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Abstract 
Assessing geographic variations in health events is one of the major tasks in spatial epidemiologic 
studies. Geographic variation in a health event can be estimated using the neighborhood-level va-
riance that is derived from a generalized mixed linear model or a Bayesian spatial hierarchical 
model. Two novel heterogeneity measures, including median odds ratio and interquartile odds ra-
tio, have been developed to quantify the magnitude of geographic variations and facilitate the data 
interpretation. However, the statistical significance of geographic heterogeneity measures was in- 
accurately estimated in previous epidemiologic studies that reported two-sided 95% confidence 
intervals based on standard error of the variance or 95% credible intervals with a range from 2.5th 
to 97.5th percentiles of the Bayesian posterior distribution. Given the mathematical algorithms of 
heterogeneity measures, the statistical significance of geographic variation should be evaluated 
using a one-tailed P value. Therefore, previous studies using two-tailed 95% confidence intervals 
based on a standard error of the variance may have underestimated the geographic variation in 
events of their interest and those using 95% Bayesian credible intervals may need to re-evaluate 
the geographic variation of their study outcomes. 
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1. Introduction 
Spatial epidemiology is an important methodology to deal with spatial-correlated issues in epidemiologic studies. 
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One of its core tasks is to determine geographic variations and quantify the magnitude of geographic variations 
in diseases, health behaviors, or environmental exposures [1]. Some published epidemiologic studies inappro-
priately estimated the statistical significance of geographic heterogeneity measures of examined events. 

The generalized linear mixed model and the Bayesian spatial hierarchical model are the most commonly ap-
plied to fit the data with a multilevel spatial structure. A geographic variation can be directly quantified as 
neighborhood-level variance ( )2σ  from parameter estimations of the multilevel model fitting. However, this 
variance has no meaningful unit and is difficult to interpret. Spatial statisticians and epidemiologists have de-
veloped two state-of-the-art heterogeneity measures, the median odds ratio (MOR, Equation (1)) [2]-[4] and the 
interquartile odds ratio (IqOR, Equation (2)) [5], to facilitate the interpretation of geographic heterogeneity of an 
event. 

( )
( )

0.75MOR exp 2 VAR

         exp 0.9539 VAR ,

Z= × ×

= ×
                               (1) 

where VAR  is the neighborhood-level variance, while 0.75Z  is the Z  value of the Gaussian distribution at 
the 75th percentile (0.6745). 

( )( )
( )

0.875 0.125IqOR exp VAR

         exp 2.3007 VAR ,

Z Z= − ×

= ×
                            (2) 

where 0.875Z  and 0.125Z  are the Z  values of the Gaussian distribution at the 87.5th and 12.5th percentiles 
(1.1504, −1.1504), respectively. 

Both MOR and IqOR are derived from the variance and are always greater than or equal to one. Larger values 
of MOR and IqOR denote greater geographic variations in the event of interest. The MOR reflects the average 
difference of risk when comparing two subjects who have the same individual characteristics and are selected 
randomly from two different neighborhoods. The IqOR represents the average difference of risk when compar-
ing the first quartile of study subjects residing in neighborhoods with the highest risk to the fourth quartile of 
study subjects residing in neighborhoods with the lowest risk [3] [5]. Similarly, the median rate ratio (MRR) and 
the interquartile rate ratio (IqRR) can be estimated in a prospective study, and the median hazards ratio (MHR) 
and the interquartile hazard ratio (IqHR) [6] are for time-to-event studies. To facilitate the explanation, the MOR 
and IqOR are applied in the following discussions. 

2. Issues in Determining the Statistical Significance of Geographic Heterogeneity  
Measures 

Geographic variations can be qualitatively assessed by using neighborhood-level variance estimation derived 
from a generalized linear mixed model. The modeling conducted by a commonly used statistical analysis pack-
age, such as the SAS, also gives a Z value and a corresponding P value based on an approximately normal dis-
tribution of the estimated parameter. With the standard error of the variance from the multilevel model fitting, a 
95% CI is able to be computed mathematically. However, one cannot perform a generalized linear mixed analy-
sis to estimate the statistical significance and 95% CIs of the MOR and IqOR because both MOR and IqOR are 
derived from the variance and do not have their own standard errors. 

Alternatively, a Bayesian spatial hierarchical model with a Markov Chain Monte Carlo (MCMC) simulation 
has been used to estimate geographic heterogeneities. In this setting, the 95% Bayesian credible interval (CrI), 
defined by the 2.5th and 97.5th percentiles of Bayesian posterior distribution of the geographic heterogeneity 
measure, has been commonly reported. 

In the estimation of a fixed effect of an exposure, its statistical significance can be identified if the 95% con-
fidence/credible interval of its regression coefficient does not cross zero. However, this empirical method con-
flicts with the nature of geographic heterogeneity measures. Two unreasonable results are usually reported in the 
studies in which the 95% CI or CrI of geographic heterogeneity measures were used to determine their statistical 
significance. The 95% CI of the variance could cross zero based on an approximately normal distribution 
( )1.96 SEX ± × . This is unreasonable because the variance should always be greater than or equal to 0. In addi-
tion, the 2.5th percentile of the Bayesian posterior distribution of the variance is always greater than 0 and con-
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sequently the MOR and IqOR are always greater than one. This leads to the overestimation of geographic dis-
parities. 

3. Example and Solution 
3.1. Example 
A simulation analysis was performed to illustrate the issues relevant to the statistical significance of spatial he-
terogeneity measures. It is assumed that a population of colorectal cancer (CRC) survivors come randomly from 
100 neighborhoods, each with 5 - 20 patients, and that the probability of smoking for each patient is 0.2 - 0.5. A 
random simulation generated a dataset that included 1245 patients and 420 smokers. Multilevel logistic regres-
sion is applied to quantify small-area geographic variation in smoking behavior among these CRC patients (Eq-
uation (3)). 

( )
( ) 0 1 2

~ Binomial

logit

ij ij

ij i ij i

y p

p N X uβ β β= + + +
                            (3) 

where ijp  is the probability of smoking for patient j  who resides in neighborhood i ; 0β  is the intercept; 
1β  and 2β  are the fixed coefficients of neighborhood- and individual-level covariates, respectively; iN  is 

characteristics of neighborhood i; and ijX  is a vector of individual-level covariates; iu  is the random effect 
between neighborhoods with a normal assumption: ( )2~ 0,iu N σ . 

To simplify the explanation, an empty model without neighborhood- and individual-level covariates was fit to 
estimate the overall geographic heterogeneity of smoking among these CRC patients using the Bayesian hierar-
chical approach with a MCMC simulation in WinBUGS (Version 1.4.3, MRC, UK). After 50,000 iterations for 
the convergence, additional 50,000 iterations were run to obtain the posterior estimates of three spatial hetero-
geneity measures. Because the dataset was simulated randomly, the geographic variation in smoking was ex-
pected to be small. 

Table 1 shows the Bayesian parameter estimates of three heterogeneity measures. Based on an approximately 
normal assumption, the 95% CIs of three geographic measures were computed as 1.96µ σ± × . Alternatively, 
the 95% CrIs of three geographic measures were expressed as the range from their 2.5th to their 97.5th percentiles. 
However, the inconsistent results were observed when comparing the 95% CIs of the variance, MOR and IqOR 
to their 95% CrIs. The 95% CI of the variance crossed zero and the 95% CIs of both MOR and IqOR crossed 1, 
suggesting no significant geographic variation in smoking behavior among CRC survivors. In contrast, the 95% 
CrI of the variance was more than zero and the 95% CrIs of the MOR and IqOR were greater than one, suggest-
ing a significant geographic variation in smoking behavior. 

3.2. Solution 
Table 2 shows that, the variance is a non-negative measure, and MOR and IqOR are never less than one. The 
null hypothesis of the statistical test should be that the variance equals to zero and both MOR and IqOR equal to 
one, that is, there is no significant geographic variation in the event of interest. Meanwhile, the alternative hy-
pothesis of the statistical test should be that the variance is greater than zero, and both MOR and IqOR are 
greater than one. Therefore, the statistical test is theoretically one-tailed, rather than two-tailed. The critical val-
ue for the significance level at 0.05 is 1.645 instead of 1.960. The statistical significance should be denoted di-
rectly using one-tailed (right-tailed) P value. One may not report the 95% CI or the interval between the 2.5th  
 
Table 1. Three Bayesian estimates of three spatial heterogeneity measures in the simulated example.                           

Measure Mean (µ) SD (σ) 2.50% Median 97.50% 95% confidence interval 95% credible interval 

VAR* 0.007 0.009 0.001 0.004 0.033 0.007 (−0.011, 0.025) 0.004 (0.001, 0.033) 

MOR† 1.074 0.045 1.022 1.061 1.189 1.074 (0.986, 1.162) 1.061 (1.022, 1.189) 

IqOR‡ 1.190 0.125 1.054 1.155 1.517 1.190 (0.945, 1.435) 1.155 (1.054, 1.517) 

*VAR, variance; †MOR, median odds ratio; ‡IqOR, interquartile odds ratio. 



M. Lian 
 

 
49 

Table 2. Three spatial heterogeneity measures and their statistical hypotheses.          

Measure Range Null hypothesis (H0) Alternative hypothesis (H1) 

VAR* ≥0 VAR = 0 VAR > 0 

MOR† ≥1 MOR = 1 MOR > 1 

IqOR‡ ≥1 IqOR = 1 IqOR > 1 

*VAR, variance; †MOR, median odds ratio; ‡IqOR, interquartile odds ratio. 
 
and the 97.5th percentiles of Bayesian posterior distribution (95% CrI) of geographic heterogeneity measures to 
avoid the misinterpretation of geographic variations. In fact, a one-tailed P value for the variation/heterogeneity 
estimation has been given from a generalized linear mixed model fitting using common statistical analysis 
packages, such as the SAS. For the heterogeneity estimation from a Bayesian hierarchical model, one should 
compute the corresponding statistics, based on the prior distribution of the variance, to obtain their one-tailed P 
value to determine its statistical significance. In the simulated example, since the Z value for the variance is: 
( )0.007 0 0.009 0.778− = , the geographic variation in smoking among CRC survivors is not statistically sig-
nificant using 1.645 as the cutoff for the significance level at 0.05. 

4. Discussions 
The purpose of this study was to point out an inappropriate method that was used to determine the statistical 
significance of geographic heterogeneity measures. The simulated data suggested that empirically reporting of 
the 95% CI/CrI of geographic heterogeneity measures may lead to misunderstanding of the statistical signific-
ance of geographic variations of an event. 

According to the nature of geographic heterogeneity measures, the statistical inference should be one-tailed 
(right-tailed). It is inappropriate to report a two-tailed 95% CI/CrI of a heterogeneity measure in spatial epide-
miologic studies. It could mislead one in understanding the statistical significances of heterogeneity measures. 
In the studies using standard errors to obtain two-tailed P values or 95% CIs, geographic variations in the events 
may be underestimated because a two-tailed test is more conservative than a one-tailed test. In contrast, the stu-
dies using the interval between the 2.5th and the 97.5th percentiles of a Bayesian posterior distribution to obtain a 
95% CrI may overestimate the statistical significance of geographic variation of the event because a Bayesian 95% 
CrI never crosses zero for the variance and one for both MOR and IqOR. The issue of statistical significance of 
geographic heterogeneity measures, which was discussed in this paper, is also extendible to a general multilevel 
study aiming to investigate the variation(s) in one or multiple event(s) of interest across a non-spatial higher lev-
el, such as healthcare providers or medical service facilities. 
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VAR: variance;  
MOR: median odds ratio;  
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MHR: median hazard ratio;  
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IqHR: interquartile hazard ratio. 
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