Remarks on the Complexity of Signed k-Domination on Graphs

Chuan-Min Lee ${ }^{1 *}$, Cheng-Chien Lo ${ }^{1}$, Rui-Xin Ye ${ }^{2}$, Xun Xu ${ }^{2}$, Xiao-Han Shi ${ }^{2}$, Jia-Ying Li ${ }^{2}$
${ }^{1}$ Department of Computer and Communication Engineering, Ming Chuan University, The First American
University in Asia, Taoyuan, Taiwan, Chinese Taipei
${ }^{2}$ Department of Electronic Information Engineering, Fuzhou University, Fuzhou, China
Email: ${ }^{*}$ joneslee@mail.mcu.edu.tw

Received December 2014

Abstract

This paper is motivated by the concept of the signed k-domination problem and dedicated to the complexity of the problem on graphs. For any fixed nonnegative integer k, we show that the signed \boldsymbol{k}-domination problem is NP-complete for doubly chordal graphs. For strongly chordal graphs and distance-hereditary graphs, we show that the signed \boldsymbol{k}-domination problem can be solved in polynomial time. We also show that the problem is linear-time solvable for trees, interval graphs, and chordal comparability graphs.

Keywords

Graph Algorithm, Signed \boldsymbol{k}-Domination, Strongly Chordal Graph, Tree, Fixed Parameter Tractable

1. Introduction

Let $G=(V, E)$ be a finite, undirected, simple graph. For any vertex $v \in V$, the open neighborhood of v in G is $N_{G}(v)=\{u \in V \mid(u, v) \in E\}$ and the closed neighborhood of v is $N_{G}[v]=N_{G}(v) \cup\{v\}$. The degree of a vertex v in G is $d_{G}(v)=\left|N_{G}(v)\right|$. We also use $V(G)$ and $E(G)$ to denote vertex set and edge set of G, respectively. If nothing else is stated, it is understood that $|V(G)|=n$ and $|E(G)|=m$. Let Y be a subset of real numbers. Let $f: V \rightarrow Y$ be a function which assigns to each $v \in V$ a value in Y. Let $f(S)=\sum_{u \in S} f(u)$ for any subset S of V and let $f(V)$ be the weight of f. In 2012, Wang [1] studied the notion of signed k-domination on graphs as follows. Let k be a fixed nonnegative integer and let $G=(V, E)$ be a graph. A signed k-dominating function of G is a function $f: V \rightarrow\{-1,1\}$ such that $f\left(N_{G}[v]\right) \geq k$ for every vertex $v \in V$. The signed k-domination number of G, denoted by $\gamma_{k, S}(G)$, is the minimum weight of a signed k-dominating function of G. The signed k-domination problem is to find a signed k-dominating function of G of minimum weight. Clearly, the signed k-domination problem is the signed domination problem if $k=1$ [2]. Wang [1] presented several sharp lower bounds of these numbers for general graphs. In this paper, we study the signed k-domination problem for several well-known classes of graphs such as doubly chordal graphs, strongly chordal graphs, distance-hereditary graphs, trees, interval graphs, and chordal comparability graphs.

[^0]
2. NP-completeness Results

Before presenting the NP-complete results, we restate the signed k-domination problem as decision problems as follows: Given a graph $G=(V, E)$ and a nonnegative integer k and an integer λ, is $\gamma_{k, S}(G) \leq \lambda$?

Theorem 1 [3] [4] For any integer $k=0$ or 1 , the signed k-domination problem on doubly chordal graphs and bipartite planar graphs is NP-complete

Theorem 2. For any fixed integer $k \geq 2$, the signed k-domination problem on doubly chordal graphs is NP-complete.

Proof. Clearly, the signed k-domination problem on doubly chordal graphs is in NP. By Theorem 1, the signed 0 -domination and 1-domination problems on doubly chordal graphs are NP-complete. In the following, we show the NP-completeness of the signed k-domination problem on doubly chordal graphs by a polynomial-time reduction from the signed $(k-1)$-domination problem on doubly chordal graphs.

Let $G=(V, E)$ be a doubly chordal graph with $|V|=n$. A clique is a subset of pairwise adjacent vertices in a graph. If a clique consists of j vertices, then it is called a j-clique. We construct a graph H from G by the following steps.

1) We construct a new vertex u and connect u to every vertex of G.
2) We construct ($k-1$)-cliques $K_{1}, K_{2}, \ldots, K_{n}$ and connect the vertex u to every vertex of K_{i} for $1 \leq i \leq n$. Note that $\left|K_{i}\right|=k-1$ for $1 \leq i \leq n$.
Clearly, the graph H is a doubly chordal graph [5]-[8] and can be constructed in polynomial time. In the following, we show that $\gamma_{k, S}(H)=\gamma_{k-1, S}(G)+n \cdot k-n+1$.

Suppose that g is a minimum signed $(k-1)$-dominating function of G. Then, $g(V)=\gamma_{k-1, S}(G)$. Let $h: V(H) \rightarrow\{-1,1\}$ be a function of H defined by $h(v)=g(v)$ for every vertex $v \in V$ and $h(v)=1$ for every vertex $v \in V(H) \backslash V$. It can be easily verified that h is a signed k-dominating function of H. We have

$$
\gamma_{k, S}(H) \leq h(V)+h(V(H) \backslash V)=\gamma_{k-1, S}(G)+h(u)+n \cdot(k-1)=\gamma_{k-1, S}(G)+n \cdot k-n+1 .
$$

Conversely, let $i \in\{1,2, \ldots, n\}$ and let f be a minimum signed k-dominating function of H. Since $K_{i} \cup\{u\}$ is a k-clique, $\left|N_{H}[v]\right|=k$ for every vertex $v \in K_{i}$ and thus $f(u)=f(v)=1$. By the construction of H, the vertex u is adjacent to every vertex v of G. We know that $f\left(N_{H}[v]\right)=f\left(N_{G}[v] \cup\{u\}\right)=f\left(N_{G}[v]\right)+f(u) \geq k$. Then, $f\left(N_{G}[v]\right) \geq k-1$. Let $g: V \rightarrow\{-1,1\}$ be a function of G defined by $g(v)=f(v)$ for every vertex $v \in V$. The function g is a signed $(k-1)$-dominating function of G. We have
$\gamma_{k-1, S}(G) \leq g(V)=f(V(H))-f(u)-n \cdot(k-1)=\gamma_{k, S}(H)-n \cdot k+n-1$.
Therefore, $\quad \gamma_{k-1, S}(G)+n \cdot k-n+1 \leq \gamma_{k, S}(H)$. Following the discussion above, we know that $\gamma_{k, S}(H)=\gamma_{k-1, S}(G)+n \cdot k-n+1$. It implies that for any integer $\lambda, \gamma_{k-1, S}(G) \leq \lambda$ if and only if $\gamma_{k, S}(H) \leq \lambda+n \cdot k-n+1$.

3. Polynomial-Time Solvable Results

In this section, we show that the signed k-domination problem is polynomial-time solvable for strongly chordal graphs and distance-hereditary graphs and linear-time solvable for trees, interval graphs, and chordal comparability graphs.

3.1. Strongly Chordal Graphs

Let $G=(V, E)$ be a graph. A clique is a subset of pairwise adjacent vertices of V. A vertex v is simplicial if and only if all vertices of $N_{G}[v]$ form a clique. The ordering $v_{1}, v_{2}, \ldots, v_{n}$ of the vertices of V is a perfect elimination ordering of G if for all $i \in\{1,2, \ldots, n\}, v_{i}$ is a simplicial vertex of the subgraph G_{i} of G induced by $\left\{v_{i}, v_{i+1}, \ldots, v_{n}\right\}$ [9]. Let $N_{i}[v]$ denote the closed neighborhood of v in G_{i}. A perfect elimination ordering is called a strong elimination ordering if it satisfies the following condition:

For $i<j<k$ if v_{j} and v_{k} belong to $N_{i}\left[v_{i}\right]$ in G_{i}, then $N_{i}\left[v_{j}\right] \subseteq N_{i}\left[v_{k}\right]$.
Farer [10] showed that a graph is strongly chordal if and only if it has a strong elimination ordering. Currently, the fastest algorithm to recognize a strongly chordal graph and give a strong elimination ordering takes $O(m \log n)$ [11] or $O\left(n^{2}\right)$ time [12]. Strongly chordal graphs include many interesting classes of graphs such as trees, block graphs, interval graphs, and directed path graphs [13]. In the paper [3], Lee and Chang introduced the concept of L-domination. The definition of L-domination is as follows.

Let ℓ, d, I_{1}, F_{r} be fixed integer such that $\ell, d>0$ and $F_{r}=I_{1}+\ell \cdot d$. Let Y be the set $\left\{I_{1}, I_{1}+d, I_{1}+2 d, \ldots, I_{1}+(\ell-1) \cdot d\right\}$. Suppose that $G=(V, E)$ is a graph. Let L be a labeling function which assigns to each $v \in V$ a label $L(v)=(t(v), k(v))$, where $t(v) \in Y \cup\left\{F_{r}\right\}$ and $k(v)$ is a fixed integer. An L-dominating function of a graph $G=(V, E)$ is a function $f: V \rightarrow Y$ satisfying the following two conditions:

1) If $t(v) \neq F_{r}$, then $f(v)=t(v)$.
2) $f\left(N_{G}[v]\right) \geq k(v)$ for every vertex $v \in V$.

The L-domination number of G, denoted by $\gamma_{L}(G)$, is the minimum weight of an L-dominating function of G. The L-domination domination problem is to find an L-dominating function of G of minimum weight. Lee and Chang obtained the following result.

Theorem 4 [3] For any strongly chordal graph G, the L-domination problem can be solved in $O(n+m)$ time if a strong elimination ordering of G is given.

We show a connection between and the signed k-domination problem and a special case of the L-domination problem in Theorem 3.

Theorem 5. Suppose that $\ell=2, \quad d=1, \quad I_{1}=-1, \quad F_{r}=I_{1}+\ell \cdot d$, and $Y=\left\{I_{1}, I_{1}+d, \ldots, I_{1}+(\ell-1) \cdot d\right\}$. Let k be a nonnegative integer and let $G=(V, E)$ be a graph in which each $v \in V$ is associated with a label $L(v)=\left(F_{r}, k\right)$. Then, a minimum L-dominating function of G is equivalent to a minimum signed k-dominating function of G.

Proof. Clearly, $Y=\{-1,1\}$. We assume that f is a minimum L-dominating function of G and each $v \in V$ is associated with a label $L(v)=\left(F_{r}, k\right)$. Then, $f\left(N_{G}[v]\right) \geq k$ and f is a signed k-dominating function of G. We have $\gamma_{k, S}(G) \leq \gamma_{L}(G)$. Conversely, we assume that g is a minimum signed k-dominating set of G. Then, $g\left(N_{G}[v]\right) \geq k$ for every vertex $v \in V$. It can be easily verified that g is an L-dominating function of G. We have $\gamma_{L}(G) \leq \gamma_{k, S}(G)$. Following the discussion above, we know that $\gamma_{k, S}(G) \leq \gamma_{L}(G)$ and $\gamma_{L}(G) \leq \gamma_{k, S}(G)$. Hence, $\gamma_{L}(G)=\gamma_{k, S}(G)$ and the theorem holds.

Theorem 6. For any nonnegative integer k, the signed k-domination problem on a strongly chordal graph G can be solved in $O(n+m)$ time if a strong elimination ordering of G is given.

Proof. The theorem follows from Theorems 4 and 5.
Theorem 7. For any nonnegative integer k, the signed k-domination problem is linear-time solvable for trees.
Proof. Trees are both chordal and strongly chordal [13]. Let G be a tree. A perfect elimination ordering $v_{1}, v_{2}, \ldots, v_{n}$ of the vertices in G can be obtained in linear time [14]. Since G is a tree, v_{i} has at most one neighbor in G_{i} for any $i \in\{1,2, \ldots, n\}$. Otherwise, $N_{i}\left[v_{i}\right]$ forms a clique with at least three vertices and it contradicts the assumption that G is a tree. Therefore, the ordering $v_{1}, v_{2}, \ldots, v_{n}$ is also a strong elimination ordering of G. Following Theorem 6, we know that the signed k-domination problem is linear-time solvable for trees.

Theorem 8. For any nonnegative integer k, the signed k-domination problem is linear-time solvable for interval graphs.

Proof. An interval graph G is the intersection graph of a set of intervals on a line. That is, each interval corresponds to a vertex of G and two vertices are adjacent if and only if the corresponding intervals intersect. The set of intervals constitutes an interval model of the graph. Booth and Lueker [15] gave the first linear-time algorithm for recognizing interval graphs and constructing interval models for the interval graphs.

Let I be an interval model of an interval graph G. Each interval in the interval model has a right endpoint and a left endpoint. Without loss of generality, we may assume that all endpoints of the intervals in I are pairwise distinct, since, when they are not, it is easy to make this true without altering the represented graph. Let $l(v)$ and $r(v)$ denote the left and right endpoints of the interval corresponding to v. We order the vertices of G by the increasing order of right endpoints of the intervals in I, and let the ordering be $v_{1}, v_{2}, \ldots, v_{n}$. For any
$i, j \in\{1,2, \ldots, n\}$ with $i<j$, we know that $r\left(v_{i}\right)<r\left(v_{j}\right)$ and $l\left(v_{j}\right)<r\left(v_{i}\right)$ if v_{i} is adjacent to v_{j} in G. Therefore, the vertices of $N_{i}\left[v_{i}\right]$ form a clique and v_{i} is a simplicial vertex of G_{i}. The ordering $v_{1}, v_{2}, \ldots, v_{n}$ is a perfect elimination ordering and can be obtained in linear time.

For $i<j<k$, we assume v_{j} and v_{k} belong to $N_{i}\left[v_{i}\right]$ in G_{i}. Since $v_{1}, v_{2}, \ldots, v_{n}$ is a perfect elimination ordering, v_{j} is adjacent to v_{k} and $r\left(v_{j}\right)<r\left(v_{k}\right)$ and $l\left(v_{k}\right)<r\left(v_{i}\right)<r\left(v_{j}\right)$. Then, every v_{p} in $N_{i}\left[v_{j}\right]$ is adjacent to v_{k}. We have $N_{i}\left[v_{j}\right] \subseteq N_{i}\left[v_{k}\right]$. The ordering $v_{1}, v_{2}, \ldots, v_{n}$ is also a strong elimination ordering of G. By Theorem 6 , we know that the signed k-domination problem is linear-time solvable for interval graphs.

Theorem 9. For any nonnegative integer k, the signed k-domination problem is linear-time solvable for chordal comparability graphs.

Proof. Let $G=(V, E)$ be a graph. A vertex v in G is a simple vertex if for any two neighbors x and y of v, either the closed neighborhood of y is a subset of the closed neighborhood of x or the closed neighborhood of x is a subset of the closed neighborhood of y. An ordering $v_{1}, v_{2}, \ldots, v_{n}$ is a simple elimination ordering if for each $1 \leq t \leq n$, the vertex v_{i} is a simple vertex of the subgraph G_{i} induced by the vertices $v_{i}, v_{2}, \ldots, v_{n}$.
A simple elimination ordering of a chordal comparability graph can be obtained in linear time [16]. Sawada and Spinrad [17] presented a linear-time algorithm to transform a simple elimination ordering of a strongly chordal graph to a strong elimination ordering. Therefore, the theorem is true.

3.2. Distance-Hereditary Graphs

The distance between two vertices u and v of a graph G is the number of edges of a shortest path from u to v. If any two distinct vertices have the same distance in every connected induced subgraph containing them, then G is a distance-hereditary graph. In 1997, Chang, Hsieh, and Chen [18] showed that distance-hereditary graphs can be defined recursively.

Theorem 10 [18] Distance-hereditary graphs can be defined as follows.

1) A graph consisting of only one vertex is distance-hereditary, and the twin set is the vertex itself.
2) If G_{1} and G_{2} are disjoint distance-hereditary graphs with the twin sets $T S\left(G_{1}\right)$ and $T S\left(G_{2}\right)$, respectively, then the graph $G=G_{1} \cup G_{2}$ is a distance-hereditary graph and the twin set of G is $T S\left(G_{1}\right) \cup T S\left(G_{2}\right) . G$ is said to be obtained from G_{1} and G_{2} by a false twin operation.
3) If G_{1} and G_{2} are disjoint distance-hereditary graphs with the twin sets $T S\left(G_{1}\right)$ and $T S\left(G_{2}\right)$, respectively, then the graph G obtained by connecting every vertex of $T S\left(G_{1}\right)$ to all vertices of $T S\left(G_{2}\right)$ is a distance-hereditary graph and the twin set of G is $T S\left(G_{1}\right) \cup T S\left(G_{2}\right) . G$ is said to be obtained from G_{1} and G_{2} by a true twin operation.
4) If G_{1} and G_{2} are disjoint distance-hereditary graphs with the twin sets $\operatorname{TS}\left(G_{1}\right)$ and $\operatorname{TS}\left(G_{2}\right)$, respectively, then the graph G obtained by connecting every vertex of $T S\left(G_{1}\right)$ to all vertices of $\operatorname{TS}\left(G_{2}\right)$ is a distance-hereditary graph and the twin set of G is $T S\left(G_{1}\right) . G$ is said to be obtained from G_{1} and G_{2} by a pendant vertex operation.
Following Theorem 10, a distance-hereditary graph G can be represented as a binary ordered decomposition tree and the decomposition tree can be obtained in linear-time [18]. In this decomposition tree, each leaf is a single vertex graph, and each internal node represents one of the three operations: pendant vertex operation (labeled by P), true twin operation (labeled by T), and false twin operation (labeled by F). Therefore, the decomposition tree is called a PTF-tree.

Definition 1. Suppose that $G=(V, E)$ is a distance-hereditary graph. Let $T S(G)$ be the twin set of G. Let a and b be integers such that $0 \leq a, b \leq|V|$ and $-|V| \leq t \leq|V|$. A (t, a, b)-function $f: V \rightarrow\{-1,1\}$ of G is a function satisfying the following three conditions.

1) $a+b=|T S(G)|$.
2) The function f assigns the value 1 to a vertices in $T S(G)$ and the value -1 to b vertices in $T S(G)$.
3) For a vertex $v \in V, \quad f\left(N_{G}[v]\right)+t \geq k$ if $v \in T S(G)$; Otherwise, $f\left(N_{G}[v]\right) \geq k$.

We define $\gamma(G, t, a, b)=\max \{f(V(G)) \mid f$ is a (t, a, b)-function of $G\}$. If there does not exist a (t, a, b) function of G, then $\gamma(G, t, a, b)=\infty$. It is clear that

$$
\gamma_{k, S}(G)=\min \{\gamma(G, 0, a, b)|0 \leq a, b \leq|T S(G)|\} .
$$

We give the following lemmas to compute $\gamma(G, t, a, b)$ for a distance-hereditary graph G. The correctness of Lemmas 2-5 can be proved by the arguments similar to those for proving Lemmas 1-4 in Section III. B of the paper [4].

Lemma 2. Suppose that $G=(V, E)$ is a graph of only one vertex v. Then,

$$
\gamma(G, t, a, b)= \begin{cases}1 & \text { if } a=1, b=0, t \geq k-1 \\ 0 & \text { if } a=0, b=1, t \geq k+1 \\ \infty & \text { otherwise }\end{cases}
$$

Lemma 3. Suppose that $G=(V, E)$ is formed from two disjoint distance-hereditary graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ by a false twin operation. Then,

$$
\gamma(G, t, a, b)=\min \left\{\gamma\left(G_{1}, t, a_{1}, b_{1}\right)+\gamma\left(G_{2}, t, a_{2}, b_{2}\right)\right\}
$$

where $a_{1}+a_{2}=a$ and $b_{1}+b_{2}=b$.
Lemma 4. Suppose that $G=(V, E)$ is formed from two disjoint distance-hereditary graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ by a true twin operation. Then,

$$
\gamma(G, t, a, b)=\min \left\{\gamma\left(G_{1}, t+a_{2}-b_{2}, a_{1}, b_{1}\right)+\gamma\left(G_{2}, t+a_{1}-b_{1}, a_{2}, b_{2}\right)\right\},
$$

where $a_{1}+a_{2}=a$ and $b_{1}+b_{2}=b$.
Lemma 5. Suppose that $G=(V, E)$ is formed from two disjoint distance-hereditary graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ by a pendant vertex operation. Then,

$$
\gamma(G, t, a, b)=\max \left\{\gamma\left(G_{1}, t+a_{2}-b_{2}, a, b\right)+\gamma\left(G_{2}, a-b, a_{2}, b_{2}\right)\right\}
$$

where $a_{2}+b_{2}=\left|T S\left(G_{2}\right)\right|$.
Theorem 11. For any nonnegative integer k, the signed k-domination problem can be solved in polynomial time for distance-hereditary graphs.

Proof. Following Lemmas 2 - 5 and the recursive definition of distance-hereditary graphs in Theorem 10, we can design a dynamic programming algorithm to compute the signed k-domination number of a distance-hereditary graph G in polynomial time. Moreover, it is not difficult to see that a minimum signed k-dominating function of a distance-hereditary graph G can be obtained in polynomial time, too.

Acknowledgements

This research was partially supported under Research Grants: NSC-102-2221-E-130-004 and MOST-103-2221-E-130-009 in Taiwan.

References

[1] Wang, C. (2012) The Signed k-Domination Numbers in Graphs. Ars Combinatoria, 106, 205-211.
[2] Hattingh, J.H., Henning, M.A. and Slater, P.J. (1995) The Algorithmic Complexity of Signed Domination in Graphs. Australasian Journal of Combinatorics, 12, 101-112.
[3] Lee, C.-M. and Chang, M.-S. (2008) Variations of Y-Dominating Functions on Graphs. Discrete Mathematics, 308, 4185-4204. http://dx.doi.org/10.1016/j.disc.2007.08.080
[4] Lee, C.-M. (2014) Remarks on the Complexity of Non-negative Signed Domination. Journal of Networks, 9, 20512058. http://dx.doi.org/10.4304/jnw.9.8.2051-2058
[5] Brandstädt, A., Dragan, F.F., Chepoi, V.D. and Voloshin, V. (1998) Dually Chordal Graphs. SIAM Journal on Discrete Mathematics, 11, 437-455. http://dx.doi.org/10.1137/S0895480193253415
[6] Cai, L., Chen, J., Downey, R.G. and Fellows, M.R. (1997) Advice Classes of Parameterized Tractability. Annals of Pure and Applied Logic, 84, 119-138. http://dx.doi.org/10.1016/S0168-0072(95)00020-8
[7] Downey, R.G. and Fellows, M.R. (1999) Parameterized Complexity. Monographs in Computer Science, SpringerVerlag.
[8] Moscarini, M. (1993) Doubly Chordal Graphs, Steiner Trees, and Connected Domination. Networks, 23, 59-69. http://dx.doi.org/10.1002/net. 3230230108
[9] Rose, D.J. (1970) Triangulated Graphs and the Elimination Process. Journal of Mathematical Analysis and Applications, 32, 597-609. http://dx.doi.org/10.1016/0022-247X(70)90282-9
[10] Farber, M. (1983) Characterizations of Strongly Chordal Graphs. Discrete Mathematics, 43, 173-189. http://dx.doi.org/10.1016/0012-365X(83)90154-1
[11] Paige, R. and Tarjan, R.E. (1987) Three Partition Refinement Algorithms. SIAM Journal on Computing, 16, 973-989. http://dx.doi.org/10.1137/0216062
[12] Spinrad, J.P. (1993) Doubly Lexical Ordering of Dense 0-1 Matrices. Information Processing Letters, 45, 229-235. http://dx.doi.org/10.1016/0020-0190(93)90209-R
[13] Brandstädt, A., Le, V.B. and Spinrad, J.P. (1999) Graph Classes: A Survey. SIAM Monographs on Discrete Mathematics and Applications, Philadelphia 1999. http://dx.doi.org/10.1137/1.9780898719796
[14] Tarjan, R.E. and Yannakakis, M. (1984) Simple Linear Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs. SIAM Joural on Computing, 13, 566-579.
http://dx.doi.org/10.1137/0213035
[15] Booth, S. and Lueker, S. (1976) Testing for the Consecutive Ones Property, Interval Graphs, Graph Planarity Using PQ-Trees Algorithms. Journal of Computer and System Sciences, 13, 335-379. http://dx.doi.org/10.1016/S0022-0000(76)80045-1
[16] Borie, R.B. and Spinrad, J.P. (1999) Construction of a Simple Elimination Scheme for a Chordal Comparability Graph in Linear Time. Discrete Applied Mathematics, 91, 287-292. http://dx.doi.org/10.1016/S0166-218X(98)00137-1
[17] Sawada, J. and Spinrad, J.P. (2003) From a Simple Elimination Ordering to a Strong Elimination Ordering in Linear Time. Information Processing Letters, 86, 299-302. http://dx.doi.org/10.1016/S0020-0190(03)00228-X
[18] Chang, M.-S., Hsieh, S.-Y. and Chen, G.-H. (1997) Dynamic Programming on Distance-Hereditary Graphs. Proceedings of the 8th International Symposium o Algorithms and Computation, Lecture Notes in Computer Science, Vol. 1350, 344-353.

[^0]: *Corresponding author.
 How to cite this paper: Lee, C.-M., Lo, C.-C., Ye, R.-X., Xu, X., Shi, X.-H. and Li, J.-Y. (2015) Remarks on the Complexity of Signed k-Domination on Graphs. Journal of Applied Mathematics and Physics, 3, 32-37.
 http://dx.doi.org/10.4236/jamp.2015.31005

