
Journal of Quantum Information Science, 2015, 5, 6-15
Published Online March 2015 in SciRes. http://www.scirp.org/journal/jqis
http://dx.doi.org/10.4236/jqis.2015.51002

How to cite this paper: Tonchev, H. (2015) Alternative Coins for Quantum Random Walk Search Optimized for a Hypercube.
Journal of Quantum Information Science, 5, 6-15. http://dx.doi.org/10.4236/jqis.2015.51002

Alternative Coins for Quantum Random
Walk Search Optimized for a Hypercube
Hristo Tonchev
Department of Physics, Sofia University, Sofia, Bulgaria
Email: h_tonchev@phys.uni-sofia.bg

Received 21 September 2014; accepted 24 March 2015; published 25 March 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
The present paper is focused on non-uniform quantum coins for the quantum random walk search
algorithm. This is an alternative to the modification of the shift operator, which divides the search
space into two parts. This method changes the quantum coins, while the shift operator remains
unchanged and sustains the hypercube topology. The results discussed in this paper are obtained
by both theoretical calculations and numerical simulations.

Keywords
Quantum Information, Quantum Random, Quantum Random Walk Search

1. Introduction
The search algorithms for unstructured databases are widely used in statistical data processing for searching the
maximum or minimum element or an element corresponding to specific criteria. Effective search algorithms can
provide a solution for one of the Non-Deterministic Polynomial Time Complete (NPTC) problems, from which
a solution can be found to any NPTC problem by an algorithm with polynomial complexity. These are the rea-
sons for the great interest in the quantum search algorithms and their experimental implementation.

The first quantum search algorithm for unstructured databases is created by Grover [1] and is based on a
quantum Fourier transformation. Quantum search on a two-qubit cavity QED database has been done by Yama-
guchi et al. [2]. Quantum search on a three-qubit database with NMR has been done by Vandersypen et al. [3].
Grover’s algorithm cannot be used without knowing the exact number of solutions. To find the exact number of
elements and satisfy the search criteria, the quantum counting algorithm should be used.

There are already many classical random walk algorithms that perform much better in their tasks than deter-
ministic algorithms. Two classes of such algorithms are Las Vegas algorithms (which always end with a correct
result when used for a finite time) and Monte Carlo algorithms (which depend on random input and might pro-

http://www.scirp.org/journal/jqis
http://dx.doi.org/10.4236/jqis.2015.51002
http://dx.doi.org/10.4236/jqis.2015.51002
http://www.scirp.org
mailto:h_tonchev@phys.uni-sofia.bg
http://creativecommons.org/licenses/by/4.0/

H. Tonchev

7

duce an incorrect result). Las Vegas algorithms are widely used in fields like artificial intelligence [4], biology [5]
and others. Monte Carlo algorithms are used in mathematics, condensed matter physics [6]-[8] and others.

Another type of quantum algorithms are the ones based on the quantum random walk; they are analogous to
the classical random walk. There are two types of those algorithms: continuous time evolution random walk al-
gorithms (CTRWA) and discrete time random walk algorithms (DTRWA). The CTRWA were first introduced by
Farhi and Gutmann [9]. They have showed that CTRWA propagate exponentially faster through graphs [10] and
can solve any black box problem like searching exponentially faster than any classical algorithm [11]. Childs
has shown that the continuous time quantum random walk search algorithms (CTRWS) can find an element in a
graph with dimension over 4D faster than Grover’s search algorithm [12]. DTRWA have been first proposed by
Aharonov et al. [13]. Examples for DTRWA algorithms are the quantum random walk algorithms for element
distinction [14] and the quantum random walk search algorithms [15]. Discrete time random walk search algo-
rithms (DTRWSA) have been first created by Shenvi et al. [15] and are denoted as SKW. The original SKW
search algorithm can find an element with probability less than 1/2. Hein has proposed a faster DTRWSA, but to
be effective, the initial state of the algorithm should take into account which elements are to be searched [16].
Potocek et al. have shown that if the searched space is divided into two parts, the probability to find a solution
can be increased close to 1, with large enough searched space [17]. They also have demonstrated that the proba-
bility of finding a solution can be increased if the shift operator is modified to divide the searched space. Tulsi
has shown that DTRWSA is faster than Grover’s search when the searched space is two-dimensional [18].

Grover’s search, CTRWSA and DTRWSA differ conceptually in terms of working principle. This is the rea-
son for their different advantages and disadvantages. Grover’s search algorithm and DTRWSA can be modified
to find a solution with probability close to one. Long has shown that Grover’s search can be modified so that the
probability of successfully finding a solution with it to be exactly equal to one [19], which means that the algo-
rithm evolves from a quantum probabilistic to a quantum deterministic method. Potocek et al. have shown that a
probability to find solution close to one can be obtained in DTRWSA by two different methods [17]. Grover’s
search algorithm needs only one oracle call for each iteration of the algorithm and less number of qubits (as
much as needed to store the searched space); let this number be denoted as n. DTRWSA needs more qubits: O(n),
and two oracle calls for each iteration [20]. DTRWSA is much better than Grover’s algorithm, when there is the
need to search in a register of two or more dimensions [18] [21].

The present paper is organized as follows. In Section 2, the discrete quantum random walk is reviewed, and
the quantum random walk on a line is shown as an example. In Section 3, the quantum random walk on a hyper-
cube and the quantum random walk search on a hypercube are reviewed. In Section 4, a new alternative way is
demonstrated for the method shown in [17] for dividing the searched space of the algorithm in two, while sus-
taining the hypercube topology and effectively dividing the searched space by using coins, which unequally dis-
tribute the probability of transition to adjacent nodes. In Section 4.1, Householder reflection is reviewed. In Sec-
tion 4.2, the general form of specialized coins is shown; whereas their use is discussed in Section 4.3. In Section
4.4, some examples of such coins and quantum circuit for their experimental implementation in quantum ran-
dom walk search algorithm are shown. The results of numerical simulations with the coins are also given. Sec-
tion 5 is the conclusion of the article.

2. Classical and Discrete Quantum Random Walk, Quantum Random Walk on Line
The classic random walk on a line starts at an initial state 0 and at every step, a coin is tossed. There is a dif-
ferent probability of the possible outcomes of the toss. The sum of these probabilities is equal to one. Each of the
possible outcomes of the toss is associated with a distinct direction, and the directions depend on the structure of
the graph which is traveled over. For example, for a line the directions are left and right. For a square grid, the
directions are left, right, up and down. The particle moves one step in the corresponding direction, according to
the result of the coin toss.

The quantum random walk algorithm is the quantum analogue of the classic random walk algorithm. HC is the
Hilbert space of the quantum coin (coin space) and HS is the Hilbert space of the nodes of the structure of the
graph. Again, each step of the algorithm (which is described by the operator U) has two parts. First is the coin
toss. The coin flip is defined by the unitary operator of the coin C0, which acts in the coin space HC. The coin
operator acts upon the Hilbert space C SH H⊗ and is denoted by 0C C I= ⊗ . The result of the action of the
coin operator upon the coin is a chiral state [22]. This is an analogue of the classic probability. As the chiral state
is a quantum state, it can be in a quantum superposition of directions. According to the toss outcome, the state of

H. Tonchev

8

the system is changing. The exact change of the state depends on the structure. The quantum operator which
represents this structure is a permutation matrix which performs controlled shift, depending on the state of the
coin, and is denoted by S. The operator S acts upon the space C SH H⊗ . Summarily, each step of the quantum
random walk can be written as:

.U SC= (1)

An example for a shift operator is SL corresponding to a quantum random walk on a line [23]:

()
1

0
, 1 , ,d

L
d

S d x d x
=

= − −∑∑ (2)

where x is the position of the particle on the line. The values of d (0 or 1) correspond to left and right directions.
For the coin, a Hadamard matrix can be used:

1 11
1 12LC

= −
. (3)

Summarily, a DQRW step on line can be written as L L LU S L= . The classic random walk spreads as a bi-
nomial distribution after each step. In DQRW, after each step of the algorithm, quantum interference occurs
when more than one possible path exists to reach the respective position. The interference can be constructive or
destructive, which leads to very different distribution compared to the classic random walk on a line. The va-
riance in the number of steps t between the classic random walk and DQRW is very different. DQRW spreads as
O(t); in comparison, the classic random walk spreads as ()O t [23]. If the quantum random walk is measured
at each coin flip, or after the end of each step, it will revert to the classic random walk [15].

3. Quantum Random Walk and Search on a Hypercube
The hypercube is a graph with 2nN = nodes and n edges between nodes. Each one of the nodes will be denoted
by a n-bit string x. Two nodes of a hypercube, 1x and 2x are connected only if the modulus of hamming
weight of their difference is equal to one: 1 2 1x x− =

 . That is why the Hilbert space of the coin is ()log nCH H= ,
the Hilbert space of the nodes is N nH H= and the Hilbert space of the random walk is N CH H H= ⊗ [15].
The shift operator for the hypercube SC is:

1

0
, , ,

n

C d
d x

S d x e d x
−

=

= ⊕∑∑

 (4)

where d is the direction of the motion and de is the d-th basis vector of the Hypercube.
The Grover coin G is frequently chosen for a coin for quantum random walks on a hypercube. This coin is

invariant to all permutations of the n edge directions, so it sustains the permutation symmetries of the hypercube.

0 2 ,c cC G I s s= = − + (5)

where I is identity operator, cs is an equal weight superposition of the states of all directions.
To make a quantum random walk search algorithm, a quantum oracle should be applied that marks the wanted

element by applying a coin upon it. The oracle does this by using the function ()f x , which is used to deter-
mine which coin would be applied: C0 or C1,

()
1
0

t

t

x x
f x

x x
=

= ≠

. (6)

Summarily, the operator of the coin becomes:

()0 1 0 ,t tC C I C C x x′ = + −⊗ ⊗
 (7)

where C1 can be almost any unitary operator but most often it is taken 1C I= − . The reason for this is the faster
spread through the graph and the simplicity in experimental realization. Summarily, the random walk search ite-
ration can be written as:

H. Tonchev

9

()2 c c
t tU SC U S s s x x⊗′ ′= = −

 . (8)

The quantum circuit of the random walk search algorithm is shown in Figure 1 [15]. This circuit does not ac-
tually depend on the shape of the searched graph. When the graph is different, the shift operator S has to be
changed. Summarily, the steps of the algorithm are [20]:

1) Initializing the starting state of the coin and node register in an equal weight superposition. This can be
done by applying Hadamard gate on each qubit of the state 0 ;

2) Applying quantum random walk search iteration π 2 2nt = times [15].
The steps of the quantum random walk search iteration are:
a) Applying a quantum oracle;
b) Applying an appropriate coin depending on the state of the control register;
c) Applying the quantum oracle;
d) Applying the shift operator.
Due to the symmetry of the hypercube, its nodes can always be re-labeled in such way that the marked node

tx becomes node 0tx =
 [17]. The position of 0tx =

 and the fact that the initial state is an equal weight su-
perposition allows to project the quantum random walk on hypercube onto a quantum random walk on a line, as
shown in Figure 2. The basic states of the collapsed random walk on a hypercube are:

()
0

! 1 !
, ,

! dx x x

x n x
R x d x

n = =

− −
= ∑ ∑

 , (9)

() ()
0

1 ! !
, ,

! dx x x

x n x
L x d x

n = =

− −
= ∑ ∑

 . (10)

The shift operator in this collapsed random walk basis R , L becomes:
1

0
, , 1 , 1 ,

n

x
S R x L x L x R x

−

=

= + + +∑ . (11)

The quantum random walk on a line strongly depends on the position. In the basis R , L , the Grover
coin becomes:

() ()
() ()0

0

cos sin
sin cos

n
x x

x x x

C x x
ω ω
ω ω=

= ⊗ −
∑ , (12)

where ()cos 1 2x x nω = − and () () ()sin 2x n x n xω = − . The perturbed coin becomes 0 2 ,0 ,0C C R R′ = − .

4. Algorithm with Coins from Generalized Householder Reflection
Potocek et al. have shown in [17] that if the register is divided into two subspaces—for even and for odd ele-
ments―by the shift operator, they can both evolve separately. Thus, the probability to find a solution increases
twofold.

In this chapter it will be demonstrated that the same result can also be obtained by using appropriate coins.

4.1. Generalized Householder Reflection
The generalized Householder reflection ();M χ ϕ , is widely used in quantum information and it is given by the
expression:

() (); 1 χ χiM I e ϕχ ϕ = + − (13)

where χ is a normalized N-dimensional vector, generally complex, φ is the phase, I is the identity operator. In
the original SKW algorithm [15] for searching a marking coin, the operator (C1) with a minus sign is used. It can
be viewed as ();M χ ϕ with a phase equal to zero. For a walking coin (C0), the Grover’s coin is used which is
also a Householder reflection when χ is an equal-weight superposition of all basic states and the phase is
equal to π.

H. Tonchev

10

Figure 1. Quantum circuit for random walk search algorithm. The box marked as T is the random
walk search iteration and shoud be repeated t times. The value of t is shown in Section 3.

Figure 2. Projecting random walk search algorithm on a hypercube to a random walk on a line.
The marked state is shown with orange.

() (); 2 χ χM M Iχ π χ= = − (14)

In [16], the case is discussed when C0 is again an equal superposition vector, but the phase is random. In this
paper, only Householder reflection with phase equal to π will be discussed, when χ is different from the one
used in SKW.

4.2. General Form of the Coins
Here we will view the case when C0 is a standard Grover coin, as it is in the original SKW search algorithm:

0 2 c cC I s s= − , (15)

1

0

1 N
c

j
s j

N

−

=

= ∑ , (16)

where j is the j-th basis vector ()0 0,1,0 0j = , and cs is the equal weight superposition vector.
For the marking coin C1, an arbitrary Householder reflection is taken with a phase π:

1 1 12C I χ χ= − , (17)

1

1
0

N
j

j

a
j

a
χ

−

=

= ∑ , (18)

1
2

0

N

j
j

a a
−

=

= ∑ , (19)

here aj is real and 0a ≠ .

H. Tonchev

11

The coin and the random walk step are unchanged, as in the standard SKW search algorithm:

0 2nC C I= ⊗ , (20)

U SC= . (21)
The perturbed random walk coin is:

() ()0 1 0 1 12
2 ,n

c c
t tC C I C C C s s x xυ υ χ χ= − − ⊗ = − ⊗′ −⊗

 (22)

()1 12 c c
t tU SC U S s s x xχ χ= = − − ⊗′ ′ . (23)

This form is too general, so in the next subsection some examples for coins will be discussed.

4.3. Algorithm
The steps of this implementation of QRWS are the same as in the SKW search algorithm. The quantum circuit of
this algorithm is almost the same as in SKW and is shown in Figure 1, the difference being that the marking
coin is different and an additional qubit is taken which does not need to be measured at the end of the algorithm.

4.4. Examples for Some Good Coins
Some examples of coins suitable for a random walk search are proposed in this section. These examples are
probably not only the useful ones but also can be performed relatively easily in experiments. A Householder ref-
lection can easily be done with an N-pod system.

For simplicity, a hypercube with dimension 2K, instead of a hypercube with dimension N will be reviewed.

2 2nN K= = .
From here on, yi will denote arbitrary values, and yi may or may not be equal to yj at i j≠ . Also, x is an arbi-

trary value, the modulus of which is larger than the modulus of yi at any i. The number of yi as altogether is n −
1.

One case of asymmetrical coins is when ra x= , i r ia y≠ = , where iy x< , i is an integer and []0, 2i n∈ − ,
and r can be 0 or n − 1. These coins are designed for random walk search on a hypercube. They have an asym-
metrical shape which effectively leads to division of the searched space to two (Figure 4).

In the first searched subspace, the coin marks the element marked by the oracle. In the second searched sub-
space, the marking coin effectively marks one of the adjacent nodes. The matrix chosen to be used in the mark-
ing coin defines which of the nodes is marked. The division of the searched space in two requires an additional
qubit (the number of states of the register prior to the division is 2K) in order to perform the search and to have a
probability of finding a solution above 80%.

Here are two examples of such coins, depending on the way of doubling the number of states by adding a qu-
bit:

The first type of such coin is when 1na x− = , ()1 ii na y≠ − = , where iy x< , i is an integer and []0, 2i n∈ − :
2

2 2

0

K

i
i

a x y
−

=

= + ∑ (24)

This result can easily be explained when 1na = , 0i na ≠ = , α = 1. The coins C1, C0, G (see Equation (5))
differ from each other only by the sign of the components of their matrices, so they mark the same edges with
the same amplitudes. The coin C0 marks all edges connected with the states with a plus sign. The coin G
marks all edges connected with the marked state with a minus sign. The coin C1 marks all edges except the last
one with a plus sign, and the last one―with a minus sign (Figure 3). The first hypercube with size (K) for
quantum random walk search is obtained from the marked state in such way as not to include the state marked
by the coin with a minus sign (Figure 4). On the other hand, the node which is marked with a minus sign par-
takes in a hypercube with size (K) so that it does not include the marked state (Figure 4). This is second hyper-
cube in the searched space divided into two.

The number of steps needed depends on the exact values of x and yi. The quantum circuit needed for those
types of coins is shown in Figure 5.

H. Tonchev

12

(a) (b) (c)

Figure 3. Difference between uses of a marking coin in: (a) SKW search algorithm on a hypercube; (b)
Standard walk on hypercube of Grover Coin with no marked state; (c) Implementation of walk with ge-
neralized Householder reflection coin ();M χ ϕ . In general case coin is asymmetric. Here angle ϕ is

equal to π , and χ is described in the text. Green denotes a minus sign, cyan denotes a plus sign,
orange denotes a marked state, and in black is the state before the coin is applied.

Figure 4. The simplest case is when ra x= , i r ia y≠ = , where iy x< , where r can be any number in

the interval []0, 1n − . Those coins are designed for random walk search on a hypercube. They have an
asymmetrical shape, which leads to effective division of the searched space into two hypercubes. Green
denotes a minus sign, cyan denotes a plus sign, orange denotes a state not marked with the marking coin,
but marked by the asymmetry of the marking coin, and in black is marked the state where the coin for
unmarked state is applied. In the first hypercube is the state marked with the marking coin (its nodes are
denoted by unprimed numbers). The second hypercube contains the state marked by the assymetry of the
marking coin (its nodes being denoted by primed numbers); the second hypercube does not contain nodes
from the first one. Double primed boxes show that the whole hypercube can be reviewed as a hypercube
with dimension reduced by one. The figure is drawn as a cube for simplicity and easier understanding.
Simulations are made with Hilbert space of the coin ()log nCH H= .

The simulations are made by two qubit coins because of the absence of enough computational power to make

simulations for coins with more qubits.
Values 1na = , 0i na ≠ = , α = 1 are good for explanation of the working of the algorithm. For two qudit coins,

when they are used, the probability for finding a solution at the 6-th iteration is 0.678, and 9 iterations are
needed to obtain the maximal probability 0.859.

With two-qubit coins, 5 8na = and 1 8i na ≠ = the algorithm needs 6 random walk steps. The result of the
numerical simulation with searched element 4 is shown in Figure 6. Simulations demonstrate that these coins
can also be used when there is more than one marked state.

H. Tonchev

13

Figure 5. Quantum circuit for coins when na x= , i n ia y≠ = , where iy x< . As in Figure 1
for the SKW, the box marked by T is the random walk search iteration and should be repeated.
For the number of times, see text.

Figure 6. Result of simulating a quantum circuit with a coin with 5 8Ka = and 1 8i Ka ≠ =
and 6 random walk steps. The searched element in the simulation is 4 and the size of the node
register is 3 qubits.

It has been obtained by numerical simulations that a higher probability of finding the searched element is

achieved when 5 8na = and 1 8i na ≠ = is used.
Another type of such coin is the case when 0a x= , 1i ia y≠ = , i is an integer and []1, 1i n∈ − , where iy x< .

An example for this is the coin with 0 1a = and 1 0ia ≠ = . The quantum circuit for those types of coins is shown
in Figure 7. The algorithm needs 6 random walk steps, when the register of the coin consists of two coin qubits
and 0 5 8a = and 1 1 8ia ≠ = . The result of the simulation―in this case with searched element 2―is shown in
Figure 8. Simulations demonstrate that these coins can also be used when there is more than one marked state.

When 0 1a = and 1 0ia ≠ = , the algorithm also needs 9 iterations to obtain its maximal probability 0.859. A
higher probability of obtaining the searched element is achieved when 0 5 8a = and 1 1 8ia ≠ = , by analogy with

5 8na = and 1 8i na ≠ = .
With all other cases having this structure of the coin, when ra x= , i r ia y≠ = , i is an integer and
[) (]1, , 1i r r n∈ ∨ − , where iy x< , r can be any number in the interval []0, 1n − , the quantum circuit for ob-

taining the result will be more complicated or additional classical processing is needed.
Numerical simulations show that at least when the size of the node register N = 16, there are also other coins

with different shape of the vector χ which can be used efficiently.
Examples for such coins are when

()1 1 w
ia n i= + − , (25)

()1 w
ia n i= + − , (26)

H. Tonchev

14

Figure 7. Quantum circuit for coins when 1a x= , 1i ia y≠ = , where iy x< . The box
marked by T is the random walk search iteration and should be repeated. For the number of
times, see the text.

Figure 8. Result of the simulation of the quantum circuit with a coin with 1 5 8a = and

1 1 8ia ≠ = and 6 random walk steps. The searched element in the simulation is 2 and size of
the node register is 3 qubits.

1 w

ia i= , (27)

and when
w

ia i= . (28)

An example for such coins is when the formula (28) is used with the quantum circuit shown in Figure 5. The
probability for finding a solution is approximately 0.77, with w = 3.

Another example of search coin is when the formula (26) is used with the quantum circuit shown in Figure 7.
The probability for finding a solution is approximately 0.77, with w = 3.

The number of steps needed for the coins showed in this section is obtained by numerical simulations and has
not been found empirically yet.

5. Conclusions
A discrete quantum random walk search algorithm optimized for hypercube is discussed. A new alternative
DTRWS method for dividing the searched space in two is presented. The searched space is divided effectively
into two by using asymmetric coins, which distribute the probability of shifting into neighboring nodes non-un-
iformly.

The advantage of this method is that it preserves the topology of the hypercube and does not divide it by
modifying the shift operator. The coins are obtained by using Householder reflection, which can be easily per-
formed in experiments by using N-pod systems.

H. Tonchev

15

References
[1] Grover, L. (1996) A Fast Quantum Mechanical Algorithm for Database Search. arXiv:/9605043 [quant-ph].
[2] Yamaguchi, F., Milman, P., Brune, M., Raimond, J. and Haroche, S. (2002) Quantum Search with Two-Atom Collisions

in Cavity QED. Physical Review A, 66, Article ID: 010302. arXiv:quant-ph/0203146v1.
http://dx.doi.org/10.1103/PhysRevA.66.010302

[3] Vandersypen, L., Steffen, M., Sherwood, M., Yannoni, C., Breyta, G., and Chuang, I. (2000) Implementation of a Three-
Quantum-Bit Search Algorithm. Applied Physics Letters, 76, 646-648. arXiv:quant-ph/9910075v2.
http://dx.doi.org/10.1063/1.125846

[4] Gent, I. and Walsh, T. (1994) Easy Problems Are Sometimes Hard. Artificial Intelligence, 70, 335-345.
http://dx.doi.org/10.1016/0004-3702(94)90109-0

[5] Sze, S. and Pevzner, P. (1997) Las Vegas Algorithms for Gene Recognition: Suboptimal and Error-Tolerant Spliced
Alignment. RECOMB’97 Proceedings of the 1st Annual International Conference on Computational Molecular Biology,
Santa Fe, 20-23 January 1997, 300-309. http://dx.doi.org/10.1145/267521.267889

[6] Clark, M. and Kennedy, A. (2007) Accelerating Dynamical-Fermion Computations Using the Rational Hybrid Monte
Carlo Algorithm with Multiple Pseudofermion Fields. Physical Review Letters, 98, Article ID: 051601.
http://dx.doi.org/10.1103/PhysRevLett.98.051601

[7] Newman, M. and Ziff, R. (2001) Fast Monte Carlo Algorithm for Site or Bond Percolation. Physical Review E, 64, Ar-
ticle ID: 016706. http://dx.doi.org/10.1103/PhysRevE.64.016706

[8] Houdayer, J. (2001) A Cluster Monte Carlo Algorithm for 2-Dimensional Spin Glasses. The European Physical Journal
B—Condensed Matter and Complex Systems, 22, 479-484. arXiv:condmat/0101116 [cond-mat.dis-nn].

[9] Farhi, E. and Gutmann, S. (1998) Quantum Computation and Decision Trees. Physical Review A, 58, 915-928.
http://dx.doi.org/10.1103/PhysRevA.58.915

[10] Childs, A., Farhi, E. and Gutmann, S. (2001) An Example of the Difference between Quantum and Classical Random
Walks. Quantum Information Processing, 1, 35-43. arXiv:quantph/0103020.

[11] Childs, A., Cleve, R., Deotto, E., Farhi, E., Gutmann, S. and Spielman, D.A. (2002) Exponential Algorithmic Speedup by
Quantum Walk. arXiv:quant-ph/0209131v2.

[12] Childs, A. and Goldstone, J. (2004) Spatial Search by Quantum Walk. Physical Review A, 70, Article ID: 022314.
arXiv:quant-ph/0306054v2. http://dx.doi.org/10.1103/PhysRevA.70.022314

[13] Aharonov, Y., Davidovich, L. and Zagury, N. (1993) Quantum Random Walks. Physical Review A, 48, 1687-1690.
http://dx.doi.org/10.1103/PhysRevA.48.1687

[14] Ambainis, A. (2003) Quantum Walk Algorithm for Element Distinctness. arXiv:quant-ph/0311001.
[15] Shenvi, N., Kempe, J. and Whaley, K. (2003) Quantum Random-Walk Search Algorithm. Physical Review A, 67, Article

ID: 052307. http://dx.doi.org/10.1103/PhysRevA.67.052307
[16] Hein, B. and Tanner, G. (2009) Quantum Search Algorithms on the Hypercube. Journal of Physics A: Mathematical

and Theoretical, 42, Article ID: 085303. arXiv:0906.3094v1 [quant-ph].
http://dx.doi.org/10.1088/1751-8113/42/8/085303

[17] Potocek, V., Gabris, A., Kiss, T. and Jex, I. (2009) Optimized Quantum Random-Walk Search Algorithms on the Hy-
percube. Physical Review A, 79, Article ID: 012325. http://dx.doi.org/10.1103/PhysRevA.79.012325

[18] Tulsi, A. (2008) Faster Quantum Walk Algorithm for the Two Dimensional Spatial Search. Physical Review A, 78, Ar-
ticle ID: 012310. arXiv:0801.0497v2 [quant- ph].

[19] Long, G. (2001) Grover Algorithm with Zero Theoretical Failure Rate. Physical Review A, 64, Article ID: 022307.
http://dx.doi.org/10.1103/PhysRevA.64.022307

[20] Hoyer, S. (2008) Quantum Random Walk Search on Satisfiability Problems. PhD Thesis, Swarthmore College, Swar-
thmore.

[21] Ambainis, A., Kempe, J. and Rivosh, A. (2004) Coins Make Quantum Walks Faster. arXiv:quantph/0402107.
[22] Nayak, A. and Vishwanath, A. (2000) Quantum Walk on the Line. arXiv:quant-ph/0010117v1.
[23] Kempe, J. (2003) Quantum Random Walks—An Introductory Overview. Contemporary Physics, 44, 307-327. ar-

Xiv:quant-ph/0303081. http://dx.doi.org/10.1080/00107151031000110776

http://dx.doi.org/10.1103/PhysRevA.66.010302
http://dx.doi.org/10.1063/1.125846
http://dx.doi.org/10.1016/0004-3702(94)90109-0
http://dx.doi.org/10.1145/267521.267889
http://dx.doi.org/10.1103/PhysRevLett.98.051601
http://dx.doi.org/10.1103/PhysRevE.64.016706
http://dx.doi.org/10.1103/PhysRevA.58.915
http://dx.doi.org/10.1103/PhysRevA.70.022314
http://dx.doi.org/10.1103/PhysRevA.48.1687
http://dx.doi.org/10.1103/PhysRevA.67.052307
http://dx.doi.org/10.1088/1751-8113/42/8/085303
http://dx.doi.org/10.1103/PhysRevA.79.012325
http://dx.doi.org/10.1103/PhysRevA.64.022307
http://dx.doi.org/10.1080/00107151031000110776

	Alternative Coins for Quantum Random Walk Search Optimized for a Hypercube
	Abstract
	Keywords
	1. Introduction
	2. Classical and Discrete Quantum Random Walk, Quantum Random Walk on Line
	3. Quantum Random Walk and Search on a Hypercube
	4. Algorithm with Coins from Generalized Householder Reflection
	4.1. Generalized Householder Reflection
	4.2. General Form of the Coins
	4.3. Algorithm
	4.4. Examples for Some Good Coins

	5. Conclusions
	References

