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Abstract 
Snort rule-checking is one of the most popular forms of Network Intrusion Detection Systems 
(NIDS). In this article, we show that Snort priorities of true positive traffic (real attacks) can be 
approximated in real-time, in the context of high speed networks, by a decision tree classifier, us-
ing the information of only three easily extracted features (protocol, source port, and destination 
port), with an accuracy of 99%. Snort issues alert priorities based on its own default set of attack 
classes (34 classes) that are used by the default set of rules it provides. But the decision tree model 
is able to predict the priorities without using this default classification. The obtained tagger can 
provide a useful complement to an anomaly detection intrusion detection system. 
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1. Introduction 
Snort is a widely used cross-platform libpcap-based [1] packet sniffer and logger that can be used as a light- 
weight network intrusion detection system (NIDS). Snort features rule-based logging to perform content pattern 
matching and detect a variety of suspicious network traffic and probes [2]. Nevertheless, Snort can not comply 
with the constraints of large throughput in high speed networks, leading to an important drop rate [3]-[5]. The 
idea is then to approximate the alert priorities issued by Snort, using a fast-executing machine learning model 
(namely a decision tree classifier), in order to obtain a real-time priority tagger of the suspected traffic, that can 
be used as a complement to an anomaly detection intrusion detection system. 

The priorities issued by Snort have values of 1, 2, 3 or 4. A priority of 1 (high) is the most severe and 4 (very 
low) is the least severe. Only alerts corresponding to true attacks are selected for training and testing the model, 
so that the generated model is not merely an approximation of Snort but avoids Snort false alerts. In the selected 
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ISCX dataset of true attacks, priority 4 (which corresponds to the single class of TCP connections) is inexistent, 
and priority 2 is extremely rare. So we have exclusively considered priorities 1 (high) and 3 (low). 

The main contribution of this paper is to demonstrate that we can approximate Snort priorities of true positive 
traffic (real attacks) in real-time, in the context of high speed networks, by a decision tree classifier, using the 
information of a few extracted features (protocol, source port, and destination port), with an accuracy of 99%. 
The remaining of the paper is organized as follows: in Section 2, we present the ISCX dataset that we use for 
our simulations. In Section 3, we present the decision tree classifier that we use for classifying the intrusion de-
tection priorities. In Section 4, we detail the obtained results, before concluding in Section 5. 

2. ISCX Synthetic Dataset 
This dataset [6] is based on the concept of profiling which contain detailed description of intrusions and abstract 
distribution models for applications, protocols or lower level network entities. They create two classes of pro-
files α (attempt to describe an attack scenario in an unambiguous manner) and β (encapsulate extracted mathe-
matical distributions or behaviors of certain entities) profiles. This abstract representation of events and beha-
viors seen in a network allows researchers to generate their various adequate datasets for the purpose of analysis, 
testing and evaluation of network intrusion detection systems from multiple different angles. 

Authors generated through the introduction and utilization of profiles an intrusion detection dataset of one 
week. Their dataset consists of a set of statistical features captured via the use of single interface on the switch 
that all traffic are directed to it. The different attack scenario are executed at different periods and each attack 
composed by 5 steps: information gathering and reconnaissance (passive or active), vulnerability identification 
and scanning, gaining access and compromising a system, maintaining access and creating backdoors, and cov-
ering tracks. The main contribution of the delivered dataset is its inclusion of the captured load and not only de-
scription of it which enables several testing and validation of detection mechanisms. 

Real traces were analyzed to create profiles for agents that generate real traffic for HTTP, SMTP, SSH, IMAP, 
POP3, and FTP. The ISCX dataset provides: 1) realistic network and traffic; 2) labeled dataset; 3) total interac-
tion capture; 4) complete capture; and 5) diverse intrusion scenarios. To generate our labeled alert datasets we 
performed the following steps: 

1) Execution of Snort intrusion detection system on all the ISCX dataset traffic traces. 
2) Extraction of all packets generating and triggering Snort alerts. 
3) Mapping between these packets and their flows in the ISCX dataset since it is a flow based labeled dataset. 
4) Labeling of the different alerts based on the ISCX labeled flows. 
By the aforementioned steps we constructed a labeled IDS dataset (containing 7779 alerts). For this purpose, 

we used several tools such as TCPReplay, TCPDump, etc. 
In the present study, from the original features, we only considered 5 that can be easily extracted from real- 

time traffic (protocol, source IP, source port, destination IP, destination port). Taking the IP addresses as input 
makes the model network-dependent. This implies that the training procedure should be redone before being ap-
plied to a new network. 

3. Decision Tree Classifier 
3.1. Background 
The Decision Tree classifier (DT) is one of the possible approaches to multistage decision making (which in-
cludes various other techniques, such as table look-up rules, decision table conversion to optimal decision trees, 
sequential approaches, ...). The basic idea involved in a multistage approach is to break up a complex decision 
into a union of several simpler decisions. One of the most important features of DTs is their capability to break 
down a complex decision-making process into a collection of simpler decisions, thus providing a solution which 
is often easier to interpret [7]. 

Decision Trees are used for classification of both nominal and numerical data, which makes it suitable for the 
available inputs, in our case, which are all nominal (even though they are represented by numbers, these num-
bers are symbols and do not quantitative values). A decision tree is a tree-like model. It is more like an inverted 
tree because it has its root at the top and it grows downwards. This representation of the data has the advantage 
compared with other approaches of being meaningful and easy to interpret. The goal is to create a classification 
model that predicts the value of the target attribute (attack priority) based on several input attributes. Each inte-
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rior node of the tree corresponds to one of the input attributes. The number of edges of a nominal interior node is 
equal to the number of possible values of the corresponding input attribute, while outgoing edges of numerical 
attributes are labeled with disjoint ranges. Each leaf node represents a value of the label attribute given the val-
ues of the input attributes represented by the path from the root to the leaf [8]. 

In single stage classifiers, only one subset of features is used for discriminating among all classes. This fea-
ture subset is usually selected by a globally optimal criterion, such as maximum average interclass separability. 
In decision tree classifiers, on the other hand, one has the flexibility of choosing different subsets of features at 
different internal nodes of the tree such that the feature subset chosen optimally discriminates among the classes 
in that node. This flexibility may actually provide performance improvement over a single-stage classifier. Be-
sides, in a decision tree, global complex decision regions (especially in high-dimensional spaces) can be ap-
proximated by the union of simpler local decision regions at successive levels of the tree [7] [9]. The choice of a 
decision tree model is also justified by the real-time constraints, in the context of high speed networks. In fact, 
during the operational phase (once the training process is finished), the decision issued by a DT is very fast since 
it is based on a limited number of nested simple conditional statements. 

3.2. Training Procedure 
Decision trees are generated by recursive partitioning, i.e. repeated splitting on the values of attributes. The 
attribute is selected for splitting depending upon a selection criterion (e.g. information gain [10] [11], gain ratio 
[12], gini index [13], accuracy). The basic idea in choosing any splitting criteria at an internal node is to make 
the data in the son nodes “purer” (i.e. belonging to a single class). In general, the recursion stops when all the 
training instances have the same label value, i.e. the subset is pure. Or recursion may stop if most of the in-
stances are of the same label value. This is a generalization of the first approach; with some error threshold. 
Moreover, there are other halting conditions such as [8]: 
 There are less than a certain number of instances in the current subtree. 
 No attribute reaches a certain threshold. 
 A predefined maximal depth is reached. 

A decision tree is trained on ISCX labeled dataset, using Rapidminer software [8]. Only alerts corresponding 
to true attacks (2873 alerts) are selected for training and testing the model, so that we avoid Snort false alerts. 

Originally, the priorities issued by Snort have values of 1, 2, 3 or 4. A priority of 1 (high) is the most severe 
and 4 (very low) is the least severe. But in the selected true attacks, priority 4 (which corresponds to the single 
class of TCP connections) is inexistent, and priority 2 is extremely rare (only 6 alerts). So we have exclusively 
considered priorities 1 and 3. Snort issues alert priorities based on its own default set of attack classes (34 
classes, see Table A1) that are used by the default set of rules it provides. 

We randomly subdivided the 2873 Snort true alerts into 3 datasets: 
 Learning dataset: 20% (573 samples). The learning dataset is used to train the decision tree, through the re-

cursive partitioning procedure described above. 
 Single-split validation dataset: 20% (573 samples), used for validating the learning, in order to avoid over- 

fitting (fitting to noise). The validation database does not participate. After the training, the performance on 
the validation dataset is used to select the best hyper-parameters (splitting criterion, maximal depth, minimal 
leaf size, etc.). 

 Testing dataset: 60% (1720 samples). These samples do not participate to the training process, in any way. 
They are only used for the final performance assessment. Thus, they give a closest insight into the real per-
formance and generalization capability of the model on new unseen data. 

We used 5 input features to predict the priority, that we extracted from the ISCX dataset: 
1) Protocol; 
2) Source IP; 
3) Source port; 
4) Destination IP; 
5) Destination port. 

4. Results 
The experiments were conducted using Rapidminer 5 software, running on a laptop with Intel core i7-3630QM 



A. Ammar 
 

 
55 

processor (2.4 Ghz), 16 GB RAM. 
Different splitting criteria have been tested (information gain, gain ratio, gini index, accuracy). They all gave 

similar results on the validation dataset. In fact, none of the proposed splitting criteria in the literature has 
proved to be universally better than the rest, and they all yield similar results, although their complexity may 
vary significantly [14] [15]. 

The decision tree depicted in Figure 1 resulted from a training using gain ratio as a splitting criterion. We no-
tice that neither IP source nor IP destination features have been retained. This is a positive point that makes the 
model network-independent. The DT yields an overall accuracy of 99%, using the information from only three 
features (protocol, source port, and destination port), and with a maximal depth of only 4, which makes its deci-
sion on new traffic very fast. 

Once the decision tree has been trained on the learning database, the classification model can be applied on 
unseen data sets for the prediction of the label attribute. At each node, a decision is made and only one path is 
traversed from the root of the tree to a terminal node (leaf). Table 1 shows the confusion matrix over the 573 
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Figure 1. Decision tree for detecting attack priorities. 
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Table 1. Confusion matrix over the validation database. 

 True (Snort) priority = 3 True (Snort) priority = 1 Class precision 

Predicted (NN) priority = 3 423 2 99.53% 

Predicted (NN) priority = 1 2 146 98.65% 

class recall 99.5% 98.7%  
 
Table 2. Confusion matrix over the testing database. 

 True (Snort) priority = 3 True (Snort) priority = 1 Class precision 

Predicted (NN) priority = 3 1277 5 99.6% 

Predicted (NN) priority = 1 12 426 97.3% 

class recall 99.1% 98.8%  
 
samples of the validation dataset. We obtain an accuracy of 99.3%. The ratio of misclassified samples of (true) 
class 1 (1.3%) is slightly larger than the number of misclassified samples of (true) class 3 (0.5%). 

After the learning phase, we applied the trained decision tree to the independent testing database. This larger 
dataset (60% of the original) neither participated to the training, nor to the tuning of the hyper-parameters. Table 
2 shows the performance obtained on the testing database. We obtain an accuracy of 99.0%. The ratio of mis-
classified samples of (true) class 1 is 1.2%, while the number of misclassified samples of (true) class 3 is 0.9%. 
In fact, the two types of misclassification were given the same cost in the learning process, but since the classes 
are imbalanced (class 3 being three times more frequent than class 1), the classifier tends to better classify the 
more frequent class. This is a well known problem for machine learning classifiers, encountered in various do-
mains [16]-[18], and can be addressed correctly. If one considers, for instance, that classifying a sample of class 
1 (high priority) as class 3 (low priority) is costlier than the contrary, then this could be taken into account in the 
training procedure by over-representing class 1 (or under-representing class 3) in the learning database. 

5. Conclusion 
We have presented a decision tree classifier that approximates the priorities issued by Snort, with an accuracy of 
99%, while avoiding its false alerts, and being able to run in real-time, in the context of high speed networks. 
Future work includes generating a larger learning database of labeled true attacks, in order to include the rare 
priority values that have been skipped in this work: medium priority (2), and very low priority (4). 
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Appendix  
Table A1. Snort default classifications.                                                                             

Class type Description Priority 

Attempted-admin Attempted administrator privilege gain 1 

Attempted-user Attempted user privilege gain 1 

Inappropriate-content Inappropriate content was detected 1 

Policy-violation Potential corporate privacy violation 1 

Shellcode-detect Executable code was detected 1 

Successful-admin Successful administrator privilege gain 1 

Successful-user Successful user privilege gain 1 

Trojan-activity A network trojan was detected 1 

Unsuccessful-user Unsuccessful user privilege gain 1 

Web-application-attack Web application attack 1 

Attempted-dos Attempted denial of service 2 

Attempted-recon Attempted information leak 2 

Bad-unknown Potentially bad traffic 2 

Default-login-attempt Attempt to login by a default username and password 2 

Denial-of-service Detection of a denial of service attack 2 

Misc-attack Misc attack 2 

Non-standard-protocol Detection of a non-standard protocol or event 2 

Rpc-portmap-decode Decode of an RPC query 2 

Successful-dos Denial of service 2 

Successful-recon-largescale Large scale information leak 2 

Successful-recon-limited Information leak 2 

Suspicious-filename-detect A suspicious filename was detected 2 

Suspicious-login An attempted login using a suspicious username was detected 2 

System-call-detect A system call was detected 2 

Unusual-client-port-connection A client was using an unusual port 2 

Web-application-activity Access to a potentially vulnerable web application 2 

Icmp-event Generic ICMP event 3 

Misc-activity Misc activity 3 

Network-scan Detection of a network scan 3 

Not-suspicious Not suspicious traffic 3 

Protocol-command-decode Generic protocol command decode 3 

String-detect A suspicious string was detected 3 

Unknown Unknown traffic 3 

Tcp-connection A TCP connection was detected 4 
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