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Abstract 
Underwater Wireless Communication, largely dependent on the acoustic communication between 
the machines, is largely affected by various types of noise in the shallow and deep water. However 
ambient noise which is due to multiple sources (e.g. shipping, wind) and no one source dominates. 
Ambient noise masks the acoustic signal to a large extent. Hence today it has drawn the attention 
of the experts to reduce its effect on the received signal. This paper discusses ambient noise prob-
lem and devises a new wavelet thresholding method to reduce its effect. Afterwards a comparative 
study on statistical parameters is shown to prove the efficiency of the devised method. 
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1. Introduction 
Compared to radio waves, acoustic waves have become the most effective way in underwater wireless commu-
nication [1]. It is because radio waves are highly attenuated and spreading occurs due to high frequency. Hence 
they can propagate only over very short distances. On the other hand if acoustic waves are used, long distance 
communication can be established. However underwater wireless communication is still challenging due to fre-
quency band limitation and underwater channel disturbances in the form of ambient noise. The disturbance is 
generated by both natural (seismic, wind marine animals, rain, breaking waves etc.) and manmade sources 
(shipping, other machineries etc.). We will discuss ambient noise properties in details and reducing algorithm 
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afterwards [2]-[4]. 

2. Ambient Noise 
Oceans are filled with various types of sound which may be generated by natural or man-made sources. Break-
ing waves, rain, marine, shrimp, volcanoes, earthquakes can be god examples of natural sources. Ships, military 
sonars exemplify man made sources. 

This background noise present in the ocean is called ambient noise. All types of noise is not present every-
where all the time. 

Category by Frequency 
Ambient noise sources can be categorized by frequency. The typical frequency range of various types of ambient 
noise is shown by Wenz in the Wenz curve [5]. In the range of 20 Hz to 500 Hz, the noise is primarily due to 
distant shipping. In this range frequency content can be detected even after eliminating other types of shipping 
noise at the receiver. Moreover it is easy to understand that the noise level expressed in terms of signal power 
level (SPL) will be greater where shipping traffic is heavier. For example, low frequency ambient noise level is 
lower in the southern hemisphere as shipping traffic is very low. In the frequency range 0.5 KHz to 100 KHz the 
noise is mainly due to spray and bubbles associated with breaking waves. In this range noise is proportional to 
wind speed that is noise level increases with increasing wind speed. Above 100 KHz thermal noise dominates 
which arises due to random motion of water molecules. Thermal noise determines the ultimate minimum level 
of sound that can be used for communication purpose in a particular time and location [6].  

3. Wavelet Transform 
Wavelets are mathematical functions which break up the data into different frequency components and hence 
each frequency component can be studied at different resolution. Wavelet analysis is superior to Fourier analysis 
in the sense that Fourier analysis is well suited for frequency analysis but if we require time frequency analysis 
then Fourier analysis becomes useless. That is wavelet analysis provides us with time frequency data of the sig-
nal. That is we can determine through wavelet analysis where and at what frequency noise spikes or discontinui-
ties occur. In fine wavelets are specially designed for non-stationary signals which are transient in behavior [7] 
[8].  

4. Wavelet Thresholding 
For many signals, the low-frequency content is the most important part as because it contains the information. The 
high-frequency content, on the other hand, imparts flavor or nuance. Considering the human voice, If we remove 
the high-frequency components, the voice sounds different, but we can still tell what's being said. However, if we 
remove enough of the low-frequency components, we hear gibberish. In wavelet analysis, we often speak of ap-
proximations and details. The approximations are the high-scale, low-frequency components of the signal. The 
details are the low-scale, high-frequency components. The thresholding process of wavelet coefficients can be 
divided into two steps.  

4.1. Step 1 
The first step is the policy choice, i.e. the choice of thresholding function T. Two standard choices are hard and soft 
thresholding mentioned as hardT  and softT  respectively with corresponding transformations are given by,  

( )hard , 0    when    j jT d dλ λ= >                              (1) 

( )hard ,     when    j j jT d d dλ λ= <                              (2) 

( )soft , 0    when    j jT d dλ λ= ≤                              (3) 

( )soft ,     when    j j jT d d dλ λ λ= − >                             (4) 
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( )soft ,     when    j j jT d d dλ λ λ= + < −                           (5) 

The hyperbola function is as stated below, 

( ) ( ) ( )2 2
hyper , sgn     when    j j jT d d d dλ λ λ= ∗√ − >                     (6) 

( )hyper , 0    when    j jT d dλ λ= >                             (7) 

The hyperbola function in (6) and (7) is a compromise between soft and hard thresholding functions. The 
function hyperT  is an almost hard thresholder with the continuity property [9]-[11]. 

4.2. Step 2 
The second step is the choice of threshold value [12] [13]. Donho and Johnston (1993) proposed a threshold λ  
defined as follows: 

( )2 logNλ σ= ∗√ ∗  which is called universal threshold by the authors. This threshold is one of the oldest 
and provides fast and easy thresholding. There are several possibilities for the estimator σ . Some standard es-
timators are mentioned in (8) and (9): 

( )222
1,1

1

1
2

N
n ii d d

N
σ −=

= ∗ −
−

∑                             (8) 

( )2
1,

1 MAD , 1,2,3, ,
0.6745 n id i mσ −= ∗ =                          (9) 

where  
n  is the highest level of decomposition; 
d =  mean value of coefficients at level n ; 
i =  number of coefficients.  

5. Proposed Thresholding Method 
The new thresholding method consists of thresholding value estimation and thresholding function design both 
for detail and approximation coefficients at each level of wavelet decomposition. Detail coefficients carry the 
original information signal between 8 to 12 KHz range and approximation coefficients carry the noise compo-
nent. The ambient noise component is dominating in between 1 to 4 KHz range [5] [11]. 

As the first step in our proposed thresholding method we offer the new threshold value for detail and ap-
proximation coefficients as follows 

( )1 10
2 e 2 logj

a aN
L

λ σ−  = − + ∗ ∗√ ∗  
  

                        (10) 

( )14
1 10

2 e e 2 logj
d dN

L
σλ σ∗− = − + + ∗ ∗√ ∗ 

 
                       (11) 

where,  
aλ =  Threshold value for detail coefficients; 
dλ =  Threshold value for approximation coefficients; 

L =  Highest level of decomposition; 
j =  Current level of decomposition; 

1 0.6745σ σ= ; 

aN =  Number of approximation coefficients at current level; 
dN =  Number of detail coefficients at current level. 

When data size is large the general thresholding estimation gives under fitted results [7] [8]. 
Proposed detail coefficient thresholding function, 

( )proposed , 0    when    j d j dT a aλ λ= >                         (12) 
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( )proposed , 0.001     when    j d j d j dT a a aλ λ λ= + ∗ >                       (13) 

Proposed approximation coefficient thresholding function, 

( )proposed , 0    when    j j aT a aλ λ= >                             (14) 

( )proposed , 0.001     when    j j a j aT a a aλ λ λ= + ∗ <                        (15) 

where ja =  Approximation coefficients at level j ; aλ =  Threshold value for approximation coefficients. 

6. Proposed Noise Reduction Model 
In our proposed method we assume a reference signal of 10 KHz frequency. The noise data is provided by MREG, 
Swansea University, UK. The data was recorded in high tidal current over the board 11/05/2013 at 07.06 am on the 
West coast of Wales. 

The noise reduction algorithm can be described on a step by step basis as follows: 
Step1: 10 KHz reference signal is used to produce the noisy signal (noisy signal = Ref. Signal + Noise). 
Step 2: A level 8 wavelet Decomposition is performed using discrete wavelet transform (dwt) function. 
Step 3: Detail coefficients at level 1 to 8 are modified using proposed thresholding method. 
Step 4: Approximation coefficients are at each level are modified using proposed method.  
Step 5: Inverse Wavelet Transform is performed to reconstruct the denoised signal.  
The algorithm is applied on two sets of noise data to ensure algorithm efficiency. 

7. MATLAB® Simulation Results 
To proof the efficiency of the proposed thresholding value estimation method and thresholding function, we 
calculate the SNR, RMSE and PSD of the denoised signal. Table 1 and Table 2 show the result of simulation. 
 

Table 1. Statistical parameter values using various wavelets (noise data set 1).                       

Wavelet Type 

haar 

Parameters Universal/Soft Universal/Hard Proposed Soft Proposed/ Hard Proposed/Proposed 

SNR 11.8835 0.6798 13.8293 12.6516 16.2375 

RMSE 103.8128 183.8403 57.0462 57.4009 56.5608 

PRD 91.8910 115.4690 102.0446 102.4946 101.1777 

db2 

Parameters Universal/Soft Universal/Hard Proposed Soft Proposed Hard Proposed/Proposed 

SNR 3.2517 0.4998 35.1749 17.0781 29.0811 

RMSE 46.3308 50.6391 55.9077 56.4519 55.9362 

PRD 57.5384 30.7650 100.0106 100.7891 100.0614 

coif1 

Parameters Universal/Soft Universal/Hard Proposed Soft Proposed Hard Proposed/Proposed 

SNR 4.9903 0.5058 35.1130 23.0077 28.0949 

RMSE 122.9994 131.0551 55.9132 56.0445 55.9541 

PRD 154.4232 82.1063 100.0205 100.0665 100.0928 

sym4 

Parameters Universal/Soft Universal/Hard Proposed Soft Proposed Hard Proposed/Proposed 

SNR 1.8481 0.4972 43.0030 29.5009 42.8615 

RMSE 137.6016 126.3309 55.8981 55.9283 55.8982 

PRD 172.8118 79.1153 99.9933 99.9017 99.9935 
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Table 2. Statistical parameter values using various wavelets (noise data set 2).                       

Wavelet Type 

haar 

Parameters Universal/Soft Universal/Hard Proposed Soft Proposed/ Hard Proposed/Proposed 

SNR 10.5025 8.2338 13.8333 8.6551 16.2377 

RMSE 89.6563 91.8674 57.0452 60.3108 56.5608 

PRD 108.3071 106.8285 101.8067 96.6354 101.0411 

db2 

Parameters Universal/Soft Universal/Hard Proposed Soft Proposed Hard Proposed/Proposed 

SNR 4.3565 8.3479 35.1423 10.0502 29.0804 

RMSE 51.6204 65.4517 55.9078 59.3309 55.9372 

PRD 57.9868 73.5408 100.0070 94.9298 100.0572 

coif1 

Parameters Universal/Soft Universal/Hard Proposed Soft Proposed Hard Proposed/Proposed 

SNR 5.9929 0.3022 35.2410 10.7386 28.0944 

RMSE 115.0065 135.1313 55.9129 58.9470 55.9540 

PRD 136.4476 80.0767 100.0153 94.2438 100.0841 

sym4 

Parameters Universal/Soft Universal/Hard Proposed Soft Proposed Hard Proposed/Proposed 

SNR 16.5239 1.0773 39.8266 8.3438 42.8783 

RMSE 84.4747 141.6139 55.8987 84.9418 55.8983 

PRD 102.9858 167.9913 99.9936 100.3516 99.9954 

 

 
Figure 1. Noise PSD for data set 1.                      

 
In Table 1 and Table 2 we calculate SNR, RMSE and PSD respectively for wavelet filter types “db2”, “Haar”, 
“coif1” and “sym4” using hard, soft and proposed thresholding function. For each type of function we have cal-
culated the statistical parameter values using universal and proposed threshold estimation method. 
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Figure 2. Noise PSD for data set 2.                      

 

 
Figure 3. Noise signal (reference signal + noise) PSD us-
ing data set 1#.                                      

8. Conclusion 
From the above data it is clear that the devised method has produced improved SNR, PSD and lower RMSE for 
all noise data sets compared with global soft or hard thresholding methods. The PSD of noise signal being al-
most similar in frequency contents is showing that the noise spectrum have a peak in the lower frequency region 
as expected with the information signal at higher frequency region showed in Figures 1-5. The soft thresholding 
function with proposed estimation method has produced improved SNR with lower RMSE especially when 
noise signal strength is strong. The devised method seems to be efficient for all wavelet filter types applied to 
this experiment.  
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Figure 4. Noisy signal (reference signal + noise) PSD us-
ing data set 2.                                      

 

 
Figure 5. PSD of denoised signal using proposed method.     
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