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Abstract 
In this paper we develop a stochastic version of a dynamic Cournot model. The model is dynamic 
because firms are slow to adjust output in response to changes in their economic environment. 
The model is stochastic because management may make errors in identifying the best course of 
action in a dynamic setting. We capture these behavioral errors with Brownian motion. The model 
demonstrates that the limiting output level of the game is a random variable, rather than a con-
stant that is found in the non-stochastic case. In addition, the limiting variance in firm output is 
smaller with more firms. Finally, the model predicts that firm failure is more likely in smaller 
markets and for firms that are smaller and less efficient at managing errors. 
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1. Introduction 
The starting point of oligopoly theory is the static Cournot model. It provides an example of Nash equilibrium 
and embeds a variety of possible market outcomes. One is the Cournot Limit Theorem, which states that the 
Cournot-Nash equilibrium is the monopoly outcome in a market with one firm, and approaches the competitive 
equilibrium as the number of competitors approaches infinity1. 

More sophisticated oligopoly models consider cases where firms interact over time. For example, in a Cour-
not-type supergame where the Cournot game is repeated in every period from now to eternity, an appropriately 
defined trigger strategy can support cooperation in every period (Friedman [3]). Other models are dynamic be-

 

 

1A similar conclusion emerges in the Bertrand model when products are differentiated. For a more complete discussion, see Shy [1] (Chapter 
6) and Tremblay and Tremblay [2] (Chapter 10). 
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cause firms are slow to change their strategic variables, causing it to take time for firms to reach equilibrium. 
This can occur when change is costly, which forces firms into a differential oligopoly game. In cases such as 
these, the strategic variable (output or price) evolves to a limiting outcome that differs from the static Nash equi-
librium that would occur if the change was instantaneous (i.e., the cost of change is zero). For example, Driskill 
and McCafferty [4] found that when output was slow to change in a Cournot-type game, the limiting output lev-
el fell between the static Cournot and perfectly competitive outcomes2. 

In this paper, our goal is to extend the dynamic Cournot model to include management errors. Brownian mo-
tion is used to model these behavioral errors. To our knowledge, we are the first to incorporate Brownian motion 
into an oligopoly model. By adding this stochastic component, we are able to show that output converges to a 
random variable rather than a constant, as in the deterministic dynamic Cournot model. In the stochastic model, 
the limiting variance in firm output is smaller in duopoly than in monopoly. Finally, the stochastic model pre-
dicts that firm failure is more likely in smaller markets and for firms that are smaller in size and are less efficient 
at coping with behavioral errors. These results provide us with a better understanding of stochastic markets, in 
particular the exit patterns of firms when managerial errors are present. 

The remainder of the paper is organized as follows. In Section 2 we summarize the deterministic model on 
which our stochastic model is built. In Section 3 we develop the stochastic version of the dynamic Cournot 
model by adding Brownian motion. Here, we derive the limiting distribution of the game and investigate the 
consequences of allowing one firm to be superior at coping with errors. In Section 4 we analyze the effect of 
management error on firm failure. The final section provides a brief conclusion.  

2. The Deterministic Dynamic Model 
Our stochastic model builds from a deterministic dynamic model that we develop in this section. Several scho-
lars have investigated a dynamic version of the Cournot model. For example, Maskin and Tirole [6] considered a 
duopoly model that is made dynamic by requiring firms to alternatively choose their levels of output. Driskill 
and McCafferty [4] and Dockner [7] modeled dynamics by introducing a cost of adjusting firm output over time. 
In models such as these, firms have dynamic best-reply functions, such that a firm’s best reply depends on its 
own and its rival’s past output decisions. An important conclusion of these models is that the subgame perfect 
Nash equilibrium is more competitive than the static Cournot equilibrium. Because our stochastic model builds 
from the deterministic case, we first discuss a dynamic version of the deterministic Cournot model.  

Consider a market with two firms (1 and 2) that produce homogeneous goods. The inverse demand function at  
time t is linear: ( ) ( ) ( )1 2p t a q t q t= − +   , where p is price, iq  is firm i’s output level, and a is a positive con-

stant. Firm i’s total cost of production is quadratic: ( ) ( ) ( )2

2i i i i
bC t c q t q t= + , where ic  and b are positive con- 

stants. In this model, firm inertia is motivated by the cost of changing its level of output. This adjustment cost is  

( ) ( ) 2
d

2 d
i

i

q tkA t
t

 
 
 

= , where k > 0 is the adjustment cost parameter. Costs are assumed to be sufficiently low so  

that both firms participate in this dynamic version of the game. At t = 0, each firm’s goal is to choose a produc-
tion plan to maximize its discounted stream of profits:  

( ) ( )( ) ( ) ( ) ( ) ( ) 2
2

1 2 10

d
max d ,

2 2 d
it

i i i it

q tb ka q t q t q t c q t q t t
t

δ
∞

=

     Π = − + − + −           
∫          (1) 

which is subject to the discount factor ( )δ  and the initial condition that the output of firm i in period 0 is 
( )0iq .  
Dockner [7] solves this problem using dynamic programming methods. He showed that the solution depends 

on a set of dynamic best-reply functions, which are linear differential equations that are assumed to take the fol-
lowing form: 

( ) ( ) ( )1
1 2

d 1 ;
d 2

q t
m q t q t

t
= − −                                 (2) 

 

 

2Other examples that use this framework include Fisher [5], Maskin and Tirole [6] and Dockner [7]. 
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( ) ( ) ( )2
2 1

d 1 .
d 2

q t
m q t q t

t
= − −                                   (3) 

Parameter m is a function of the parameters of the model and represents firm i’s long-run sales target in the 
absence of firm j (i.e., firm i’s monopoly output). Parameter m will increase with the size of the market. These 
functions capture the strategic dynamics of the model. The solution to this system is: 

( )
3 1

* 2 2
1 1 2

2e e ;
3

t t
q t mα α

− −
= + +                                   (4) 

( )
3 1

* 2 2
2 1 2

2e e ,
3

t t
q t mα α

− −
= + +                                   (5) 

where 1α  and 2α  are determined by the initial conditions [ ( )0iq  for i = 1 and 2]. Notice that as t →∞ , a 

firm’s optimal level of output approaches 2
3

m , regardless of the initial output of the two firms. 

3. A Dynamic Cournot Model with Brownian Motion 
In this section we add a stochastic component to the dynamic Cournot model of the previous section. The sto-
chastic component derives from a behavioral error that influences the dynamic best-reply functions of firms. 
One potential cause is the presence of boundedly rational managers who make errors when attempting to identi-
fy the best course of action in a dynamic setting3. Such errors may result from the cognitive limitations of man-
agers coupled with the time pressure to make quick decisions. In our setup, behavioral errors occur when man-
agers implement the dynamic best-reply functions and are captured by Brownian motion4. Adding Brownian 
motion (Bt) to the dynamic best-reply Equations (2) and (3) and converting them to stochastic difference equa-
tions produces: 

( ) ( ) ( )1 1 2 1
1d d d ;d
2 tq t m q t t q t t Bσ= − − +                              (6) 

( ) ( ) ( )2 2 1 2
1d d d .d
2 tq t m q t t q t t Bσ= − − +                              (7) 

Equations (6) and (7) describe each firm’s updating strategy in output, which is impacted by three forces. The 
first is m, which represents the firm’s sales target. Firm i’s output will increases when ( )im q t> . The second 
force is rival output. As in the static Cournot model, firm i’s output falls with greater firm j output (i.e., 1q  and 

2q  are strategic substitutes). The last term captures the effect of positive or negative behavioral management 
errors on firm output. The distribution of these errors is the same for both firms, but one firm may be better at 
dealing with these errors than the other firm. This occurs when firms have different Brownian motion parame-
ters (i.e., 1 2σ σ≠ ). Each parameter captures the magnitude of a firm’s behavioral error. For example, if manag-
ers do not make errors, then 1 2 0σ σ= =  and the model collapse to the deterministic dynamic model. If beha-
vioral errors exist and firm 1 is superior at coping with these errors, then 1 20 σ σ< < . 

Solving this system simultaneously produces a complex Gausian process, as described in Theorem 1.  
Theorem 1: Given the game described above, the optimal paths of ( )1q t  and ( )2q t  are: 

( ) ( ){ } ( ) ( )( )

( ){ } ( ) ( )( )

2 2 3
3 3 2

1 1 2 1 2

1 1 1
2 2 2

1 2 1 20

0

1 1 1e e d 2 d e 0 0
2 2 2

1 1e e d e 0 0
2 2

t s t

s

t s

t

tt
s

q t B m s q q

B q q

σ σ

σ σ

− −

− −


= + + + +




− − + − 


∫

∫
               (8) 

 

 

3For a detailed discussion of industrial organization models with bounded rationality, see Spiegler [8] and Tremblay and Tremblay [2]. 
4Brownian motion is described by a Wiener process. It is related to a stochastic process, much like a standard normal distribution is related 
to random variables. A normal distribution arises as a limiting distribution for a suitable sequence of random variables, while a Brownian 
motion arises as a limiting distribution for a suitable sequence of stochastic processes. More specifically, a standard Brownian motion {W(t): 
t ≥ 0} is a stochastic process that has a continuous path, is stationary, and is independent over time where W(t) ~ N(0, t) ∀t ≥ 0. Brownian 
motion has been extensively in the fields of physics, biology, and finance, as discussed by Oksendal [9]. 
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( ) ( ){ } ( ) ( )( )

( ){ } ( ) ( )( )

2 2 3
3 3 2

2 1 2 1 20

1 1 1
2 2 2

1 2 1 20

1 1 1e e d 2 d e 0 0
2 2 2

1 1e e d e 0 0
2 2

t s tt
s

t s tt
s

q t B m s q q

B q q

σ σ

σ σ

− −

− −


= + + + +




− − − − 


∫

∫
               (9) 

Proof: See Appendix. 
If ( ) ( )1 20 0q q> , then the difference in signs of the last set of terms in Equations (8) and (9) imply that 

( ) ( )1 2q t q t> . 
In the limit, the solutions to Equations (8) and (9) require Ito integration. This result is described in the next 

theorem. 
Theorem 2: Characteristics of the limiting distribution of Equations (8) and (9) as t → ∞ are:  

( ) 2lim for 1,2
3t iE q t m i→∞ = =                             (10) 

( ) ( ) ( ) ( )2 22 2
1 2 1 2 1 2

1 1 1lim var
12 4 4t iq t σ σ σ σ σ σ→∞ = + + − + −                  (11) 

A comparison of the pair of Equations (4) and (5) with the equations in Theorem 2 reveals that unlike the de-
terministic Cournot model, ( )1q t  does not converge to a constant but is now a random variable. In the deter- 

ministic case, the optimal output level of each firm converges to 2
3

m . With management error causing Brow-

nian motion, the optimal level of output has a mean of 2
3

m . Even with this business disturbance, the  

steady state equilibrium is the same on average as in the non-stochastic Cournot model. However, the stochastic 
model has a non-zero variance as seen in Equation (11). Another feature of the model is that the mean value in 
the model with Brownian motion does not depend on the initial positions of the two firms.  

The final issue of interest is the effect of assuming that firm 1 is superior at dealing with behavior errors 
( )1 2σ σ< . One might expect that firm 1’s limiting distribution would have a smaller variance. This is not the 
case, however, as the interaction effects across firms, as described in Equations (6) and (7), cause their distribu-
tions to converge to the same limit as t →∞ .  

To further analyze the effect of firm ability to cope with behavioral errors, consider the case where firms are 
equally capable (i.e., 1 2σ σ σ= = ). When this occurs, the limiting variance of each firm in Equation (11) be- 

comes 21
3
σ . One can see that the interaction effects reduce the limiting variance, by comparing the duopoly 

results with the monopoly result. The mean value of firm output equals m  in monopoly and equals 2
3

m  in  

duopoly. With a single firm, the limiting variance in the single Orstein-Uhlenbeck mean-reverting equation  

equals 21
2
σ , compared to a value of 21

3
σ  in the duopoly case5. A firm’s variance is smaller with more firms.  

4. Behavioral Errors and Firm Failure 
Firm failure is common in a free market economy. For example, Dunn et al. [10] found that approximately 80 
percent of firms exit the market within 10 years of entry. This suggests that management inexperience that leads 
to errors is a likely cause of firm exit. In this section, we use a dynamic Cournot model with Brownian motion 
that is caused by management error to explain the exit process. 

Consider a setting with the following characteristics. Assume an emerging market where firms enter by in-

 

 

5For Orstein-Uhlenbeck mean-reverting equation, ( ) ( )1
1

d
d

d t

q t
m q t B

t
σ= − + , see Oksendal [9]. 
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itially producing below their long-run optimal levels of output6. Firms are asymmetric, and firm 1 has the initial  

strategic advantage, such that ( ) ( )1 2
2 0 0 0
3

m q q> > > . Firm exit occurs when ( ) 0iq t = ; once a firm exits, it  

cannot re-enter the market in a later period7. From Equations (8) and (9), we know that the optimal output path 
for firm 1 is greater than that of firm 2. This suggests that firm 2 is more likely to fail than firm 1. In order to  
simplify the analysis and focus on the importance of starting values, we assume that 1 2 0σ σ σ= = > .  

With these assumptions and by defining firm 1 and 2’s respective exit periods as 1τ  and 2τ , we are able to 
formally describes the probability that firm 2 will exit the market. 

Theorem 3: If firm 1 starts out larger than firm 2 in period 0, then the probability that 1 2τ τ>  equals 1. That 
is, firm 2 always fails before firm 1. 

Proof: See Appendix. 
Although there is still a chance that firm 1 will fail, its probability of failure diminishes with the exit of firm 2. 

When firm 2 exits the market, Equation (6) shows that firm 1 will grow more rapidly toward its long-run opti-
mum. This increase in size helps insulate firm 1 from failure.  

The next question of interest is the precise probability that firm 2 will exit. Is this probability less than 1 [i.e., 
( )2 1Prob τ < ∞ < ] or will firm 2 exit with certainty as t → ∞ [i.e., ( )2 1Prob τ < ∞ = ]? The following theorem 

answers this question.  

Theorem 4: Let the difference in starting values be sufficiently small, such that ( ) ( )1 2
1 0 0
2

q q m− <   . In 

this case, the probability of firm 2 exit as t → ∞ is less than 1: ( )2 1Prob τ < ∞ < . 
Proof: See Appendix. 
In order to gain greater insight into the likelihood of firm 2 failure, we calculate the lower bound on this 

probability. This model produces the following result. 

Theorem 5: The lower bound on the probability of firm 2 exit is ( )2
2

2 0
exp

mq
σ

 
− 
 

. That is,  

( ) ( )2
2 2

2 0
exp

mq
Prob τ

σ
 

< ∞ > − 
 

. 

Proof: See Appendix. 
The lower bound is less than 1, and it falls as m and ( )2 0q  increase and as 2σ  decreases. This has a rea-

sonable economic interpretation: firm 2 is likely to have a better chance of survival when it is larger in size, op-
erates in a larger market (i.e., as m increases), and is better able to deal with behavioral errors (i.e., as 2σ  di-
minishes). The prediction that a larger firm is less likely to fail than the smaller firm is consistent with the em-
pirical evidence found in Dunn et al. [10] for a cross section of USA industries and with the evidence of Trem-
blay and Tremblay [11] for the USA brewing industry. 

5. Concluding Remarks 
In this paper, we have extended the dynamic Cournot model to include behavioral errors on the part of manage-
ment. The dynamic portion of the model follows the literature by assuming that firms face a cost of adjusting 
output. Thus, firms do not immediately adjust output to a new equilibrium after a behavioral error is made. 
Management error in this dynamic setting is modeled with Brownian motion. To our knowledge, we are the first 
to include Brownian motion in an oligopoly model. 

The model produces several interesting results. First, Theorem 2 shows that the limiting output level is a ran-
dom variable rather than a constant, as is found in the non-stochastic version of the dynamic Cournot model. It 
also indicates that the limiting variance in firm output is smaller in duopoly than in monopoly. Finally, Theo-
rems 2 - 5 indicate that the probability of firm failure decreases for markets that are larger in size and for firms 
that are larger and more efficient at dealing with behavioral errors. 

 

 

6This assumption is reasonable if firms are cautious when entering a new market. In any case, the main results of this paper are the same 
when we assume that firms start out by producing more than their long-run equilibrium level of output. 
7This can occur if firm exit tarnishes the reputation of the firm to such an extent that the cost of reentry is prohibitively high. 
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Appendix 
Proof of Theorem 1 
We present this system of Equations (6) and (7) in matrix form: 

( ) ( ) ( )

( ) 1

2

d

11 d d2
d d1 1

2

where , t

t

q t Aq t g t

B m t
A g t

B m t
σ
σ

 

= +

− − +
= =

+
−

   
   
    −
 

                       (A1) 

The eigenvalues of A  a 1
3
2

λ = −  and 2
1
2

λ = −  and the corresponding eigenvectors is 1

11
12

ξ
 

=  
 

 and 

2

11
12

ξ
 
 
− 

= . It is worthy to note that the eigenvalues are negative. It makes the path of ( )iq t  converges. 

We diagonalize this SDE system using the eigenvectors. 

Let 
1 11
1 12

Γ =
−

 
 
 

, 1 1 11
1 12

− 
Γ =

−


 
 

, and 

3 0
2

10
2

D

 
 
 
  
 

−
=

−
 

Transforming ( ) ( )y t x t= Γ  yields the transformed coordinate of x. We need to transform x to solve SDE. 

( ) ( ) ( ) ( ) ( )1 1dy t A y t g t Dy t h t− −= Γ Γ + Γ = +                           (A2) 

( ) ( ){ }1 1 1 2
3 1d d d 2 d ,
2 2 ty t y t B m tσ σ= − + + +                          (A3) 

( ) ( ){ }2 2 1 2
1 1d d d .
2 2 ty t y t Bσ σ= − + −                             (A4) 

The solution of this stochastic equations is: 

( ) ( ){ } ( )
3 3 3
2 2 2

1 1 2 10

1e e d 2
2

,d 0 e
t s tt

sy t B m s yσ σ
− −

= + + +∫                      (A5) 

( ) ( ){ } ( )
1 1 1
2 2 2

2 1 2 20

1e e d 0 e
2

.
t s tt

sy t B yσ σ
− −

= − +∫                        (A6) 

where ( )1 0y  (or ( )2 0y ) is the initial value. 
From ( ) ( )1q t y t−= Γ , we recover: 

( ) ( ){ } ( )

( ){ } ( )

3 3 3
2 2 2

1 1 2 10

1 1 1
2 2 2

1 2 20

1 1e e d 2 d 0 e
2 2

1e e d 0 e
2

t s tt
s

t s tt
s

q t B m s y

B y

σ σ

σ σ

− −

− −


= + + +



+ + −




∫

∫
                 (A7) 

( ) ( ){ } ( )

( ){ } ( )

3 3 3
2 2 2

2 1 2 10

1 1 1
2 2 2

1 2 20

1 1e e d 2 d 0 e
2 2

1e e d 0 e
2

t s tt
s

t s tt
s

q t B m s y

B y

σ σ

σ σ

− −

− −


= + + +




− − − 


∫

∫
                 (A8) 
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where ( )1 0q  (or ( )2 0q ) is the initial quantity of firm 1 (or 2). Substituting ( ) ( ) ( ) ( )
( ) ( )

1 2

1 2

0 010 0
0 02

q q
q

q q
 + 

= Γ =  − 
, 

we have: 

( ) ( ){ } ( ) ( )( )

( ){ } ( ) ( )( )

3 3 3
2 2 2

1 1 2 1 20

1 1 1
2 2 2

1 2 1 20

1 1 1e e d 2 d 0 0 e
2 2 2

1 1e e d 0 0 e ,
2 2

t s tt
s

t s tt
s

q t B m s q q

B q q

σ σ

σ σ

− −

− −





= + + + +


+ − + − 



∫

∫
             (A9) 

( ) ( ){ } ( ) ( )( )

( ){ } ( ) ( )( )

3 3 3
2 2 2

2 1 2 1 20

1 1 1
2 2 2

1 2 1 20

1 1 1e e d 2 d 0 0 e
2 2 2

1 1e e d 0 0 e .
2 2

t s tt
s

t s tt
s

q t B m s q q

B q q

σ σ

σ σ

− −

− −


= + + + +




− − − − 


∫

∫
            (A10) 

Because of d ds sB B= − , we can rewrite (A10) into: 

( ) ( ){ } ( ) ( )( )

( ){ } ( ) ( )( )

3 3 3
2 2 2

2 1 2 1 20

1 1 1
2 2 2

1 2 1 20

1 1 1e e d 2 d 0 0 e
2 2 2

1 1e e d 0 0 e .
2 2

t s tt
s

t s tt
s

q t B m s q q

B q q

σ σ

σ σ

− −

− −


= + + + +




+ − − − 


∫

∫
            (A11) 

QED 
Proof of Theorem 2 
From (A9) and (A11), the mean is: 

( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

3 3 3 1
2 2 2 2

1 2 1 20

3 3 1
2 2 2

1 2 1 20

3 3 1
2 2 2

1 2 1 2

1 1 1 1e e 2 d 0 0 e 0 0 e
2 2 2 2

1 e 2 d 0 0 e 0 0 e
2

2 1 11 e 0 0 e 0 0 e
3 2 2

t s t tt
i

t s t tt

t t t

E q t m s q q q q

m s q q q q

m q q q q

− − −

− − − −

− − −

 
= + + + − 

 
 

= + + + − 
 
 

= − + + + −  
 

∫

∫       (A12) 

( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

3 3 3 1
2 2 2 2

2 1 2 1 20

3 3 1
2 2 2

1 1 20

3 3 1
2 2 2

2 1 2

1 1 1 1e e 2 d 0 0 e 0 0 e
2 2 2 2

1 e 2 d 0 0 e 0 0 e
2

2 1 11 e 0 0 e 0 0 e
3 2 2

t s t tt

t s t tt

t t t

E q t m s q q q q

m s q q q q

m q q q q

− − −

− − − −

− − −

 
 
 

 

= + + − −

= + + − −

 
= − + + −

 
 

−  
 

∫

∫       (A13) 

The variance of (A9) and (A11) is the same as below: 

( )( ) ( ) ( ) ( ) ( )3 1
2 2

1 2 1 20 0

1 1var var e d e d , 1, 2
2 2

t s t st t
i s sq t B B iσ σ σ σ

− − − −  = + + − = 
  

∫ ∫            (A14) 

Since ( ) ( ) ( ) ( )3 1
2 2

1 2 1 20 0

1 1e d e d 0
2 2

t s t st t
s sE B Bσ σ σ σ

− − − − 
+ + − = 

 
∫ ∫ , we reset (A14): 
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( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [ ]( )

( )

23 1
2 2

1 2 1 20 0

23 1
2 2

1 2 1 20

23 1
2 2

1 2 1 20

2 3
1 2

by Ito Isometry see Oksendal 

1 1var e d e d
2 2

1 1e e d
2 2

1 1e e d
2 2

9

1 e
4

t s t st t
i s s

t s t st
s

t s t st

t

q t E B B

E B

s

σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ

− − − −

− − − −

− − − −

−

 
= + + − 

 

   = + + −  
    

  = + + − 
  

= +

∫ ∫

∫

∫

( ) ( )( ) ( ) ( ) ( )22
1 2 1 2 1 20

1 1e e d
2 4

t s t s t s sσ σ σ σ σ σ− − − − − 
 


+


+ − + −∫

  (A16) 

( ) ( ) ( )( ) ( ) ( )2 23 2
1 2

2 2
11 2 2

1 1 11 e 1 e 1 e
12 4 4

t t tσ σ σ σ σ σ− − −= + − + − − + − −            (A17) 

Accordingly, 

( ) ( ) ( )2lim 1,2
3

for from A12  and A13t iE x t m i→∞ = =                     (A18) 

( ) ( ) ( ) ( ) ( )2 22 2
1 2 1 2 1 2 f1 1 1lim var

12 4
rom A17

4t ix t σ σ σ σ σ σ→∞ = + + − + −            (A19) 

QED 
Proof of Theorem 3 

We multiply both sides of (A9) and (A11) by 
3
2e

t
: 

( ) ( ) ( )( ) ( ) ( )( )
3 3 3
2 2 2

1 1 2 1 20

2 1 1e e d e 1 0 0 0 0 e
3 2 2

t s tt t
sq t B m q q q qσ

 
= + − + + + −  

 
∫         (A20) 

( ) ( ) ( )( ) ( ) ( )( )
3 3 3
2 2 2

2 1 2 1 20

2 1 1e e d e 1 0 0 0 0 e
3 2 2

t s tt t
sq t B m q q q qσ

 
= + − + + − −  

 
∫         (A21) 

Let ( ) ( )
3
2

1 1e
t

y t q t=  and ( ) ( )
3
2

2 2e
t

y t q t= . Then, hitting time of  ( )iq t  is the same as that of ( )iy t  and 

so it suffice to see hitting time of ( )iy t . We can rephrase (A20) and (A21):  

( ) ( ) ( )( ) ( ) ( )( )
3 3
2 2

1 1 2 1 20

2 1 1e d e 1 0 0 0 0 e
3 2 2

s tt t
sy t B m q q q qσ

 
= + − + + + −  

 
∫          (A22) 

( ) ( ) ( )( ) ( ) ( )( )
3 3
2 2

2 1 2 1 20

2 1 1e d e 1 0 0 0 0 e
3 2 2

s tt t
sy t B m q q q qσ

 
= + − + + − −  

 
∫          (A23) 

We put them in differential form, 

( ) ( ) ( )( ) ( ) ( )( )
3 3 3 3
2 2 2 2

1 1 2 1 2
1 1d e d e d 0 0 e d e 0 0 e d e d
2

.
2

t t t tt t
t ty t B m t q q t m q q t Bσ σ

  = + + − = + − + 
  

   (A24) 

( ) ( ) ( )( ) ( ) ( )( )
3 3 3 3
2 2 2 2

2 1 2 1 2
1 1d e d e d 0 0 e d e 0 0 e d e d
2

.
2

t t t tt t
t ty t B m t q q t m q q t Bσ σ

  = + − − = − − + 
  

   (A25) 

Since the drifting term of ( )1y t  is larger than ( )2y t  but diffusion terms are the same, ( )2 1 1P τ τ< = , i.e., 
firm 2 always fails earlier than firm 1. QED 

Proof of Theorem 4 

Let ( ) ( ) ( )( )
3
2

1 2
1e 0 0 e
2

t tt m q qµ = − −  and ( )
3
2e

t
tσ σ= . Then, we reset (A25): 
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( ) ( ) ( )2 .d d d ty t t t t Bµ σ= +                                 (A26) 

Since ( ) ( )( )1 2
1 0 0
2

m q q> − , the drift term ( )tµ  is positive, so ( )2 1Prob τ < ∞ < .  

QED 
Proof of Theorem 5 
We reset (A25): 

( ) ( ) ( )( )
3 3
2 2

2 1 2
1d e 0 0 e d e d
2

t tt
ty t m q q t Bσ

  = − − + 
  

                      (A27) 

We have to find a function f  such that ( ) ( ) ( )
2

2
2

d 1 d 0
d 2 d
f fAf y t t
y y

µ σ= + =  in order to know  

( )2Prob τ < ∞ . It is a challenge and so we seek for a possible exploration of a lower bound for the probability.  
We change the drift of (A27) so that we can find an explicit value of the possibility of ( )2y t  hitting zero. We 
suggest a new stochastic process with a larger drift term: 

 ( )
3

3 2
2d e d e d

tt
ty t m t Bσ= +                                  (A28) 

Since the new stochastic process has a larger drift term, the possibility of  ( )2y t  hitting 0 is less than the 

possibility of ( )2y t  hitting zero. Therefore, once we find the possibility of  ( )2y t  hitting 0, it becomes a 

lower bound for ( )2Prob τ < ∞ . Let ( )
 ( )2

2

2
exp

my t
z t

σ

 
 = −
 
 

. 

( )
 ( )

 ( )

 ( )
 ( )( ) [ ]( )

 ( )  ( )



2
22 2

2 22
22 2

23
2 23 2 32

2 2 2 2

2
2

2
d 2 exp d

21 2 exp d
2

2 212 exp

by Ito formula see Oks

e d e d

enda

2 exp e d
2

2
2

l

exp

9 

tt t
t

my tmz t y t

my tm y t

my t my tm mm t B t

mym

σ σ

σ σ

σ σ
σ σ σ σ

σ

 
 = − −
 
 

    + −      
         = − − + + −            

= − −
( ) 3

2
2 e d

t

t

t
Bσ

σ

 
 
 
 

       (A29) 

Then, ( )z t  is a martingale process. Let’s put a closed interval set [ ]0,k  for  ( )2y t . We know  
 ( ) ( ) [ ]2 20 0 0,y x k= ∈ . Let 0τ  (or kτ ) be a stopping time for  ( )2y t  to exit the interval at 0 (or k ). Notice 

that when  ( )2 0 0y = , ( )0 1z = . By optional stopping theorem (see Grimmett and Stirzaker [12]), 

( ) ( ) ( )2
2

0 0 2 2

2 0
1 exp exp .k k

mqm kP Pτ τ τ τ
σ σ

  
< × + > − = −  

   
                   (A30) 

( ) ( )2
0 0 2

2 0
, andAs exp .k

mq
k P τ τ τ

σ
 

→ ∞ < < ∞ = − 
 

                     (A31) 

A lower bound for business failure is  ( )( ) ( )2
2 2

2 0
exhitting zero p

q m
P y t

σ
 

= − 
 

. 

QED 
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