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ABSTRACT 

In this paper, the evolutionary algorithm of particle swarm optimization (PSO) is applied to synthesis an optimal linear 
array in the Chebychev sense. Equiripple radiation patterns may be obtained by synthesizing the excitation currents 
feeding the array or by carefully choosing the interelement spacing. The desired equal side lobes level is achieved si-
multaneously with the narrowest possible beamwidth (high directivity). Though the optimization problem may become 
nonlinear, convex and/or sometimes nonconvex, it can be handled using an efficient, a robust and a nongradient based 
particle swarm optimizer algorithm. In order to effectively utilize this algorithm it is important to define an appropriate 
objective, or cost, function that return a single number to enable the PSO algorithm minimizing it. In this paper, the 
objective function is formulated taking into consideration the level of the side lobes as well as the main beam width. In 
addition to satisfy the objective function, the obtained results using the proposed technique are in agreement with those 
available in the literature. 
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1. Introduction 

When antennas elements are arrayed in a certain geomet-
rical configuration the signal induced on them are com-
bined to form the array output. A plot of the array re-
sponse as a function of angle is normally referred to as 
the array pattern or beam pattern. Synthesizing the array 
pattern of antenna arrays has been a subject to several 
studies and investigations. The trade-off between the 
side-lobe levels (SLL) and the half-power beamwidth 
(HPBW) stimulate the question answered primarily by 
Dolph [1] of obtaining the narrowest possible beamwidth 
for a given side-lobe level or the smallest side-lobe level 
for a given beamwidth. This was possible by using the 
orthogonal functions of Chebyshev [2] in order to design 
an optimum radiation pattern. However, for large number 
of elements this procedure becomes quite cumbersome 
since it requires matching the array factor expression 
with an appropriate Chebyshev function [3]. To over-
come this deficiency, Safaai-Jazi [4] proposed a new 
formulation for the design of Chebyshev arrays based on 
solving a system of linear equations. Iterative procedure 
was used to produce the desired pattern [5]. Formulating 
the synthesis problem as a convex optimization, which 
may be solved by interior-point methods, has been pre-  

sented in [6]. Shpak et al. [7,8] discussed an improved 
method for the design of linear arrays with prescribed 
nulls. The forgoing mentioned investigations either re-
quire analytical formulae or evaluating the gradient of 
some cost function, which sometimes become formidable 
to evaluate. As alternatives, neural network and evolu-
tionary algorithms techniques were used in order to re-
duce the side lobes of linear arrays [9,10]. Genetic algo-
rithms (GA) and particle swarm optimization are 
well-known evolutionary algorithm techniques. In GA, a 
sample of possible solutions is assumed then mutation, 
crossover, and selection are employed based on the con-
cept of survival of the fittest [10]. On the other hand, 
PSO is a much easier algorithm in which each possible 
solution is represented as a particle in the swarm with a 
certain position and velocity vector [11,12]. The position 
and velocity of each particle are updated according to 
some fitness function [11]. Some studies have been de-
voted to compare between the GA and PSO [20,21] and a 
general conclusion has been reached the PSO shows bet-
ter performance due to its greater implementation sim-
plicity and minor computational time. 

Since it has been introduced by Kennedy and Eberhard 
[13], the PSO is being applied to many fields of endeavor. 



On Chebyshev Array Design Using Particle Swarm Optimization 214 

Surprisingly, it has been applied to the design of low 
dispersion fiber Bragg gratings [14], and to the design of 
corrugated horn antenna [15]. Other applications can be 
found in [16]. This investigation is devoted to the design 
of Chebyshev linear antenna arrays by considering vari-
ous affecting parameters using the PSO. The paper is 
organized as follows. In Section II, the particle swarm 
optimization algorithm is overviewed. A background 
about Chebyshev polynomials is addressed in Section III. 
Formulation of linear array pattern synthesis is presented 
in Section IV. Simulation examples and results are given 
in Section V. Conclusions drawn and hints to further 
investigation are pointed out in Section VI. 

2. Particle Swarm Optimization (PSO) 
Algorithm 

PSO is a stochastic optimization technique that has been 
effectively used to solve multidimensional discontinuous 
optimization problems in a variety of fields [17]. The 
stochastic behavior of this technique can be controlled by 
one single factor which can be chosen to end up with a 
deterministic strategy that does not need gradient infor-
mation. Compared with other evolutionary 9 techniques, 
the PSO is much simpler and easier to implement with 
guaranteed convergence [18]. 

The concept of the PSO is derived from an analogy of 
the social behavior of a swarm of bees in the field, for 
example. Without any prior knowledge, each bee re-
ferred to as agent or particle in the PSO jargon, in the 
swarm starts with random position and velocity with an 
aim to find the location of highest density of flowers in 
the field. Then, during their search, each bee updates its 
velocity and position based on two pieces of information. 
The first is its ability to remember the location of most 
flowers it personally found (particle best will be denoted 
later as pbest). The second represents the location of 
most flowers found by all the bees of the swarm (global 
best will be denoted later as gbest) at the present instant 
of time. This process of updating velocities and positions 
continues and will result in one of the bees would find a 
location with a highest density of flowers in the field. 
Eventually, all the bees (solutions) will be drawn to this 
location since they will not be able to find any other bet-
ter location. This represent a convergence of the algo-
rithm and the optimum solution is obtained [11,13,17, 
20-24]. The main steps of the PSO algorithm are given 
below and will be elaborated in the remaining portion of 
this section. 

1) Definition of the solution space: In this step, the 
minimum and maximum value for each dimension in the 
N-dimensional optimization problem are specified to 
define the solution space of the problem. 

2) Definition of the fitness function: The fitness func-

tion is a problem dependent measure of the goodness of a 
position (N-dimensional vector) that represents a valid 
solution of the problem. It should be carefully selected to 
represent the goodness of the solution and return a single 
number. 

3) Random initialization of the swarm positions and 
velocities: The positions and velocities of the particles 
are randomly initialized. To help the discussion let us 
refer to these matrices as X and V, respectively. Both 
matrices have a dimension of M  N. Here, M represents 
the number of particles or swarm size and N represents 
the dimension of the optimization problem. However, it 
is preferred to randomly initialize the X matrix within the 
solution space for faster convergence. To complete the 
initialization step, each row in the matrix X is labeled as 
the individual best position for each particle (pbest). In 
addition, the positions in X are plugged into the fitness 
function and the returning numbers are compared, the 
position with the best returning number is labeled as the 
global best position (gbest). In this context, the word best 
could mean highest or lowest depending on the optimiza-
tion problem. The problem considered here is a minimi-
zation of the fitness function. 

4) Update of velocity and position: The following 
sub-steps are carried out for each particle individually: 

a) Velocity update: The velocity of the mth particle 
in the nth dimension is updated according to the follow-
ing equation 

 
 

1 1
1 1

1
2 2

t t t t t
mn mn n mn mn

t t t
n mn mn

v wv c pbest x

c gbest x





 



  

 
      (1) 

The superscripts t and t–1 denote the time index of the 
current and the previous iterations, n1 and n2 are two 
different, uniformly distributed random numbers in the 
interval [0,1]. The relative weights of the personal best 
position versus the global best position are specified by 
the parameters c1 and c2, respectively. Both c1 and c2 are 
typically set to a value of 2.0 [19]. The parameter w is 
called the “inertial weight”, and it is a number in the 
range [0,1] that specifies the weight by which the parti-
cle’s current velocity depends on its previous velocity, 
and the distance between the particle’s position and its 
personal best and global best positions. Empirical studies 
[11] have shown that the PSO algorithm converges faster 
if w is linearly damped with iterations, for example 
starting at 0.9 at the first iteration and finishing at 0.4 in 
the last iteration. 

b) Position update: In this step, the position of the 
mth particle in the nth dimension is updated according to 
the following equation 

1t t t
mn mn mnx x tv                (2) 
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where  represents a given time step (usually chosen 
to be one). 

t

c) Fitness evaluation: The updated N-dimension po-
sition in the previous step is plugged in the fitness func-
tion and the returning number is compared with that cor-
responding to the pbest, if the returning number is better, 
this updated N-dimension position is labeled as the new 
pbest. In addition, if the returning number is better than 
that corresponding to gbest, the updated N-dimension 
position is also labeled as the new gbest. 

5) Checking the termination criterion: In this step, the 
algorithm may be terminated if the number of iteration 
equals a pre-specified maximum number of iteration or 
the returning number corresponding to gbest is close 
enough to a desired number. If none of the above condi-
tions is satisfied, the process is repeated starting at step 
4. 

3. Chebyshev Polynomials 

One of the most eminent methods used to equate the 
sidelobes arising in the radiation pattern of antenna ar-
rays is to utilize a set of polynomials referred to as Che-
byshev polynomials, after the Russian mathematician 
Pafnuti Chebyshev (1821-1894) [2]. These polynomials 
are originated as possible solutions of a second order 
ordinary differential equation with variable coefficients. 
This eigenvalue equation may take the form 

 21 0x y xy y                (3) 

with an additional requirements that y(–1), (–1), y(1), 
and (1) are to be bounded. A change of variables ac-
cording to 

y
y

cosx                   (4) 

transforms Equation (3) to 
2

2

d
0

d

T
T


                 (5) 

where    cosT y  . The transformation used in 
Equation (4) results in a second order linear ordinary 
differential equation with constant coefficients as given 
by Equation (5). Solutions of Equation (5) depend on the 
eigenvalue  and could be written as 

  cos sin 0

0

A B
T

C D

  
 

  





     (6) 

where A, B, C, and D are arbitrary constants. The solu-
tion would be bounded if B = D = 0 and n   with n 
being an integer. The eigenfunctions, corresponding to 
nontrivial solutions are given by 

cos , 0,1, 2,n n n             (7) 

In terms of the original independent variable x, the ei-

genvalues and eigenfunctions are given by 

   
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         (8) 

Here, the dependent variable T is in honor of Cheby-
shev (often spelled Tchebysceff). Using the Euler iden-
tity and substituting for x from Equation (4), the argu-
ment cos n  could be expanded in terms of its funda-
mental argument, cos n . A few examples are given 
below, for different orders, for the purpose of illustration 
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          (9) 

A general recursion formula may be deduced from 
Equations (9) and is given by 

1 1 2( ) 2 ( ) ( ) ( )n n nT x T x T x T x         (10) 

Chebyshev polynomials constitute a set of orthogonal 
functions with respect to a weighting function, . 
The weighting function could be found be recasting 
Equation (7) in standard Sturm-Liouville form. Carrying 
out this step to find [2] 

( )w x

2

1
( )

1
w x

x



              (11) 

With respect to this weighting function, Chebyshev 
polynomials are orthogonal, i.e., they satisfy 

1

1

( ) ( ) ( )d 0,m nw x T x T x x m n


         (12) 

These polynomials oscillate with unit amplitude in the 
interval 1x   and become monotonically increasing or 
decreasing, depending on their order, outside this range. 
This property of Chebyshev polynomials enabled Dolph 
to use them to design an equiripple radiation patterns. 

4. Linear Array Pattern Synthesis 

The focus here will be on an N-element array distributed 
on a line with equal interelement spacing, d. The array 
factor may be written as 

1

0

N
n

n
n

AF I




  z                 (13) 

Here,  expz j  and  coskd    . The an-

gle  is measured from the line of the array, the 
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wavenumber k = 2/;  being the wavelength, and  is 
the difference in phase excitation between the elements. 
In is the magnitude of the current of the nth element. For 
symmetrical current distribution Equation (13) may be 
written as [3] 

/2

1

2 cos
1
2

N

n
n

AF I n ,


    
  

 
       (14) 

for even number of elements. In the case of odd number 
of elements, the array factor could be written as [3] 

 
1

2

0
1

2 cos

N

n
n

AF I I n





            (15) 

In Equation (15), I0 denotes the current of the center 
element. The case of unequal interelement spacing will 
be considered also. This requires a straightforward modi-
fication in Equations (14) and (15), however. The corre-
spondence between an N-element array factor (Equation 
(14) and Equation (15)) and a Chebyshev polynomial of 
order (N – 1) is carried out to match the coefficients of 
similar terms thus giving the required current excitations 
 nI . It is clear that this procedure requires elaborate 
computation especially for large number of elements. 
The problem is circumvented here as an optimization one. 
Starting from an arbitrary, or random, current excitation, 
the PSO algorithm is used in order to return current ex-
citation that leads to an equiripple pattern with the nar-
rowest possible beamwidth. The procedure of using the 
PSO to obtain the required current excitations  nI  
may be summarized in the following steps 

1) Specify N, d, and . 
2) Start with an arbitrary current excitation  0

nI . 
3) Obtain the array factor AF ( ) using either Equa-

tion (14) or (15).  
4) The side-lobe levels  maxi and their locations AF

maxi  are determined to be used in the next step; 

max1,i 2, ,  . Here, max  denotes the number of 
peaks appear in side-lobe regions.  

5) The side-lobe levels  maxi  are forced not to 
exceed a certain level, say , and this is achieved by 
minimizing the following cost, or fitness, or error, or 
objective function  





AF


max

max

2

1
i

i

AF


 


              (16) 

6) Return to step 2 while the number of iterations or 
minimum error criteria is not attained, otherwise stop. 
Indeed the process described above gave equiripple ra-
diation pattern but not necessarily the narrowest possible 
beamwidth. Thus the cost function should be amended to 
incorporate a condition on the beamwidth also. Equation 
(16) is therefore modified to read 

   
max

max

2 2

1
i i

i

AF BWc B


   


    Wd     (17) 

The positive weighting factors i and  are added to 
give each factor a certain influence on the obtained re-
sults. The numerically calculated beamwidth (BWc) is 
compared with the desired beamwidth (BWd), which 
may be determined by an analytic formula (e.g. [4]). 
Equation (17) satisfies the requirement of the PSO algo-
rithm that the fitness function should return a single 
number representing the target of the minimization proc-
ess. The optimization here is carried out using a fixed 
spacing, which is /2, between the elements. However, 
this spacing is not an optimum spacing. Looking for such 
an optimum spacing is also undertaken. Using an opti-
mum spacing, which is usually greater than /2, extends 
the visible space. Hence, more sidelobes and narrower 
patterns are expected. To further demonstrate the capa-
bilities of the PSO algorithm, the locations of the array 
elements are also considered as the optimized parameters. 
Though the problem becomes nonlinear, the PSO re-
turned the required spacings that lead to equiriple pattern. 
These points will be elaborated by considering specific 
examples in the following Section. 

5. Illustrative Examples 

In this section, the capabilities of the PSO algorithm in 
the synthesis of antennas array are demonstrated by three 
examples. First, the PSO algorithm was used to find the 
current excitations that result in equiripple array factor. 
In this example, the interelement spacing was set to /2 
and all excitation currents are assumed to be equiphase. 
Figure 1 shows the radiation pattern of a 10-element 
array using the excitation currents returned by the PSO 
with fitness function as defined in Equation (16) (dotted 
line) and in Equation (17) (solid line). In the former case, 
the goal was to obtain an equiripple array with side lobes 
level of –20 dB. Although the side lobes are at the de-
sired level, the obtained array is not optimum in a Che-
byshev sense. To overcome this problem, the fitness 
function was modified as given in Equation (17) to 
achieve the narrowest possible main lobe besides ob-
taining an equiripple pattern. With this modification of 
the fitness function, the PSO returned excitation currents 
that resulted in the desired narrow main lobe and equal 
side lobe level. The returned current excitations of this 
case along with various other examples using different 
array sizes are given in Table 1. These results are in ex-
cellent agreement with those presented elsewhere (e.g. 
[4]). In the second example, the PSO was used to find 
more directive patterns than that obtained by limiting the 
spacing between the elements to /2. Such optimum 
spacing undoubtedly extends the visible space and results  
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Figure 1. Radiation pattern of 10-element antennas array 
synthesized using PSO using two different fitness functions. 
 
Table 1. Magnitude of Current Excitation of /2-spacing for 
antenna array synthesis using PSO. 

Number of 
Elements 

Side Lobes 
Level 
(SLL) 

Magnitude of Current Excitations 
(normalized with respect to the 

edge element) 

–20 dB 1.7357, 1.0 
4 

–40 dB 2.6687, 1.0 

–20 dB 1.8388,1.6827,1.2763,1.0 
7 

–40 dB 6.1224,5.1492,2.9632,1.0 

–20 dB 1.5568,1.4383,1.2126,0.9295, 1.0 
10 

–40 dB 8.0551,6.7374,4.6608, 2.5283, 1.0 

 
in more side lobes accommodated in the radiation pattern. 

For a 10-element array with 20 dB SLL the optimum 
spacing returned by the PSO algorithm is 0.8964 . This 
is in excellent agreement with the result obtained using 
the analytic expression given in [4]. Figure 2 shows the 
radiation patterns obtained by using this spacing and that 
by using half wave spacing. 

The convergence of the algorithm toward this value is 
shown in Figure 3 for agent number 15 for iterations 
from 110 to 170. As the figure indicates, beyond the 
140th iteration the value settled to the optimum value. 

In the third example, the PSO was used to find the lo-
cations of the array elements to achieve a desired equal 
side lobe level and the narrowest possible beam width. 
The current excitation is assumed to be uniform in this 
case. Figure 4 shows the radiation pattern of a 
10-element antenna array achieved by changing inte-
relement spacings in order to get 20 dB side lobe level. 
For comparison, the radiation pattern of the same array 
with half wave spacing which has side lobe at higher 
levels is shown in the figure. 

As Figure 4 shows, the desired side lobe level is 
achieved. The interelement spacing (returned by the PSO) 
for this case and some other cases are given in Table 2. 

 

 

Figure 2. Radiation pattern of 10-element antennas array 
with optimum and half wave spacing. 
 

 

Figure 3. Convergence of the optimum spacing versus 
number of iterations.  
 

 

Figure 4. Radiation pattern of 10-element antenna with 
locations obtained using PSO and half wave spacing uni-
form array. 
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Table 2. Unequal Spacings for antenna array (with uniform 
current excitation) Synthesized Using PSO. 

Number of 
Elements 

Side Lobes 
Level (SLL) 

Spacing (normalized with respect to 
/2) 

–20 dB 
±0.4396, ±1.3931, ±2.3759, ±3.6009, 
±5.0070 

10 

–30 dB 
±0.2003, ±0.5744, ±0.8566, ±1.2603 
± 2.1771 

–20 dB ±0.4550, ±0.6832, ±1.0358, ±1.9763
8 

–30 dB ±0.4928, ±0.5648, ±1.1628, ±2.1312

 
The spacings in Table 2 are the distance between the 
center of the array and the corresponding element. 

6. Conclusions 

The application of PSO to design chebyshev arrays has 
been demonstrated in this paper. The objective function 
has been carefully defined in order to obtain accurate 
results. Current excitations and the locations of the array 
elements are optimized to obtain the anticipated aim. 
General nonuniform arrays have been designed and the 
results are in agreement with those reported in the litera-
ture. The proposed method of PSO can also be utilized to 
place a controlled null anywhere in antenna pattern and 
this would be useful in suppressing unwanted interferences. 
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