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Abstract 
The significant effect that scheduling has upon the severity and types of drug toxicity has been 
known for many years. Evidence is available demonstrating that the schedule chosen will substan-
tially effect the relative distribution of drug to various target organs. It has been shown that a 
likely cause for this with doxorubicin is that the efficiency of the various enzyme complexes re-
sponsible for disposing of the drug can be affected by scheduling. We believe a similar process can 
explain the marked effect that scheduling has on the pattern of 5-fluorouracil toxicity and present 
both clinical and computer data to illustrate this. 
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1. Introduction 
Up to the present time most initial anti-cancer chemotherapeutic regimes have been empirically designed, with 
several different types of schedule being compared. It is not unusual for a different pattern of organ toxicities to 
change as the structure of the protocol changes. It is the premise of this paper that these differences arise, at least 
in part, because the relative efficiency of enzymatic processes related to the intake and disposition of the drug by 
the tumor and various normal organs systems are dependent upon the schedule used. If the pharmacologic para-
meters of the tumor and various sensitive normal tissues are known, a computer program can help in formulating 
an optimum schedule. This paper, using 5-fluorouracil as an example, attempts to illustrate this. 

2. Methods 
The protocols used as the basis for the bolus schedule were that of Curreri et al. [1], Weiss et al. [2], and Ken-

http://www.scirp.org/journal/jct
http://dx.doi.org/10.4236/jct.2015.63028
http://dx.doi.org/10.4236/jct.2015.63028
http://www.scirp.org
mailto:ajw.law150@gmail.com
http://creativecommons.org/licenses/by/4.0/


A. J. Weiss 
 

 
252 

nedy et al. [3]. They consisted of a loading dose, given over 3 to 4 days by daily bolus, followed by weekly drug 
given by bolus. 

That used as basis for the low dose continuous infusion schedule was described by Lemon et al. [4] [5]. The 
total amount required varied among patients and daily dosage selected, but on average, an increase of 155% of 
the bolus dose was required to obtain comparable hematologic toxicity. 

3. Clinical Results 
The clinical results of the bolus groups can be summarized as follows. 

4. Bolus [1]-[3] 
Hematologic Toxicity grade 3, Stomatitis grade 3, Diarrhea, grade 4 Cardiac grade 0. Initial Mortality 30% Ad-
justed dose Mortality 1.2%. 

5. Continuous Infusion [4] [5] 
Hematologic Toxicity grade 3, Stomatitis grade 3.5, Diarrhea, grade 0.5. Cardiac grade 1, Mortality 0.5%. Total 
Dose required for equivalent hematologic toxicity = Average Bolus Dose × 1.55.  

6. Computer Data [6] 
The basis of the computer program is described in reference [6]. The Components chosen for the computer si-
mulation are noted in Table 1 and results of the computer calculations concerning the relative organ uptakes as 
they are affected by schedule change are presented in Table 2. 
 
Table 1. Michaelis-Menten Equation |dS/dT = S*Vmax/(Km + S)|S = 5-fluorouracil.                                         

 Vmax in Km in Vmax out Km out 
WBC 6 2 2 2.5 
GUT 8 3 1 1 

ORAL 5 3.5 3 2 
MUCOSA     
HEART 4 3 4 1.5 

 
Table 2. Amount of 5-fluorouracil retained by each organ system.                                                       

 BY BOLUS BY 21 DAY By 6 DAY 

Total Dose required  Infusion Infusion 

So that retained dose in    

Hematopoietic Tissue =    

100 U 143 U 250 U 183 U 

Retained BY Hematopoietic 100 U 100 U 100 U 

Tissue {DLT}    

Retained by GUT 236 U 82 U 106 U 

 When 143 total When 250 total When 183 total 

 Units given Units given Units given 

Retained by ORAL 104 U 132 U 125 U 

MUCOSA When 143 total When 250 total When 183 total 

 Units given Units given Units given 

Retained By HEART 79 U 139 U 94 U 

 When 143 Total When 250 total When 183 total 

 Units Given Units given Units given 
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Representative values of Vmax’s and Km’s were obtained from references [7]-[10]. 
These findings of drug retention for each organ system parallel all the clinical findings concerning drug toxic-

ity described in the methods section as well as the general medical literature [1]-[5] [11]-[14]. 

7. Discussion 
The administration of almost all anti-cancer chemotherapeutic agents commonly affects one or more potentially 
fatal, dose limiting organ systems, with the hematopoietic component being by far the most common. Fortu-
nately this is almost always rapidly and essentially completely reversible, as is toxicity to the oral mucosa and 
mucosa of the intestine. Other forms of toxicity such as that to the heart, kidney, or nervous system may be par-
tially or totally irreversible [15] [16]. While hematological toxicity is dose limiting in the majority of agents in 
common use, the degree of toxicity to other organ systems can also be dose limiting and be substantially af-
fected by the schedule used. The degree of toxicity to the heart associated with the administration of one of the 
anthracyclines [17] [18], the degree of toxicity to the gut from the administration of 5-fluorouracil [1]-[5] [11]- 
[14], and the degree of neurotoxicity from the taxanes [19] are significantly decreased when the drug is given by 
slow intravenous infusion while the degree of stomatitis from these agents is increased by repeated low dose in-
jections or by continuous, slow infusion.  

In some cases, such as with doxorubicin, the total dose required to in hematological toxicity is relatively in-
dependent of schedule [17] [18], in others, 5-fluorouracil for example, it is dependent upon the schedule used 
[11] [14]. 

5-fluorouracil is a pyrimidine derivative whose primary mode of action is believed to be inhibition of thymi-
dylate synthetase thereby preventing DNA synthesis. However, its effect on cell metabolism is known to be 
complex, interfering with RNA function and protein synthesis are also believed to be factors in its anti-tumor 
activity [20]-[23]. Both uptake and disposition of the drug are known to be active processes with dihydropyri-
midine dehydrogenase being a major factor, especially in the liver; several other enzyme complexes are also 
known to be important and present in different strengths in many tissues [24]-[28]. This is unlike doxorubicin 
cellular metabolism, in which passive diffusion, an essentially linear process, is believed to be responsible for 
most cellular ingress processes, and many cells lack any means of disposing of intra-cellular drug [18] [29]-[31]. 
Thus compared to programs studying the effect of schedule changes upon doxorubicin toxicity, the programs 
analyzing cellular metabolism of 5-fluorouracil are complex. 

Surveying the many studies involving 5-Fluorouracil reveal the following. With almost all the original proto-
cols and many that follow, the drug was given by bolus, usually over a period of 15 minutes or less, daily for 3 
to 4 days, commonly followed by weekly bolus injections. In the early trials drug induced mortality was quite 
high, primarily due to a gram negative septicemia secondary to overwhelming diarrhea and drug induced necro-
sis of bowel mucosa. In essentially all of the protocols where the 5-fluorouracil was given by bolus, WBC sup-
pression, stomatitis and diarrhea were major factors [3]-[6]. Somewhat later, protocols were devised in which 
the drug was given by infusion, either for relatively short period of times or over many days. Here the pattern of 
toxicity differs. While the stomatitis was similar or somewhat what increased, the amount of diarrhea was either 
markedly diminished or totally gone. Despite equivalent degrees of neutropenia, drug induced mortality was al-
so markedly lowered. The amount of drug required to induce an equivalent degree of neutropenia was also sub-
stantially increased [3] [4]. Unlike the anthracyclines, evidence has been presented that 5-fluorouracil was more 
cardio-toxic when given by slow, low dose infusion than when it was given by bolus [12]-[14] [32]-[37]. 

The computer program used predicted that, assuming the various VMax and Km values entered were repre-
sentative of true values, the amount of the drug required to produce a specific degree of hematological toxicity 
was significantly affected by the type of schedule, primarily because both efficiency of uptake and disposition of 
the drug are dependent upon his schedule. The computer also predicted a marked decrease in the retention of 
drug by the gut when the drug is given by low dose continuous infusion, thus explaining the clinical finding of 
the marked decrease in diarrhea and sepsis found when the drug is given by slow infusion. It also predicts an in-
crease in the amount of drug accumulated by the heart and mucosa of the mouth and upper airway. Therefore, 
variations in enzymatic functions concerning drug uptake and disposal of various target organs can explain the 
clinical findings concerning the effect of schedule modification on selective drug toxicity. 

The relationship of the pharmacologic parameters of both tumor and normal tissues and scheduling has rarely 
been discussed, even though the effect of a change of schedule upon differential organ toxicity can be major and 
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associated with a substantial shift in drug away from a critical target tissue such as the heart [3]-[9] [15] [16]. 
Thus Pacciarini et al. demonstrated that dividing a weekly dose of doxorubicin into 4 parts decreased the dox-
orubicin AUC in the heart of 3LL tumor bearing mice from 17,121 U to 5919 U, a loss of approximately 65%, 
while uptake in tumor increased a minimal amount and uptake in spleen showed a minimal decrease [38]. Both 
this paper and a previous paper that utilized a computer program demonstrated that these findings could be pre-
dicted to occur, provided that the appropriate parameters were used [3] [19]. With protocols in which drug enters 
cells of all tissues including tumor by passive diffusion and there exists one or more organ systems that have ac-
tive enzymatic systems that can neutralize the drug, protocols that keep the plasma drug as low as possible will 
protect that organ system. Also this protocol would not protect those tissues that lack such a protective system. 
With drugs such as 5-fluorouracil where active enzymatic processes control both drug influx and disposition, 
and are known to exist in almost all cell types, including hematopoietic tissue, cardiac myocytes, and cells of the 
gastrointestinal tract, the situation is much more complex, since unlike the situation with doxorubicin, where 
qualitative differences exist between various cell types, here the influx and efflux processes may not differ be-
tween cell types the only differences are quantitative [34]-[37]. Nevertheless, as demonstrated in Table 2, these 
differences can result in marked changes in the differential uptake and disposition of 5-fluorouracil between 
various target tissue types. 

An important but unknown factor in this approach is that the effect of schedule change upon tumor uptake has 
not been addressed. One reason for this is that tumor response rate in those tumors that are sensitive to 5-fluo- 
rouracil appear to be relatively independent of choice of schedule [3]-[15] [18]. The marked changes is the de-
gree of toxicity with changes in scheduling suggest that similar changes in tumor drug sensitivity can occur with 
schedule changes; perhaps determining the appropriate constants for each tumor will substantially increase the 
effectiveness of such therapy. 

The fact that such major changes in the pattern of toxicity occurs when schedule is altered suggest that further 
schedule modification may yield a pattern of toxicity that is more acceptable as far as non hematological toxicity 
is concerned. This is illustrated in Table 2 where a modification of scheduling modifies all aspects of non he-
matological toxicity to a more acceptable level for the two forms of toxicity that are life threatening, while 
causing only slight changes in other areas of toxicity. 

It is not our contention that the pharmacologic parameters chosen are the real factors; It is only that this ex-
ample illustrates that specific parameters of complexes responsible for uptake into both the neoplasm and spe-
cific normal tissues that limit the amount of drug a patient may receive may differ enough to markedly influence 
the pattern of toxicity caused by any specific agent, thus altering the LCT. This may occur even though the en-
zymes concerned are identical; only their specific environment, i.e. pH, electrolyte composition, etc varies, thus 
changing the efficiency of the enzyme complexes involved in both 5-fluorouracil and doxorubicin metabolism 
[23] [24]. 

It also illustrates the principle that theoretically, provided that the data is available, a computer program may 
optimize the pattern of non hematological drug toxicity other than a hypothetical effect of drug upon regional 
blood flow [17], the author is not familiar with any other proposal to explain the marked effect that changes in 
scheduling has upon the pattern of drug toxicity. 

8. Conclusion 
A hypothesis has been put forward to explain the marked effect that modification of scheduling has upon the 
differential organ toxicities of many anti-cancer agents. The hypothesis states that local factors and the concen-
tration of drug influence the relative activity of the enzymatic processes responsible for drug influx and disposi-
tion and the marked difference in drug concentration resulting from a change from short term bolus therapy to 
low dose continuous infusion can have a substantial effect upon the relative activities of these enzymatic processes 
in the target organs primarily due to the relative inefficiency of enzymatic activity at high tissue drug levels. 
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