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Abstract 
The improved Boussinesq equation is solved with classical finite element method using the most 
basic Lagrange element k = 1, which leads us to a second order nonlinear ordinary differential 
equations system in time; this can be solved by any standard accurate numerical method for ex-
ample Runge-Kutta-Fehlberg. The technique is validated with a typical example and a fourth order 
convergence in space is confirmed; the 1- and 2-soliton solutions are used to simulate wave travel, 
wave splitting and interaction; solution blow up is described graphically. The computer symbolic 
system MathLab is quite used for numerical simulation in this paper; the known results in the bib-
liography are confirmed. 
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1. Introduction 
The improved Boussinesq equation (IBq) was proposed in Bogolyubsky’s work [1], like a correct modification 
to solve the bad Boussinesq equation (BBq) which describes a large group of nonlinear dispersive wave 
phenomena, such as propagation of long waves on the surface of shallow water in both directions, propagation 
of ion-sound waves in a uniform isotropic plasma, and so on [2]. Bogolyubsky has also shown that the BBq 
equation describes an unphysical instability of short wave lengths and the Cauchy problem for this partial 
differential equation is incorrect. The BBq equation was first introduced in the 1870s by Joseph Boussinesq [3], 
which is given by  
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( ) ( ) ( )( ) ( ) ( )2, , , , , , , 0,tt xx xxxxxx
u x t u x t u x t u x t x a b t= + + ∈ >                     (1) 

where ( ),u u x t=  is a sufficiently differentiable real function, the correct modification to this partial dif- 
ferential equation is given by  

( ) ( ) ( )( ) ( ) ( )2, , , , , , , 0,tt xx xxttxx
u x t u x t u x t u x t x a b t= + + ∈ >                     (2) 

which is the IBq and will be the principal study equation of this paper; it is convenient for computer simulation 
of the dynamics of different nonlinear waves with weak dispersion; in our case the IBq equation will help to 
formulate the finite element discretization in the spatial direction with the primal L2-Galerkin finite element 
formulation [4] [5]; this due to the correction in the fourth order derivative term which now leads us to the 
integral of a discontinuous function over a set of measure zero (for the Lagrange finite element 1k = ). The IBq 
(2) has the 1-soliton solution [6].  

( ) ( )
1 2 1 2

2
0

1 2, sech , 1 ,
6 3

u x t x t xαα β β α
β

    = − − = ± +    
     

                    (3) 

where 0α > , is the wave amplitude, β  is the wave speed and 0x  is the soliton center of symmetry. The 
initial displacement and velocity condition to the (2) equation are assumed to have the form.  

( ) ( ) ( ) ( ) ( ),0 , ,0 , , ,tu x f x u x g x x a b= = ∈                            (4) 

where ( ): ,f a b →   and ( ): ,g a b →   are given functions in each example. 
The boundary conditions at ,x a x b= =  are assumed to be  

( ) ( ), 0, , 0, 0,u a t u b t t= = >                                   (5) 

( ) ( ), 0, , 0, 0.x xu a t u b t t= = >                                  (6) 

Linearization techniques and finite differences are employed in most numerical works that solve the IBq [7]- 
[10]; they need a relevant stability relation between the space and time discretization size, obtained by the 
Fourier method of analyzing stability and the Von Neumann’s necessary criterion for stability [11] [12]; in  
contrast with the method proposed in this paper such a restriction is not needed. The nonlinear term ( )( )2 ,

xx
u x t   

which for the finite difference method is a problem and needs to be linearized with the help of bounds solutions 
and/or iterative approach [10] is not a problem in our work which is treated formally by the L2-Galerkin finite 
element formulation and leads us due to the reduced support in the basis functions to a time dependent tridia- 
gonal antisymmetric square matrix for the 1k =  Lagrange element case, so the only linearization is inherent to 
the finite element method; in this way the following Lagrange elements 2,3k =  are expected to work with 
better convergence properties in the x direction. The ( )4O h  convergence in the proposed method is verified 

with the standard procedure [13] using .
∞ -norm. Wave propagation, wave break up, inelastic and elastic 

head-on collision, and blow-up solution are modeled and graphics representations are done [14].  

2. The Classical Finite Element Method 
The classical finite element method relies over two basic ingredients [4] [5], the first is a weak or variational 
formulation for the IBq equation which is obtained for a fixed t by multiplying with a test function  

( )1
0 ,v V H a b∈ =  

where ( )1
0 ,H a b  is the standard Sobolev space [15] defined by  

( ) ( ) ( ) ( ){ }1
0 2, : 0, , , ,xH a b w w a w b w w L a b= = = ∈                        (7) 

the subindex and superindex 0, 1 refers to boundary conditions and to the derivative order that should belong to 
( )2 ,L a b  respectively, and integrate over ( ),a b  to get after integrating by parts and applying the boundary 
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conditions (5), the variational formulation for the IBq equation. 
Find u V∈  such that for 0t >   

( ) ( ) ( )( ) ( )( )2, , , , d 0,
b

tt x x x xtt xa x
u x t v u x t v u x t v u x t v x v V+ + + = ∀ ∈∫                   (8) 

A classical (or conforming) approximation of u is obtained by looking for a function ( )1
0 ,hu V V H a b∈ ⊂ =  

with hdimV < ∞  such that  

( ) ( ) ( )( ) ( )( )2, , , , d 0,
b

tt x x x xtt x ha x
u x t v u x t v u x t v u x t v x v V+ + + = ∀ ∈∫                 (9) 

The second basic ingredient for the classical finite element method is to choose the finite dimensional 
subspace hV , in our case will be constructed with the finite element 1k =  from the Lagrange family [4] [5], to  
this end let 0 1 1N Na x x x x b+= < < < < = , be a partition of the interval ( ),a b  into subintervals 

( )1,e e ex x−Ω =  of length 1, 1, , 1e e eh x x e N−= − = + , in our work a non adaptive mesh will be considered so  
, 1, , 1eh h e N= = + , we now let hV  to be the set of functions v such that v is linear on each subinterval ,e vΩ   

is continuos on ( ),a b  and ( ) ( ) 0.v a v b= =  As parameters to describe a function hv V∈  we may choose the 

values ( ),i iu u x t=  at the node points , 1, ,ix i N=  . Let us introduce the linear basis functions 
, 1, ,j hV j Nϕ ∈ = 

, defined by [5] 

( ) 1 if
0 if . , 1, ,j i

i j
x

i j i j N
ϕ

=
=  ≠ = 

 

In this way for each 0t >  a function h hu V∈  has the unique representation  

( ) ( ) ( ) ( )1, , ,N
h i iiu x t u t x x a bϕ

=
= ∈∑  as a linear combination of the basis functions iϕ , and hV  is a linear 

vector space of dimension N  with basis { } 1

N
i i

ϕ
=

= . The variational problem (9) is equivalent to the follow- 

ing L2-Galerkin space semi-discretization for the IBq equation. Find hu V∈  such that  

∈∀+++∫ vdxvtxuvtxuvtxuvtxu xxttxxxxtt
b

a
0,=)),()),((),(),(( 2                  (10) 

If we substitute ( ) ( ) ( )1, N
i iiu x t u t xϕ

=
= ∑  and take in turn v∈  in (10) we will obtain a second order in 

time nonlinear ordinary differential equations system to aproximate ( ), , 1, , , 0,iu x t i N t= >  which in matrix 
notation is 

( ) ( ) ( )( ) ( ) ( ) 0MU t KU t C U t U t KU t+ + + =                           (11) 

where ( ) ( ) ( ) T
1 , , , 0 N

NU t u t u t= ∈    , ( )( ), ,M K C U t  are N by N matrices which will be calculated in the 

next section and as before ( ) ( ),i iu t u x t= . 

3. The Finite Element Computational Aspects 
As is usual all finite element computations like integration, interpolation are done over the master element 

[ ]ˆ 1,1 ,Ω = −  over Ω̂  the following local basis functions are needed to integrate, 

( ) ( ) ( ) ( )1 2
ˆˆ ˆ ˆ ˆ ˆ1 2, 1 2,x x x x xϕ ϕ= − = + ∈Ω                           (12) 

they have the property ( ) ( )1 11 1, 1 0ϕ ϕ− = + =  and ( ) ( )2 21 0, 1 1,ϕ ϕ− = + =  see Figure 1. 
The local finite element matrices are calculated over Ω̂  with the help of functions in (12) then multiplied  

by the respective scale factor, to get the finite element matrix over , 2, ,e e NΩ =  , then we need to do the  
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Figure 1. Local basis functions associated to the points −1, +1.                          

 
typical finite element assembly to get the global matrices ( )( ), ,M K C U t . For instance the matrix M, using the 

scale factor 2h  is constructed from ˆM
Ω

 in the following way  

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
1 1 1 21 1

ˆ 1 1
2 1 2 21 1

ˆ ˆ ˆ ˆ ˆ ˆd ( )d 2 3 1 3
1 3 2 3ˆ ˆ ˆ ˆ ˆ ˆd d

x x x x x x
M

x x x x x x

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

+ +

− −
Ω + +

− −

 
  = =       

∫ ∫

∫ ∫
 

transforms to  

( ) ( )
2 3 1 3 2 1

= 2 6 2, ,
1 3 2 3 1 2e

M h h e NΩ
   

= =   
   

  

and after assembly from element 2 to N, M is given as follows 

( )

2 1 0 0
1 4 1 0

6 ,0 1 4 0

0 0 0 2

M h

 
 
 
 =
 
 
  







    



 

over 1Ω  and 1N +Ω  the basis functions should satisfy the respective boundary conditions (5), assembling 
these components to the last M we finally arrived to 

( )

4 1 0 0
1 4 1 0

6 ,0 1 4 0

0 0 0 4

M h

 
 
 
 =
 
 
  







    


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analogously for K whose scale factor for integration is ( )2 h , 

( )

2 1 0 0
1 2 1 0

1 ,0 1 2 0

0 0 0 2

K h

− 
 − − 
 =
 
 
  







    



 

the matrix ( )( )C U t  follows the same steps with scale factor ( )2 h   

( )( )( ) 2 1

, 1ˆ 1
ˆ2 d , , 1, 2.i k j ki j

k
C U t u x i jϕ ϕ ϕ

+

−Ω =

 ′ ′= =  
∑∫  

( )( ) ( ) 1 1

1 1

1 , 2, ,
e

e e e e

e e e e

u u u u
C U t h e N

u u u u
− −

Ω
− −

− − 
= = − + − + 

  

finally after assembly and putting the boundary conditions  

( )( ) ( )

1 2 1 2

2 1 1 2 3 2 3

3 2 2 3 4

2 1

2 0 0
2 0

1 0 2 0 ,

0 0 0 2N N

u u u u
u u u u u u u

C U t h u u u u u

u u− −

− − 
 − − + − − 
 = − − + −
 
 
 − + 







    



 

this matrix represents the nonlinearity in the IBq Equation (2), the anti-symmetry structure is related to the 
1k =  Lagrange finite element and to the primal variational formulation and not to nonlinearity.   

4. The Initial Value Problem 
With the matrices KM ,  and ( )( )C U t  at hand it is possible to solve the nonlinear initial value problem (11), 
to get a unique solution it is necessary to impose the initial conditions (4), the system (11) is equivalent to  

( ) ( ) ( )( ) ( ) 0M K U t K C U t U t + + + = 
                             (13) 

the matrix M K+  is a tridiagonal positive definite and therefore invertible [14], as is usual with second order 
systems, one should introduce a new vector variable ( ) ( )V t U t=   in this way the system (13) is equivalent to  
the next first order nonlinear system of ordinary differential equations:  

( ) ( )U t V t=                                         (14) 

( ) ( ) ( )( )1V t M K K C U t−  = − + + 
                              (15) 

with initial conditions  

( ) ( ) ( ) ( ) ( ) ( )T T
1 10 , , , 0 , ,N NU f x f x V g x g x   = =                        (16) 

the system (14) and (15), (16) is a standard initial value problem that can now be solved by integration 
algorithms like predictor corrector [9] [11] and not by simply fourth order Runge-Kutta method. This paper will 
employ Runge-Kutta-Fehlberg of fourth and fifth order with variable time step size, the fifth order method will 
work like a predictor and the fourth order like a corrector [16].   

5. Numerical Examples 
Firstly in Numerical Validation, the proposed method is used for the numerical wave propagation simulation, 
and comparing this simulation with the exact solution we validate the method, we are really approximating the 
soliton solution by a non-classical one, the compacton [17]. 
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1. Numerical Validation. We set 00.5, 0xα = =  and ( )1 2 3β α= +   

( ) ( )
1 2

2
0

1sech ,
6

f x x xαα
β

  = +  
   

                              (17) 

( )
1 2 1 2 1 2

2 21 12 sech tanh ,
6 6 6

g x x xα α αα
β β

        =         
           

                    (18) 

the exact solution is given by (3), we discretize over [ ]30,150x∈ −  and [ ]0,100t∈ , the numerical results  
are compared for t = 20 with the exact solution at some points in Table 1, where hU  means the numerical 
solution, and the wave propagation numerical graphic is illustrated by Figure 2 and Figure 3 where the level 
curves are showed. 

2. Wave brake-up. With the same ( )f x  as in Numerical Validation, 0 30x =  and ( ) 0g x =  we will 

have an example of wave brake-up propagation, taking ( ) [ ] [ ], 30,90 0,40 .x t ∈ − ×  Figure 4 is plotted with the 
numerical solution and Figure 5 shows the level curves.  

 

 
Figure 2. Soliton propagation.                                                      

 
Table 1. Comparison of numerical and exact solution, 0.15h = .                                                   

x ( ), 20hU x  ( ), 20U x  Error 

15.1124 0.0358 0.0356 0.0002 

20.0583 0.2944 0.2949 0.0005 

22.9059 0.4990 0.4988 0.0002 

25.0042 0.4016 0.4013 0.0003 

30.0999 0.0567 0.0567 0.0000 

35.0458 0.0050 0.0050 0.0000 
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Figure 3. Level curves for soliton propagation.                  

 

 
Figure 4. Soliton brake-up.                                   

 

 
Figure 5. Level curves for soliton brake-up.                     
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3. The head-on wave collision. In this example we take  

( ) [ ] [ ] ( )0, 60,90 0,40 , 20, 1 2 3 , 1,2,i ix t x iβ α∈ − × = = + =  with 1 1.0α =  and 2 0.5α =   

( ) ( ) ( )
1 2 1 2

2 21 2
1 0 2 0

1 2

1 1sech sech ,
6 6

f x x x x xα α
α α

β β

      = + + −      
         

                  (19) 

( ) ( ) 0, ,tg x f x t
t =
∂

=
∂

                                      (20) 

A negative speed indicate a wave traveling to the negative x side direction, so the two waves will have a 
head-on collision [18]. We obtain an inelastic collision, the Figure 6 shows the collision intercourse and Figure 
7 the level curves where secondary solitons are visible, hence the collision is inelastic. 

 

 
Figure 6. Inelastic head-on collision.                                   

 

 
Figure 7. Level curves for inelastic head-on collision.                     
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The next examples are done with different amplitudes 1 2,α α . 
If 1 20.5, 2α α= = , the collision is inelastic.  
If 1 21, 1α α= = , the collision is inelastic.  
If 1 20.4, 0.4α α= = , the collision is elastic.  
If 1 20.5, 0.5α α= = , the collision is still elastic. The Figure 8 and Figure 9 show this case.  
These results are in good agreement with those reported elsewhere [1] [8]. 

 

 
Figure 8. Elastic head-on collision.                                           

 

 
Figure 9. Level curves for elastic head-on collision.                               
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4. Blow-up solution. The blow-up solution is now simulated as discussed in [19] [20], the IBq (2) is solved  
numerically on [ ]0,1 ,x∈  with 200 finite elements in the x direction and [ ]0,1.8t∈  with initial conditions 
given by  

( ) ( ) ( ) ( )3sin π , sin πf x x g x x= − = −                              (21) 

It is know [19] the existence of 0 0,T >  such that exist unique local solution with ( )
2

.,
L

u t → +∞  as 

0t T→  by the left side and ( ) ( ) ( )1

0
, sin π dI t u x t x x= → −∞∫  as 0t T→  by the left side, Figure 10 and 

Figure 11 show the numerical results for some fixed times between 0=t  and 1.8=t . 
5. Convergence Order. For our technique, the convergence order will be calculated in the usual way using 

the results from Numerical Validation, as the following Table 2 shows the rate of convergence for Lagrange k = 
1 finite element is ( )4O h  in space. 

6. Conclusion 
A concrete development of a practical 1k =  finite element scheme is used to make a semi discretization in the 
x direction and reduce the IBq equation to a system of ordinary differential equation with initial value; this de- 
velopment open the door to try the next 2,3k =  Lagrange finite elements to get a better convergence property 
in the x direction, and the numerical results are highly accurate as Numerical Validation shows. A wave  

 

 
Figure 10. Solution blow-up for 1.6t = .                                             

 
Table 2. Convergence order.                                                                                 

Number of elements Error in .
∞

-norm C.O. 

20 0.38524837209495  

40 0.05864516158548 2.715704864 

80 0.00361236523776 4.020996413 
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Figure 11. Solution blow-up for 1.8t = .                                            

 
brake-up result if the initial pulse is steady. The head-on collision is successfully simulated to different wave 
amplitudes to obtain the existence of a critical value 0.5. If the amplitudes are below or even equal to this critical 
value, the head-on collision is elastic and the graphics show a clean interaction before and after the collision. If 
one or two of the amplitudes are greater than the critical value, the head-on collision is inelastic and the graphics 
show a secondary soliton interaction. It has been verified numericaly the existence of a blow-up solution in 
finite time to a theoretical problem and was noted that for the 2,3k =  Lagrange finite elements the trivial 
boundary conditions should be incorporated with care. A fourth order convergence is verified calculating in the 
usual way the sucessive quotients errors in the infinity norm [13]. The numerical technic can be implemented 
using mathematical software where many solvers for the initial value problem are available. The nonlinear term 
in the IBq does not need a special handle like bounds or iterative procedures; this term led us to a nonlinear time  
dependent matrix called ( )( )C U t  which at each prediction and correction will change as solution does. The 
results are in good conformity with those reported by Bogolyubskii [6].  
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