
World Journal of Engineering and Technology, 2015, 3, 57-69 
Published Online May 2015 in SciRes. http://www.scirp.org/journal/wjet 
http://dx.doi.org/10.4236/wjet.2015.32006  

How to cite this paper: Hazim, H., Wei, D. M., Elgindi, M. and Soukiassian, Y. (2015) A Lumped-Parameter Model for Nonli-
near Waves in Graphene. World Journal of Engineering and Technology, 3, 57-69.  
http://dx.doi.org/10.4236/wjet.2015.32006  

 
 

A Lumped-Parameter Model for Nonlinear 
Waves in Graphene 
Hamad Hazim1, Dongming Wei2, Mohamed Elgindi1, Yeran Soukiassian1 
1Texas A & M University at Qatar, Doha, Qatar 
2Nazarbayev University, Astana, Kazakhstan 
Email: mohamed.elgindi@qatar.tamu.edui, yeran.soukiassian@qatar.tamu.edu 
 
Received 1 February 2015; accepted 14 April 2015; published 17 April 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
A lumped-parameter nonlinear spring-mass model which takes into account the third-order elas-
tic stiffness constant is considered for modeling the free and forced axial vibrations of a graphene 
sheet with one fixed end and one free end with a mass attached. It is demonstrated through this 
simple model that, in free vibration, within certain initial energy level and depending upon its 
length and the nonlinear elastic constants, that there exist bounded periodic solutions which are 
non-sinusoidal, and that for each fixed energy level, there is a bifurcation point depending upon 
material constants, beyond which the periodic solutions disappear. The amplitude, frequency, and 
the corresponding wave solutions for both free and forced harmonic vibrations are calculated 
analytically and numerically. Energy sweep is also performed for resonance applications. 
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1. Introduction 
The graphene-based resonator and its application to mass sensing based on nonlinear waves have been poorly 
studied numerically [1]. Some researchers use discrete atomic or Monte Carlo approach for numerical simu- 
lation and some use local or nonlocal continuum mechanics approaches, however, their models are based on 
linear material constitutive equation for graphene ([1] [2]). It is, however, well-known that graphene behaves 
nonlinearly even for small strains and there is no obvious yield point or a linear portion on it’s stress-strain curve. 
In fact, it is proved experimentally and theoretically in [3] that the mechanical behaviour of a single layer of 
graphene sheet can be accuartely modeled by a continuum nonlinear constitutive equation ([4]-[6]). This consti- 
tutive equation in it’s one dimensional form is: 

http://www.scirp.org/journal/wjet
http://dx.doi.org/10.4236/wjet.2015.32006
http://dx.doi.org/10.4236/wjet.2015.32006
http://www.scirp.org
mailto:mohamed.elgindi@qatar.tamu.edui
mailto:yeran.soukiassian@qatar.tamu.edu
http://creativecommons.org/licenses/by/4.0/


H. Hazim et al. 
 

 
58 

E Dσ = +                                           (1) 

where   is the axial strain, σ  the axial stress, E  the Young’s modulus, 
2

max4
ED
σ

= −  the third-order  

elastic stiffness constant, and maxσ  the ultimate yield stress of the graphene. It appears that recent studies in 
literature have not incorporated the constant D  into their models for the vibration analysis of graphene layers. 
The main objective of this work is to model and understand how graphene behaves in free and forced axial 
vibrations and to calculate the nonlinear resonance frequencies based on Equation (1). To initiate this study, a 
simplified nonlinear spring model is derived based on the lumped parameter method. We show that the third- 
order elastic stiffness D  plays an important role in modeling the patterns of graphene in axial vibration. 
Within a range of the initial energy, we show that there exist periodic solutions similar to the ones obtained 
using the corresponding linear models and that the free oscillations are nearly sinusoidal. However, as the initial 
energy approaches a threshold level, the limiting free oscillations deviate drastically from the sinusoidal oscil- 
lations predicted by linear models. Our initial results provide some quantitative regimes in which a grap-hene 
resonator can operate near harmonic and non-harmonic motions. The initial results of this project provide some 
insight information and data on the patterns of axial vibration of a graphene monolayer which can be useful for 
design of graphene-based resonators. By extending this simple nonlinear spring-mass model to more realistic 
models, it is possible to provide new design guide to help make more efficient resonators and wave guides, 
shorten the design cycle and provide more accurate assessment of the mechanical behavior of these devices. In 
Section 2, we derive the nonlinear spring lumped parameter model from the nonlinear wave equation of a 
graphnene sheet under axial vibration; in Section 3, we study the existence of periodic solutions by using phase 
plane analysis and perturbation techniques; in Section 4, we compute the approximate analytical solutions of 
free vibrations using the two-scales splitting method and obtain the associated natural frequencies and ampli- 
tudes and compare to numerical results; in Section 5, we compute numerical solutions of forced vibrations and 
obtain frequency sweeps. 

2. The Nonlinear Lumped Parameter Model 
A graphene sheet with uniform cross-section in axial vibration with fixed-free ends can be modeled by sub- 
stituting (1) into the standard balance of momentum equation u fρ σ ′= +  to obtain the following nonlinear 
wave equation subject to initial and boundary conditions : 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

0

, , 0, ,  0

,0 ,  ,0 0, 0,
0, 0,  , 0

u Eu D u u f x t x L t

u x u u x x L
u t u L t

ρ ′′′ ′ ′= + + ∈ >
 = = ∈
 ′= =



                           (2) 

Here, we use u  for second order time derivative of u  and u′  for spatial derivative of u . The core- 
sponding steady state problem with a concentrated load of magnitude 0f  at the tip x L=  is 

( ) ( ) ( )
( ) ( )

0 0,    0,

0 0,  0

Eu D u u f x L x L

u u L

δ ′′′ ′ ′+ + − = ∈


′= =
                          (3) 

where ( )x Lδ −  is the Dirac delta function. Assuming that 0 maxf σ≤ , the exact solution of (3) can be found 
by integrating (3) and applying the boundary conditions. First, we integrate from 0 to x L<  and then from x  
to L  and using ( ) ( )0, ,t x tσ σ= , for x L<  we get: 

( )

max 0
0

max

max 0
0

max

2
1 1 , 0

2
1 1 , 0

f
x f

E
u x

f
x f

E

σ
σ

σ
σ

  
− + >     = 

  − + − ≤   
 

                          (4) 

Equation (4), then, provides the relationship between the applied force 0f  at the tip and the tip-displacement 
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( )u L  as: 

( ) ( )
0 ,     

u L
f EX D X X X

L
= − + =                                  (5) 

Our lumped parameter model is based on assuming that the density function is given by 

( ) ( )x m x Lρ δ= −                                           (6) 

For fixed time t , integrating the equation ( ) [ ] ( )0 0Eu D u u f mu x Lδ′′′ ′ ′+ + − − =  over [ ]0, L  gives: 

( )

( ) ( )

( ) ( )

0max
0

max

0max
0

max

,2
1 1 , , 0

,
,2

1 1 , , 0

f mu L t
L f mu L t

E
u L t

f mu L t
L f mu L t

E

σ
σ

σ
σ

  −
  − + − >

   = 
  −
 − + − − ≤    









                  (7) 

Equation (7) gives the following nonlinear spring-mass equation 

( ) ( )
0

,
,     

u L t
mX EX D X X f t X

L
= + + =                               (8) 

The corresponding autonomeous equation of (8) in which ( ),u L t  is denoted by x , is given by: 

0Dmx Ex x x
L

+ + =                                        (9) 

m  is the lumped-mass at the tip of the sheet, E  is the first order stiffness and D  is the thrid-order stiffness  

constant in (1). Using the change of variable Et
m
τ=  we obtain the equivalent non-dimensional equation 

0x x x x+ − =                                          (10) 

where 
max4

E
Lσ

=  is a positive parameter. 

3. Existence of Periodic Solutions of Free Vibration 
We will show that for given initial conditions ( )0x  and ( )0x , Equation (10) has periodic solutions for 
certain range of  . To determine the ranges of   for which existence of periodic solutions occur, we examine 
the phase diagrams associated with the Equation (10) defined by: 

2 2
21

2 2 3
y x x x C−

= + +                                   (11) 

where y x=  . 
We make the following observations: 
1) The y -intercepts associated with (11) are 2y C= ± , 
2) C  represents the energy at initial position 0x = , 
3) when 0= , the phase diagrams are the circles 2 2 2y x C+ =  with center ( )0,0  and radius 2C . 
We prove that for any 0C > , there exists 0  such that for 0≤   Equation (10) has a periodic solution and 

for 0>   there exists no periodic solutions of (10). Since periodic solutions of (10) correspond to closed 
curves of the phase diagram, we need to examine the x-intercepts of (11) and their dependence on the equation 
parameters. The x-intercepts of (11) are the zeros of: 

( )
2

21
2 3
xf x x x C−

= + +  
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which is an even function. Therefore it is enough to consider ( )f x , for 0x > . Some properties of ( )f x  are:  

( )0 0f C= > ; ( ) 0f x′ >  for 1x >


 and ( ) 0f x′ <  for 1x <


, since ( ) ( )1f x x x′ = − ; and 

2

1 1
6

f C  = − 
  

. Based on these properties we can distinguish the following three cases (corresponding to 

Figures 1(a)-(c)): 

Case (a): 1 1 0
6

f
C

 > ⇒ > ⇒ 
 




 No periodic solution. 

Case (b): 1 1 0
6

f
C

 = ⇒ = ⇒ 
 




 Only one x -intercept and there is a periodic solution. 

Case (c): 1 1 0
6

f
C

 < ⇒ < ⇒ 
 




 Two x -intercepts and there is a periodic solution. 

We conclude that the bifurcation point for a given 0C > , is 0
1
6C

= , see Figure 2. 

Furthermore, for each   when periodic solution exists, we determine the frequency and the period 
numerically (see Figure 3). 

It is demonstrated in Figure 2 that at a lower energy level ( )1C =  the free vibration is approximately sinu- 
soidal, however at a higher level of energy ( )4C =  the free vibration deviate drastically from the sinusoidal 
pattern which has not been captured by previous models that do not include the third order elastic constant D . 
When periodic solutions exist, Figure 3 indicates that our model shows that at each fixed energy level, the 
frequency and period of a given graphene sheet depend nonlinearly on the parameter   which depend on the 
material elastic constants as well as the length of the sheet. 

4. Double Scales Analytical Approximations of Free Vibration 
Multiple scales method is often used to solve nonlinear equations with small parameters in nonlinear vibrations. 
Double scales are used herein to find an approximate solution of the first order for Equation (10). The solution is 
then compared to results obtained by numerical integration using Matlab. The new time scales are 0T t= , 
 

 

Figure 1. 
2

21 1
2 3
xy x x−

= + +  for (a) 1= , (b) 1
6

=  and (c) 0.3= .                             
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(a) 

 
(b) 

Figure 2. (a) Phase diagrams for 1C =  and different values of  ; (b) Phase diagrams for 4C =  and different values of 
 .                                                                                                    
 

1T t=   where 0T  represents the fast time and 1T  represents the slow time. The derivative with respect to t  
will be written as function of the derivative with respect to 0T , 1T : 

0 1
2 2 2 2

2
2 2 2

0 10 1

,

2 .

t T T

T Tt T T

∂ ∂ ∂
= +

∂ ∂ ∂

∂ ∂ ∂ ∂
= + +

∂ ∂∂ ∂ ∂



 
                             (12) 

Instead of determining the solution as a function of t , we determine it as a function of 0T  and 1T . To this 
end, we change the independent variable in Equation (10) from t  to 0T  and 1T . A solution of the equation is  
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(a) 

 
(b) 

Figure 3. (a) Frequency diagram; (b) Period diagram.                                           
 
sought to have the following form 

( ) ( ) ( )0 0 1 1 0 1, ,x x T T x T T O= + +                                  (13) 

Substituting (13) in (10) and identifying the term of the same power of   we obtain the following system of 
initial value problems: 

( ) ( )
2

0
0 0 0 02

0

0,    0 ,    0 0
x

x x a x
T

∂
+ = = =

∂
                             (14) 

( ) ( )
22

01
1 0 0 1 12

0 10

2 ,    0 0,    0 0
xx x x x x x

T TT
∂∂

+ = − + = =
∂ ∂∂

                      (15) 

We will show that the solutions of Equations (14) and (15) are given by: 
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( ) ( )( )

( ) ( )( )

( )
( ) ( ) ( )( )( )

( )
( ) ( ) ( )( )( )

0 1 0 1

0 0
1 1 0 1 0 1

0 0
0 12 2

2

0 0
0 12 2

2

cos ,

2
cos cos 3 3

6π
4 11       cos 2 1

π 4 11 2 1

4 11       cos 2 1 ,
π 4 11 2 1

k

k

k

k

x a T T T

a a
x T T T

a a
k T T

kk

a a
k T T

kk

ϕ

α γ ϕ

ϕ

ϕ

+∞

=

+∞

=

= +

= + + +

−
− + +

−− +

−
− − +

−− −

∑

∑

                   (16) 

where ( )1 0a T a=  and ( ) 0
1 1

4
3π

a
T Tϕ

−
= . The solution of Equation (10) will then be given by: 

( ) ( )

( )
( ) ( )

( )
( ) ( )

0 0 0 0
0 1 1

0 0 0
2 2

2

0 0 0
2 2

2

4 2 4
cos 1 cos cos3 1

3π 6π 3π

4 411          cos 2 1 1
π 3π4 11 2 1

4 411          cos 2 1 1
π 3π4 11 2 1

k

k

k

k

a a a a
x t a t t t

a a a
k t

kk

a a a
k t

kk

α γ

+∞

=

+∞

=

   
= − + + + −   

   

  −
− + −   −− +   

  −
− − −  −− −   

∑

∑

   

 

  ,

                (17) 

• The solution of Equation (14) has the following form: 

( ) ( )( )0 1 0 1cosx a T T Tϕ= +                                   (18) 

Substituting 0x  in (15) and writing 0x  as the Fourier series: 

( ) ( ) ( )( )0 02
1

12 4cos cos 2
π π 4 1

k

k
T k T

k
ϕ ϕ

+∞

=

−
+ = − +

−∑  

the following equation is obtained 

( )( ) ( ) ( )( ) ( )( )

( ) ( )( )( ) ( )( )

2
11

1 0 1 0 1 0 12
1 10

0 1 0 12
1

2
2 sin 2 cos cos

π

4 1
                  cos 2 cos .

π 4 1

k

k

aTx ax T T a T T T T
T TT

a
k T T T T

k

ϕ
ϕ ϕ ϕ

ϕ ϕ
∞

=

∂∂ ∂
+ = + + + + +

∂ ∂∂

−
− + +

−∑
          (19) 

To avoid unbounded solutions, we set the secular terms of the 1x -Equation (19), containing ( )( )0 1cos T Tϕ+  
and ( )( )0 1sin T Tϕ+  to zero. This gives the system: 

( )

( ) ( )

0
1

1

1

0, 0

4
2 0, 0 0

3π

a a a
T

a aT
a

T
ϕ

ϕ

∂ = =∂
 ∂ + = = ∂

 

whose solution gives ( )1 0a T a=  and ( ) 0
1 1

4
3π
a a

T Tϕ = − . The solution for 0x  is then obtained by returning to  

the original time using 1T t=  . 
To find 1x , we need to solve the linear differential equation: 

( ) ( )( )( ) ( )( ) ( )( )

( ) ( )

2
0 0 0 01

1 0 1 0 1 0 12 2
20

1 1

4 21
cos 2 cos cos 3 ,

π 3π4 1
                                          0 0,    0 0.

k

k

a a a ax x k T T T T T T
T k

x x

ϕ ϕ ϕ
+∞

=

−∂
+ = − + + − +

∂ −

= =

∑


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and obtain (16), where 1α  and 1γ  are determined easily from the initial conditions. Using t  instead of 0T  
and t  instead of 1T  and replacing a  and ϕ  by its values, the expression in Equation (17) is verified. 

Remark 
The solution for 1x  shows an odd multiple of the ( )( )0 1T Tϕ+ , this can be seen clearly in the expression for 

1x . These frequencies are the harmonics of the main mode or frequency. It is a typicall feature of nonlinear 
differential equations that the harmonics are related directly to the nonlinear terms. Our expressions are verified 
numerically by calculating the solution in the frequency domain using the fourier transform and comparing with 
the analytical results. The results in time and frequency domains are shown below in Figure 4 and Figure 5. 
 

 
(a) 

 
(b) 

Figure 4. (a) Numerical solution compared to approximate analytical soluton for 0.6=  and ( )0 0.2x = . (b) Linear 

solution compared to nonlinear numerical solution 0.6=  and ( )0 0.2x = .                                         
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(a) 

 
(b) 

Figure 5. (a) FFT of the nonlinear solution compared to the linear solution for 0.6=  and ( )0 0.6x = . (b) Linear solution 

compared to nonlinear numerical solution for 0.6=  and ( )0 0.6x = .                                                 

5. Nonlinear Vibration under Harmonic Excitation 
In this section we characterize the nonlinear spring Equation (10) by a harmonic excitation and studying the 
system’s nonliear responses. The equation of motion is given by: 

( ) ( ) ( )2 cos ,    0 0,  0 0x x x x x f t x xξ ω+ + − = = =                        (20) 

where 01ω ω= + , 0ω  is a small real number called detuning parameter. The frequency ω  of the excitation is 
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near the resonnance of the coresponding linear frequency of the equation 0x x+ = . We present the numerical 
solutions in time and frequency domains and demonstrate the use of the frequency sweep method in detecting 
the nonlinear resonnance of the system.We solve Equation (20) using Matlab solver to obtain numerical results 
in the time domain. FFT algorithm is then applied to the time signal to find the frequencies of the solutions. The 
expected frequency corresponds to the excitation ω , the nonlinear resonance and some harmonics. The double 
scales method can be used to find analytical approximate solution of Equation (20) similar to the autonomeous 
system case of Section 4. We present our numerical results in Figure 6. 

We use the frequency sweep method to detect nonlinear resonnance of the nonlinear system by direct 
intergration. The method begins by defining a grid of frequencies around the linear resonnace and intergrate the 
 

 
(a) 

 
(b) 

Figure 6. (a) Time solution for 0.15=  and ( )0 0x =  and 0.15f =  and 1.2ω = . (b) FFT of the time signal.    
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system at each point of frequency. The maximum displacement of the solution is then plotted against the fre- 
quency mesh. The curve shows a peak corresponding to the nonlinear resonnance of the system. The numerical 
results show the dependence of the nonlinear frequency on the magnitude of excitation and on the parameter  . 
Figure 7 and Figure 8 show the numerical results for some values of the system parameters. 

6. Conclusion 
A simplistic nonlinear spring model is derived from the axial wave equation of a graphene sheet based on the 
 

 
(a) 

 
(b) 

Figure 7. (a) Frequency sweep for 0.15=  and for different values of f . (b) Frequency sweep for 0.3=  and for 
different values of f .                                                                                        
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(a) 

 
(b) 

Figure 8. (a) Frequency sweep for different values of   at the same magnitude f . (b) Frequency sweep for the linear 
system for different values of f .                                                                             
 
quadratic constitutive stress-strain equation. Using phase plane analysis, existence of periodic wave solutions  

and bifurcation points depending on the parameter 
max4

E
Lσ

=  are verified for free vibrations. Perturbation  

method of time scales depending on   is used to study axial vibrations subject to harmonic excitation. The 
results are compared with the corresponding linear spring model which does not include the third order elastic  

constant 
2

max4
ED
σ

= − . It is demonstrated through our analysis and numerical solutions that the bifurcation  
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parameter   critically affects the solutions quantitatively and numerically, therefore we conclude that the third 
order elastic constant D  in the continuum mechanics based modeling of graphene should be included in further 
study of the dynamic behavior if higher accuracy of solutions are desired. In future studies we plan to examine 
the axial vibrations corresponding to the full model (2) numerically using finite differences, finite element and 
numerical bifurcation techniques. In addition, we plan to examine the vertical vibrations using nonlinear beam 
and plate equations. 
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