuration manager [10].

M. M. Emmanuel, M. N. Ibrahim

196

tion parameters. The various elements under the control of the configuration manager, which corresponds to the
configuration settings in this case, shall in no case be modified, but new versions will be created: this should al-
low returning to a previous configuration state. It is therefore necessary to make a full scan of the system to es-
tablish, in taking into account the specificity of configuration managers architecture, and proceed subsequently
to an implementation of this model.

2.2.2. Modeling Solution
Generally, the configuration files synchronization problem may be represented by Figure 4.
With:
• Ai: Application i
• AiSj: Service j of the application i
• AiSjFk: Configuration File k of service j of application i
• Pijkl: Parameter l of the configuration file k of service j of application i
• Vijkl: Value of parameter Pijkl
• Fijk: Type (format) of the configuration file k of the service j of application i
• Rel 1: Parameter P111n corresponds to Parameters P1121 and P1prn
• Rel 2: Parameter P1pr1 corresponds to Parameter Pn11n

The problem is the following: at any time the parameters (P111n, P1121, P1prn) a part, and (P1pr1, Pn11n) on the
other, must have the same value so that settings of applications A1 and An remain consistent. The equalities
V111n = V1121 = V1prn and V1pr1 = Vn11n should therefore always be checked. If a parameter is changed, its corres-
pondents must also be changed in cascade.

Let P be the set of parameters under the control of the configuration files synchronization module. We assume
that every parameter is inside a group of parameters, and every group has at least one element, the parameter it-
self. The following functions can be defined:

1. correspondence: P × P → Boolean
correspondence(p,q) ≡ p.group = q.group7

2. update: P × Char → Unit
update(p,val) ≡ q P∀ ∈ if correspondence(p,q) then q.value := val
The realization of this solution is based on the use of templates. A template is a file having the same structure

as a configuration file, but wherein parameters values are replaced by their identifiers in the system. Thus, to add

Figure 4. Configuration files synchronization problem.

7Two parameters are in correspondence when they contain exactly the same information. So at any time they must have the same value. This
is our traceability matrix.

M. M. Emmanuel, M. N. Ibrahim

197

or delete a configuration parameter, this will be from the template. The analysis of the system led to the follow-
ing relational schema for entities to use to implement the solution:
 application (code, label, description)
 template (code, name, filepath8, description)
 application_template (application_code,template_code)
 parametersgroup (code, groupname, description)
 parameter (code, identifier9, parametersgroup_code, parameter_type, begin_date, end_date)
 template parameter (template_code, parameter_code)
 value (code, value, creationhour)
 parametersgroup_value (parametersgroup_code, value_code)

When a parameter p is updated, the following operations are performed:
1. A new value is created for the parameters group containing p, and saved.
The following operations are repeated for all configuration parameters q in the same group with p.
2. A copy of q’s template content is made.
3. In that copy, all parameters identifiers are replaced by their last saved values in the system.
4. The result then overwrites the template’s target file, which is the original configuration file.
The procedure for updating a configuration parameter is as follows:

Algorithm 1 updateParameter (Parameter: p, String: newValue)
/*p: parameter that needs to be updated; newValue: new value of the parameter */

1: p.getGroup().setLastValue(Value (newValue));
/* creating a new value and adding it in the list of parameter’s group values */

/* Updating all parameters in the same groupwith p; p.getGroupedParameters() returning at least {p}*/
2: for all par ∈ p.getGroupedParameters()do

3: Template template = par.getTemplate();
/* reading the template file containing the parameter */

4: String file = template.filepath;/*reading file effectively containing the parameter */

5: String templateCopy = readFile (template.name);/* reading template file content */

6: for all param ∈ template.getParameters() do

7: templateCopy = templateCopy.replace(param.identifier, param.getGroup().getLastValue());
/* setting values of parameters in the template*/

8: end for

9: wrieteFile (file, templateCopy) ;/*updating the target file of the template */

10: end for

3. Results and Example
3.1. Results
As result of the model presented in Subsection 2.2.2, a configuration files synchronization tool was proposed
called “Configuration Files Synchronizer” ensuring that correspondent parameters in those files may be syn-
chronized in an easy way. Concretely, the result consists in an application allowing the management of those
common settings on a unified way; so that when a parameter undergoes an update, this update is propagated to
all other configuration files having a parameter supposed to contain the same value.

To do this, it must be set in the application the configuration files that are to be synchronized, and their re-
spective template files. After this, the different common parameters must be regrouped in appropriate groups.
When a parameter has to be updated, the update is not directly done in the configuration file. It is done through

8Path to the original configuration file for which this template was created.
9Unique identifier of a parameter in the database, which is mapped (same name) to the parameter’s value in the template file.

M. M. Emmanuel, M. N. Ibrahim

198

the application, which also updates all the parameters in the same group than the first one, while updating their
respective configuration files. An example of this is given in the Subsection 3.2 below.
Notice that an implementation of this solution was proposed in Java programming language.

3.2. Implementation Example
We consider two applications A1 and A2, with respective configuration files CF11.txt and CF12.properties for
A1, and CF2.xml for A2, as shown on the Figures 5-7:

The parameters that are corresponding and that must be synchronized are: appli_name of CF11.txt, and appli-
cation_name of CF12.properties.

1. Building Configuration Files Templates
Remind that a template has the same structure than its configuration file, the difference being that parameters

values are replaced by their identifiers in the system. Proceeding like that, we have the following templates,
where Figures 8-10 are respectively the template files of configuration files represented by Figures 5-7:

2. Creating corresponding parameters groups
Now, parameters that are to be synchronized must be placed in the same group, so that, when a parameter will

be updated, all parameters in the same group will also be updated, as described in Section 2.2.2. To do this, the
following parameter group is created using the equivalent parameters and the template files:
A1 application name (A1_CF11_appli_name, A1_CF12_application_name)

3. Tables content
• application (code, label, description)

(1, Application 1, ””)
(2, Application 2,””)

• template (code, name, filepath , description)
(1, CF11_template.txt, {path}\CF11.txt, ””)
(2,CF12_template.properties, {path}\CF12.properties, ””)
(3,CF2_template.xml, {path}\CF2.xml, ””)

• application_template (application_code, template_code)
(1, 1)
(1, 2)
(2, 3)

Figure 5. CF11.txt.

Figure 6. CF12.properties.

Figure 7. CF2.xml.

M. M. Emmanuel, M. N. Ibrahim

199

Figure 8. CF11_template.txt.

Figure 9. CF12_template.properties.

Figure 10. CF2_template.xml.

• parametersgroup (code, groupname, description)

(1, A1_application_name, ””)
(2, A2_CF2_provider_class, ””)

• parameter (code, identifier , parametersgroup_code, parametertype, begin_date, end_date)
(1, A1_CF11_appli_name, 1, ordinary, 10/02/2015, null)
(2, A1_CF12_application_name, 1, ordinary, 10/02/2015, null)
(3, A2_CF2_provider_class, 2, ordinary, 10/02/2015, null)

• template_parameter (template_code, parameter_code)
(1, 1)
(2, 2)
(3, 3)

• value (code, value, creationhour)
(1, A1, 10/02/2015;07:30)
(2, org.hibernate.cache.NoCacheProvider, 10/02/2015;07:30)

• parametersgroup_value (parametersgroup_code, value_code)
(1, 1)
(2, 2)

4. Conclusion
The multiplicity of configurations files creates a problem of parameters synchronization, when the same para-
meters are found in different configuration files and with different names. Such parameters are then equivalent
and must at all times have the same value, so the update of a parameter must then be propagated to other files in
order to maintain the system configuration in a coherent state. Existing approaches to solve this problem, such as
centralization or files referencing are limited because they cannot be used for applications already developed. A
model for the resolution of this problem (even for existing applications) has been proposed in this paper. Confi-
guration files are represented by their templates, and links are established between equivalent parameters. When
a parameter undergoes an update, this update is propagated to all other configuration files having a parameter
supposed to contain the same value. This solution results in a very useful tool for system administrators to syn-
chronize configuration files. In perspective, this tool may be improved in order to take into account configura-

M. M. Emmanuel, M. N. Ibrahim

200

tion files security aspects when they are secured by security tools such as mRemote or Secure CRT.

Acknowledgements
We thank the government of Cameroon for premium sought they gave us in funding for our research.

We thank CETIC10 for funding our research. We thank MEGASOFT SARL Company for allowing us to un-
dertake this work.

References
[1] Tridgell, A. and MacKerras, P. (2002) The Rsync algorithm. Academic Press, Cambridge.
[2] Ramsey, N. and Csirmaz, E. (2001) An Algebraic Approach to File Synchronization. Proceedings of the 9th ACM In-

ternational Symposium on Foundations of Software Engineering, 175-185. http://dx.doi.org/10.1145/503229.503233
[3] Balasubramaniam, S. and Pierce, B. (1998) What Is a File Synchronizer? Proceedings of the ACM/IEEE MOBICOM

98 Conference, 1998, 98-108.
[4] Basso, M. and Mann. J. (2013) MarketScope for Enterprise File Synchronization and Sharing. Gartner.
[5] Tridgell, A. (2000) Efficient Algorithms for Sorting and Synchronization. Ph.D. Dissertation, The Australian National

University, Canberra.
[6] Torsten, S. and Memon, N. (1996) Algorithms for Delta Compression and Remote File Synchronization. Technical

Report TR-CS-96-05.
[7] Rasch, D. and Burns, R. (2003) In-Place Rsync: File Synchronization for Mobile and Wireless Devices. Proceedings of

the USENIX Annual Technical Conference, 2003.
[8] Suel, T., Noel, P. and Trendaflov, D. (2004) Improved File Synchronization Techniques for Maintaining Large Repli-

cated Collections over Slow Networks. Proceedings of the 20th International Conference on Data Engineering, 30
March-2 April 2004, 153-164. http://dx.doi.org/10.1109/ICDE.2004.1319992

[9] (2014) Hyena. Shared Settings. http://www.systemtools.com/HyenaHelp/sharedsettings.htm
[10] Hass, A.M. (2002) Configuration Management Principles and Practice. DELTA.

10Centre d’Excellence Africain en Technologies de l’Information et de la Communication.

http://dx.doi.org/10.1145/503229.503233
http://dx.doi.org/10.1109/ICDE.2004.1319992
http://www.systemtools.com/HyenaHelp/sharedsettings.htm

	Automatic Synchronization of CommonParameters in Configuration Files
	Abstract
	Keywords
	1. Introduction
	2. Materials and Methods
	2.1. State of the Art on File Synchronization
	2.1.1. Whole Files Synchronization
	2.1.2. Synchronizing Particular Elements in Files

	2.2. New Configuration files Synchronization Approach and Model
	2.2.1. Identification of the Solution
	2.2.2. Modeling Solution

	3. Results and Example
	3.1. Results
	3.2. Implementation Example

	4. Conclusion
	Acknowledgements
	References

