
Journal of Signal and Information Processing, 2015, 6, 73-78
Published Online May 2015 in SciRes. http://www.scirp.org/journal/jsip
http://dx.doi.org/10.4236/jsip.2015.62007

How to cite this paper: Chidambaram, S., Rubini, P.E. and Sellam, V. (2015) Non-Intrusive Context Aware Transactional
Framework to Derive Business Insights on Big Data. Journal of Signal and Information Processing, 6, 73-78.
http://dx.doi.org/10.4236/jsip.2015.62007

Non-Intrusive Context Aware Transactional
Framework to Derive Business Insights on
Big Data
Siva Chidambaram1, P. E. Rubini2, V. Sellam2
1Department of Computer Science Engineering, Sri Muthukumaran Institute of Technology, Chennai, India
2Department of Computer Science Engineering, SRM University, Chennai, India
Email: sivachidambaram87@gmail.com, iniya29@gmail.com, sellamveera@gmail.com

Received 22 February 2015; accepted 1 April 2015; published 2 April 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
To convert invisible, unstructured and time-sensitive machine data into information for decision
making is a challenge. Tools available today handle only structured data. All the transaction data
are getting captured without understanding its future relevance and usage. It leads to other big
data analytics related issue in storing, archiving, processing, not bringing in relevant business in-
sights to the business user. In this paper, we are proposing a context aware pattern methodology
to filter relevant transaction data based on the preference of business.

Keywords
Context Aware, Pattern Recognizer, Big Data

1. Introduction
There are varieties of diversified portfolio of applications getting deployed in the Enterprise Infrastructure space,
and each application has a different trend of arrival patterns which generates machine data that need to be cap-
tured and processed to gain business insights. The problem starts from collection and filtering and processing of
the data becomes difficult due to the rate in which the data getting generated is huge [1]. This requires an effi-
cient way to interpret and bring relevance to the particular context the business deals with. The preferred way to
look at this issue is to bring in relevance when the data are getting generated real time so that only the relevance
and needed machine data are getting captured by leaving the unwanted machine data.

The purpose of this Context Aware Transactional framework is to categorize the patterns and filter the machine
data based on the relevance of each transaction getting performed. Based on the filtered data, the enterprise can

http://www.scirp.org/journal/jsip
http://dx.doi.org/10.4236/jsip.2015.62007
http://dx.doi.org/10.4236/jsip.2015.62007
http://www.scirp.org
mailto:sivachidambaram87@gmail.com
mailto:iniya29@gmail.com
mailto:sellamveera@gmail.com
http://creativecommons.org/licenses/by/4.0/

S. Chidambaram et al.

74

concentrate on how to effectively bring out the business insights within the application by not spending too much
on the cost aspects with respect to the data storage and processing [2].

The objective of this paper is to propose a methodological approach to implement a non-intrusive component
which can be plugged into the existing enterprise infrastructure layer to bring out all the insights business wants by
capturing only the relevant business oriented machine data [3]. This paper is organized as follows. Section 1 gives
an overview of context aware filtering. Section 2 gives the proposed architecture and the multiple phases involved.
In Section 3 approaches and the API for context aware filtering are described [4]. Section 4 and Section 5 consist
of experimental analysis and the amount of data saved during the data collection gain with respect to storing,
archiving, and processing in the context of the component proposed [5].

2. Non-Intrusive Context Aware Transactional Framework
Context aware filtering is the process of recognizing the machine data based on the pattern. The patterns are ap-
plication specific based on specifics like business rules, database access related, and external interfaces. The
methodology is built in such a way that this component can be deployed as non-intrusive into any of the enterprise
layer to generate data insights. The high level logical steps involved in context aware filtering are shown in Figure
1.

2.1. Pattern Builder
In this phase preserving of existing business and technical knowledge are captured will be utilized and key cha-
racteristics of the existing application are captured and stored in the master Meta data in the repository.

2.2. Pattern Recognizer
In this phase pattern matching will be applied on the machine data, and the recognized data are retrieved and
stored in the desired repositories. The generation of machine data is in multiple phases, so the pattern recognizer
will be a logical independent component which can be made as non-intrusive deployment whenever any transac-
tion happens.

Figure 1. High level logical steps involved in context aware transaction framework.

S. Chidambaram et al.

75

2.3. Pattern Filter
In this phase the pattern filter gets applied on to the pattern recognized machine data which properly filters the
relevant and store it in the database for further processing.

2.4. Pattern Extractor & Visualizer
In this phase the pattern extractor and visualizer helps the enterprise to devise the strategy based on the business
rule to extract data.

3. Proposed Architecture Frameworks
The high level proposed architecture is explained in Figure 2 and the components involved in creating the Context
aware filtering are explained in the following sections.

3.1. Channel Listener
This component will act as a listener component to the channels. The channel sends the request based on the re-
quest the listener component intelligently forms the triggering point for the Pattern builder to trigger its operations.
It acts as a signal sender for the next component to act upon.

3.2. Pattern Composer
This component will also act as intelligent interpreter and filters out the rules present across applications.

3.3. Pattern Builder
This component retrieves the composed pattern from pattern composer and builds a searchable pattern format

Figure 2. Context aware filtering high level architecture.

S. Chidambaram et al.

76

which can be directly applied on to the enterprise contextual data getting captured by the Channel Listener
component. This component also deals with the intelligent interpretation of the contextual data from the Enterprise
with multiple dimensions and variety. The smartness is built into the component itself and different scoring al-
gorithms based implementation is leveraged to achieve the same.

3.4. Pattern Filter
This component applies the filter rules and it has to interact much with the infrastructure component. The filtered
data after the appliance of rules will be streamed to Pattern processor component

3.5. Pattern Processor
This component retrieves the filtered contextual data and parses efficiently to aggregate and assemble the data as
per the requirements

3.6. Infrastructure Component
This component provides Authorization, Authentication, Logging, Security etc. and it’s visible to all the other
components in this framework. This leverages most of the open source libraries for its operation.

3.7. Transaction Log Parser
A portion of transaction log file used for the experimentation has been shown in Figure 3.

3.8. API Details
The API and the corresponding functions are explained in Table 1. These APIs are used in the process of data
filtering.

3.9. High Level Logical Details
Properties details and context aware details to filter the relevant data to connect to twitter and also the extraction
based on filtering option given in context Data Pattern parameter is defined in Figure 4.

4. Report Analysis
The report analysis for visualization of contextual relevant data and also the percentage of savings before and
after context aware filtering is shown in Figure 5 and Figure 6 respectively.

Figure 3. Sample transaction log file.

S. Chidambaram et al.

77

Figure 4. Context data pattern parameter.

Figure 5. Visualization of contextual relevant data.

Figure 6. Percentage of savings.

S. Chidambaram et al.

78

Table 1. API descriptions.

Input: Transaction log file

a) Listen to TCP/IP channels;
b) New pattern repository builder pb;
c) pb. build pattern ();
d) pb. persist patterns ();
e) Data: machine data;
f) Getconnection ();
g) List patterns list: = readall patterns ();
h) New pattern composer pc;
i) List redundant patterns = pc. get redundent patterns (patterns list);
j) New pattern filter pf;
k) List filtered pattern list = pf. filter patterns (patterns list, redundant patterns);
l) Data = pf. apply filter (data, filtered pattern list);
m) Data=aggregate & assemble (data);
n) Persist data (data);
o) Release connection ();
p) New pattern extractor pe;
q) pe. show log report ();

Output: Contextual relevant data consolidated for gaining business insights

5. Conclusion
Most of the analytics application captures all the data for future analytics, but the key aspect is to bring in the
context aware filtering on the data getting generated from multiple sources of applications. This eases out the
analytics complexity on the enterprise and brings in better prospects towards visualization of data. The complex-
ity and cost factor involved in data management like storing, archiving, backup, recovery, etc. can be reduced by
this framework.

References
[1] Duggan, J. and Stonebraker, M. (2014) Incremental Elasticity for Array Databases. ACM SIGMOD/PODS (SIGMOD

2014).
[2] Kalinin, A., Cetintemel, U. and Zdonik, S. (2014) Interactive Data Exploration Using Semantic Windows ACM.

SIGMOD/PODS (SIGMOD 2014).
[3] Vojnovic, M., Xu, F. and Zhou, J.R. (2012) Sampling Based Range Partition Methods for Big Data Analytics. No.

MSR-TR-2012-18.
[4] Sundaram, N., Turmukhametova, A., Satish, N., Mostak, T., Indyk, P., Madden, S. and Dubey, P. (2014) Streaming

Similarity Search over One Billion Tweets Using Parallel Locality Sensitive Hashing. Annual Conference on Very Large
Data Bases 2014 (VLDB 2014).

[5] Jun, S.-W., Liu, M. and Kermin Fleming, A. (2014) Scalable Multi-Access Flash Store for Big Data Analytics. 22nd
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.

	Non-Intrusive Context Aware Transactional Framework to Derive Business Insights on Big Data
	Abstract
	Keywords
	1. Introduction
	2. Non-Intrusive Context Aware Transactional Framework
	2.1. Pattern Builder
	2.2. Pattern Recognizer
	2.3. Pattern Filter
	2.4. Pattern Extractor & Visualizer

	3. Proposed Architecture Frameworks
	3.1. Channel Listener
	3.2. Pattern Composer
	3.3. Pattern Builder
	3.4. Pattern Filter
	3.5. Pattern Processor
	3.6. Infrastructure Component
	3.7. Transaction Log Parser
	3.8. API Details
	3.9. High Level Logical Details

	4. Report Analysis
	5. Conclusion
	References

