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Abstract 
 
The aim of this study is to investigate the effects of horizon selection on the elastic behaviour of plate type 
structures in the micropolar peridynamic theory. Plates with various lengths and widths have been investi-
gated using micropolar peridynamic model for different horizon selections. The mathematical model of 
plates has been provided applying the micropolar peridynamic theory and solution of this model has been 
obtained by finite element methods. The displacement fields have been computed for the different horizons 
and dimension ratios of plates. To compute the displacement field a program code has been developed by 
using the software package MATHEMATICA. The results obtained have been compared with the analytical 
solution of the classical elasticity theory and with the solution of displacement based finite element methods. 
For displacement based finite element method solution the software package ANSYS has been used. Ac-
cording to results it has been observed that the displacement fields of the plates are strongly affected by ho-
rizon selection. Therefore a question raises that which horizon length should be used with the problem in 
hand or is there any method to find the appropriate/best horizon length. 
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1. Introduction 
 
In classical theory of continuum mechanics, a represen-
tative volume element of the material is chosen then re-
action of this material to homogeneous deformation is 
described as stress and strain relation. Formulation of 
stress and strain depends on deformation gradients and 
their derivatives. From mathematical aspect when there 
is a discontinuity, such as crack or phase boundary, the 
deformation gradients and their derivatives can not be 
calculated. The discontinuous area is reformulated in 
order to solve the problem in classical theory. But recov-
ering approaches depend on the severity of the problem 
and these are unique solutions for the problem. For ex-
ample, “crack tips are considered body surfaces with 
particular boundary conditions. Crack tips satisfy a par-
ticular energy balance that is different from the rest of 
the body. Phase boundaries are surfaces inside the body 
that satisfy particular jump conditions and kinetic rela-
tions” [1].  

To provide a solution, Silling has purposed a new 
theory called peridynamic [2]. The theory uses integral 

equation instead of spatial derivatives of displacement. 
This feature of the theory makes it valid on continuous 
and discontinuous areas. Since the particles interact with 
each other with a finite distance, the theory is catego-
rized as non-local model. In the peridynamic theory the 
particles, only inside the horizon, interact with each other 
and the force between particles is expressed with vector 
valued function f  as shown in Figure 1. 

In the past using Pridynamic theory, impact of a 
sphere on a brittle target [3], dynamic growth of a single 
crack from a defect in membranes and bursting of a bal-
loon have been illustrated [4]. In addition, analysing an 
infinite bar under self-equilibrated load with peridynamic 
theory, it has been observed that there is decaying dis-
placement propagation different than classical results and 
it has been showed that, taking the horizon zero the the-
ory is converges to classical continuum theory [5]. Also 
for different fracture conditions initial value problems 
has been solved [6,7].  

The wave propagation in anisotropy condition has 
been analyzed [8]. The force flux and peridynamic stress 
have been defined representing the peridynamic state and  
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Figure 1. The material horizon and pairwise force function. 
 
constitutive equations [9-11]. These definitions have 
been implemented using finite element method [12]. The 
conditions in which peridynamic theory converges to 
classical theory have been showed using pridynamic 
stress definition [13]. 

The implementation of peridynamic theory with mo-
lecular dynamic code has been carried out and the simi-
larities have been emphasized [14]. Recently, for com-
posites progressive damage prediction and error predic-
tion for brittle materials such as glasses have been stud-
ied [15]. Also using peridynamic theory, the material 
stability and and failure analysis have been carried out 
[16]. 

However, the most important shortcoming of the 
peridynamic theory is the Poisson`s ratio limitation. The 
theory is applicable to material only with Poisson’s ratio 
1/4 Therefore a few years later, including peridynamic 
moment in addition to central forces, Gerstle, Sau and 
Silling proposed the micropolar peridynamic theory as a 
generalization of the peridynamic theory. Furthermore, it 
is possible to use the micropolar theory in the finite ele-
ment method with harmony. This gives easy application 
of boundary conditions to physical model in hand [17].  

Although various applications of peridymanic and mi-
croplolar peridynamic model have been done as seen 
from the literature, the effect of dimension ratio or hori-
zon selection has not been analyzed so far. The main 
objective of this work is to investigate these fundamental 
features. 
 
2. Fundamental Definition of Peridynamic  

and Micropolar Peridynamic Theory 
 
2.1. Peridynamic Theory 
 
In peridynamic theory, inside the horizon length particles 
interact with each other with a central vector valued f  
function. The parameters of f  functions are displace-
ment vectors and position vectors. f  is zero if the par-

ticles are not inside the horizon. The integration of f  
function over a unit volume is a force function such as 
L  in the unit of force per reference volume [2].  

According to these definitions the quantity of force 
function L , at any time t and at any point x in the ref-
erence configuration, is described as follows, 

( ) ( ) ( )( ), , , , d x
R

x t t t V ′′ ′= − −∫L f u x u x x x      (1) 

By applying the the Newton’s Second Law, the peri-
dynamic equation of motion can be written as follows: 

ρ = +u L b                   (2) 
where 

b  is prescribed loading force density in the unit of 
per-unit reference volume. 

In order to simplify the writing of the equation, some 
notations are described as η , ξ  and ξ η+ . 

Then, relative displacement vector: 
u uη ′= −                   (3) 

And relative position vector: 
x xξ ′= −                  (4) 

Now the relative position of the particle in the de-
formed configuration: 

ξ η+                    (5) 

When 0b u≡ ≡  the Equation (2) is described as 
equilibrated.  

Other basic restrictions for f are linear admissibility 
condition and angular admissibility condition. According 
to Newton’s Third Law the common force between two 
particles has same magnitude but opposite direction. 
Therefore the forces must have opposite signs.  

( ) ( ), ,f fη ξ η ξ− − = −             (6) 

This condition is called linear admissibility. Also the 
force between particles must be in the direction of their 
relative current position.  

( ) ( ), 0fξ η η ξ+ × =            (7) 

This condition is called angular admissibility. 
 
2.2. Micropolar Peridynamic Theory 
 
In the micropolar peridynamic model, besides peridy-
namic central forces, the peridynamic moments are also 
considered, and particles interact with each other inside 
the material horizon. Infinitesimally-small particle i and j 
interact with each other over a finite distance in the do-
main R. The horizon definition is same as in section 2.1 
[17]. 

The total force in unit volume iV∆  acting on the par-
ticle i by the particle j is written as [18],  
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j
ij j

V
V= ∆∑F f  

where, 
ijf  The pairwise force vector between particle i  and 

j  defined in terms of force per unit reference volume 
squared. 

jV∆  Unit volume of particle j 
The total moment in unit volume iV∆  acting on par-

ticle i by particle j is written as below.  

j
i ij j

V
V= ∆∑M m              (9) 

where,
 

ijm  The pairwise moment vector between particle i  
and j  presented in terms of moment per unit reference 
volume squared. 

According to Newton’s Second Law conservation of 
linear momentum is given by: 

( ) ( )i idm d= ∑u F             (10) 

And the conservation of angular momentum is:  

( ) ( )i idI d= ∑θM ,            (11) 

where,  
( )d∑ F : Force vector acting on body 
( )d∑ M : Moment vector acting on body 
idm : Differential mass of particle i 

idI : Differential mass moment of inertia of the par-
ticle i  

iu  Acceleration of the particle i 
iθ  Angular acceleration of particle i 

For static condition the equations takes the following 
forms; 

d 0
j

ij j i
V

V + =∫ f b               (12) 

d 0
j

ij j i
V

V + =∫ m m              (13) 

where, 
ib  Vector valued external force defined in terms of 

force per unit reference volume.  
im  Vector valued external moment defined in terms 

of moment per unit reference volume. 
When the material is homogeneous and elastic, the va-

riables of ijf  and ijm  
 

functions are relative dis-
placement, relative position of the particles initially, and 
rotations of the particles. 
 
3. Finite Element Approach of Micropolar  

Peridynamic Theory 
 
In peridynamic theory, the bond between two particles 
could be thought as micro truss, there is only axial ten-

sion or compression. But in micropolar peridynamic 
theory the bond is micro beam. Therefore, bending and 
torsion features can be added [17]. 

Due to benefits of Finite Element Method such as easy 
application of boundary condition and efficient computa-
tion, Gerstle, Sau and Silling implemented the FEM to 
the micropolar theory. A micropolar peridynamic frame 
element has been used to derive the finite element for-
mulation of the theory [17]. The frame element has ra-
dially simetric cross sectional area A, it’s bending mo-
ment of inertia is I and torsional moment of inertia is 2I 
and length of the frame element is L as shown in the 
Figure 2. 

Young’s modulus of the element is E′ . c, d and δ  
are three independent material parameter. δ  represents 
horizon, c and d are the elastic properties of the element 
where, 

c E A′=                   (14) 

d E I′=                   (15) 
In terms of c and d the stiffness matrix of a peridy-

namic frame element k̂  is shown as below, 

3

0
ˆ

120

c
Lk

d
L

 
 

=  
 
  

              (16) 

Differential force on particle i and j and differential 
elastic strain energy in the particle i and j are given as 
follows, 

{ } { }ij ij ij i jdf k d dV dV =            (17) 

{ } { }1 1
2 2ij ij ij ij ij ij i jdU d f d k d dV dV     = =        (18) 

 

 

x 

y 

z 

L, A 

 
Figure 2. Features of the peridynamic element. 
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where, stiffness matrix k is in global coordinates while 
stiffness matrix k̂  is in local coordinates according to 
position of the frame element. 

Total strain energy of the body is expressed as,  

{ }1 1 d
2 2 ij ij ij i j

R R

U d k d V dV   =    ∫ ∫        (19) 

In a more convenient form, to apply numerical solu-
tion technique, Equation (19) can be written in the fol-
lowing form: 

[ ]{ }1
2

U D K D=                 (20) 

where, D is nodal displacements and K is stiffness matrix 
of the body.  

For easy application global stiffness matrix can be 
written as below by separating as contribution of par-
ticles in the same element and contribution of the par-
ticles in the different elements. 

[ ] [ ]
_ 1

1 1 1

num el eli n

ij ii
eli elj eli

K K K
−

= = =

 
 = +  

 
∑ ∑ ∑          (21) 

ijK  and iiK  matrices are given by: 

( )
1 1

ji mm Tij ij
ij ij j i

i j
K N k N V V

= =

 
      = ∆ ∆        

 
∑ ∑    (22) 

[ ] ( )11

1 1

im i Tii ii
ii ij j i

i j
K N k N V V

−

= =

 
    = ∆ ∆     

 
∑ ∑    (23) 

Shape matrices ijN  and iiN  can be expressed as 
follows:  

[ ]
[ ]

0

0

i

ij j

N
N

N

      =      
           (24) 

[ ]
( )
( )

i
i

ii i
j

N
N

N

ξ

ξ

 
=  
  

              (25) 

While comparing the stored energy in the unit volume, 
i.e. strain energy, parameters of the classical theory and 
the parameters of the micropolar peridynamic theory can 
be related to each other. The parameters of the classical 
theory are Modulus of Elasticity E and Poisson’s Ratio 
ν , the strain energy is calculated in terms of these para-
meters. The micropolar peridynamic theory calculates 
the strain energy in terms of c and d. 

For two-dimensional plane stress condition assuming 
uniform strain field, the energy density of unit volume 
body using principle strains has the following matrix 
form in classical theory: 

( )( ) ( )( )

( )( ) ( )( )

1
1 2

2

1
1 1 1 11

12
1 1 1 1

U E

ν
ν ν ν ν ε

ε ε
εν

ν ν ν ν

 
 − + − +   =          − + − + 

 

(26) 
The strain energy in the material horizon for a unit 

volume in the case of applying micropolar peridynamic 
theory is expressed as below: 

2π

0 0

1 d d
2

Tr

r
U d k d r r

δ θ

θ
θ

= =

= =
     =      ∫ ∫
  

      (27) 

3 3

1
1 2 3 3

2

3 3π 4 12
4

3 3
12 4

c cd d
U

c cd d

δ δδ δ ε
ε ε

εδ δδ δ

 
+ −    =         − +  

 (28) 

To relate c and d to E and ν  the Equations (26) and 
(28) are compared, and c and d have been written in 
terms of E, ν  and δ  as follow,  

( )3

6
π1

Ec
δ ν

=
−

                (29) 

( )2

1 3
6π 1

Ed ν
δ ν

 − =
 − 

              (30) 

Choosing appropriate E, ν  and δ  the structure can 
be modeled using micropolar peridynamic theory. 
 
4. Application of Micropolar Peridynamic  

Theory 
 
In order to carry out the analysis on cantilever plates by 
applying micropolar peridynamic model a computer code 
has been developed using software package MATHE-
MATICA.  

E, ν , δ , a (length), b (width), t (thickness), p (par-
ticle number in one element), boundary conditions and Q 
(force applied externally) are input parameters for the 
program code while K and D are output parameters.  

Seven cantilever plates with various length and width 
have been analyzed for four different horizon selections 
using developed code. Material selected is Aluminum 
1100 H12 which has material properties as E = 70000 
Mpa and v = 0.33 [19]. 500N concentrated external load 
has been applied to free end in the –y direction. Thick-
ness for all models is constant as 1 mm. The ratios of 
length to width are chosen from 1 to 7 as seen in Table 1 
and in Table 2 horizon selections for each model is 
shown. 

For analytical result the Equation (31) for elastic 
plates is used and the model for the equation is as in 
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Figure 3 [20]. 

( )3 2

3 2

12 11
1

52y
Qa bu
Eb a

ν+ 
= − + 

 
         (31) 

For numerical solution displacement-based finite ele-
ment model analysis is carried out using software pack-
age ANSYS. 
 
5. Results 
 
The maximum displacements are obtained using Micro-
polar Peridynamic (MPD) for four different horizon  
 

Table 1. Dimensions of the samples. 

 Length (mm) Width (mm) Ratio = a/2b 

Model-1 100 100 1 

Model-2 200 100 2 

Model-3 300 100 3 

Model-4 400 100 4 

Model-5 500 100 5 

Model-6 600 100 6 

Model-7 700 100 7 

 
Table 2. Horizon selection of models. 

 Horizons (mm) 

Model-1 25 50 75 100 

Model-2 50 100 150 200 

Model-3 75 150 225 300 

Model-4 100 200 300 400 

Model-5 125 250 375 500 

Model-6 150 300 450 600 

Model-7 175 350 525 700 

 

 

y 

b 

b 

x Q 

a 

 
Figure 3. Cantilever plate with an end load. 

selections for each model, classical-analytical approach 
and ANSYS. Results for each model are shown graphi-
cally. 

Table 3 shows the maximum displacements of models 
according to ANSYS and classical-analytical results and 
Table 4 shows the maximum displacements of each 
model for four different horizon selections. 

While in each figure continuous curve represents MPD 
results, the symbols square and triangle show the Clas-
sical and ANSYS results respectively. 

The continuous curves are obtained and shown in 
Figures 4-10 for various horizon selections, however 
Classical theory and ANSYS results do not depend on 
the horizon. 

By close inspection of figures reveals out that, maxi-
mum displacements strongly depend on the horizon se- 
 
Table 3. Maximum displacements of Classical and ANSYS 
results. 

 Classical (mm) ANSYS (mm) 

Model-1 −0.05 −0.07 

Model-2 −0.27 −0.29 

Model-3 −0.84 −0.85 

Model-4 −1.92 −1.93 

Model-5 −3.68 −3.68 

Model-6 −6.31 −6.29 

Model-7 −9.96 −9.93 

 
Table 4. Maximum displacements of MPD for various ho-
rizons. 

Model-1 
Horizons (mm) 25 50 75 100 

Max.Displ. (mm) −0.03 −0.07 −0.12 −0.18 

Model-2 
Horizons (mm) 50 100 150 200 

Max.Displ. (mm) −0.09 −0.18 −0.31 −0.46 

Model-3 
Horizons (mm) 75 150 225 300 

Max.Displ. (mm) −0.12 −0.3 −0.58 −0.94 

Model-4 
Horizons (mm) 100 200 300 400 

Max.Displ. (mm) −0.16 −0.47 −0.93 −1.46 

Model-5 
Horizons (mm) 125 250 375 500 

Max.Displ. (mm) −0.22 −0.69 −1.32 −2.17 

Model-6 
Horizons (mm) 150 300 450 600 

Max.Displ. (mm) −0.29 −0.93 −1.81 −2.69 

Model-7 
Horizons (mm) 175 350 525 700 

Max.Displ. (mm) −0.36 −1.17 −2.15 −3.02 
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Figure 4. Maximum displacements versus horizons for 
Model-1. 
 

 
Figure 5. Maximum displacements versus horizons for 
Model-2.  
 

 
Figure 6. Maximum displacements versus horizons for 
Model-3. 
 
lection. For the first three models, for some certain hori-
zon selection, there are points at which classical and 
ANSYS results coincide. However, for the models di-
mension ratios are bigger than three, the results of clas-
sical theory do not coincide with the results of MPD for  

 
Figure 7. Maximum displacements versus horizons for 
Model-4. 
 

 
Figure 8. Maximum displacements versus horizons for 
Model-5. 
 

 
Figure 9. Maximum displacements versus horizons for 
Model-6. 
 
any horizon selection. Since, the most accurate value 
should be obtained when horizon length includes every 
point in a body, maximum displacement of the seven 
models according to MPD, classical-analytical and AN-
SYS results have been compared. Additionally, the errors  
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Figure 10. Maximum displacements versus horizons for 
Model-7. 
 
between MPD and ANSYS results, MPD and classical- 
analytical results have been calculated and shown in the 
Figures below. 

Figure 11 shows maximum displacements calculated 
by using Micropolar Peridynamic theory, ANSYS and 
classical-analytical theory. Figure 12 and Figure 13 
show the error with respect to the results obtained by 
using the classical theory and ANSYS, respectively. 

In Model-3 the error takes its minimum value for both 
analytical solutions and ANSYS results but then the error 
increases for both results. The graphical representation of 
error for maximum displacement shows increasing trend. 
 
6. Conclusion and Discussion 
 
In this study MPD, classical-analytical and ANSYS 
analysis of seven the plates with various length and 
width have been carried out. Each plate has been ana-
lyzed for four different horizon selections. It has been 
observed from Tables 3 and 4 that the displacement 
fields of plates obtained by MPD are strongly affected by 
horizon selections. In model-1, model-2 and model-3 for 
some horizon selection the MPD gives the same results 
with Classical and ANSYS solutions. However, for other 
models, the results for the maximum displacements nev-
er have the same values. The concept of horizon is the 
most important difference between classical and Peridy-
namic model. So it is significant that there is a genera-
lized rule to choose the appropriate horizon length.  

Also physically one expects that the most accurate so-
lution must be obtained when the horizon is selected as it 
contains all points of the body. When one compares that 
case with analytical and ANSYS result, it can be seen 
from Figure 11 that, in MPD, the model underestimates 
the displacement which can be translated as MPD illu-
strates the model more rigid than it is. 

In addition, it is shown from Figure 11 that the dis- 
placement fields of the plates are strongly affected by  

 
Figure 11. Maximum displacements. 

 

 
Figure 12. Error with respect the results using the classical 
theory. 
 

 
Figure 13. Error with respect to the results from Ansys. 

 
dimensional changes of the plates. This shows that The 
MPD might have a shortcoming of validity on every di-
mension ratios and horizon selection. Even if appropriate 
horizon could be found for some dimension ratios, there 
would be no explanation about which horizon could be 
selected.  

Apparently, there is a problem which is related both to 
dimension ratios and horizon length selection. This 
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might be solved by checking the mathematical model 
and physical basis on which the theory has been devel-
oped. 
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