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Abstract 
 
The response of ecosystems to perturbations is considered from a thermodynamic perspective by acknowl-
edging that, as for all macroscopic systems and processes, the dynamics and stability of ecosystems is sub-
ject to definite thermodynamic law. For open ecosystems, exchanging energy, work, and mass with the en-
vironment, the thermodynamic criteria come from non-equilibrium or irreversible thermodynamics. For 
ecosystems during periods in which the boundary conditions may be considered as being constant, it is 
shown that criteria from irreversible thermodynamic theory are sufficient to permit a quantitative prediction 
of ecosystem response to perturbation. This framework is shown to provide a new perspective on the popula-
tion dynamics of real ecosystems. 
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Paradox 

1. Introduction 
 
Most ecosystems are under considerable stress, having 
been perturbed by human intrusions including, popula-
tion reduction, the introduction of foreign species, habitat 
fragmentation, contamination, and general global warm-
ing. Fortunately, ecosystems can often recover from per-
turbations and can even evolve and adapt to new bound-
ary conditions [1]. However, successful recovery de-
pends on the inherent stability of the system, which is a 
complex function of the individual interactions among all 
the participating species and among species and their 
environment. Given that typical ecosystems contain over 
3000 species [2], understanding the nature of this stabil-
ity, and thus predicting ecosystem response to perturba-
tion, is far from trivial, but indispensable for developing 
a quantitative approach to conservation. 

Predicting ecosystem response to perturbation is, 
therefore, one of the most scientifically taxing yet im-
portant questions of our time. Most of present ecosystem 
dynamics theory is based on Lotka-Volterra-type equa-
tions which are empirically inspired equations incorpo-
rating one-body parameters, such as inherent birth and 
death rates, and two-body effects of one species popula-
tion on another through a “community matrix” of coeffi-

cients representing; competition, predator-prey, symbio-
sis, or neutral interaction. Environment limitations are 
incorporated through additional parameters such as the 
“carrying capacity”. This two-body “community matrix” 
approach, although widely recognized for its usefulness 
in revealing the general spectrum of the dynamics of 
model ecosystems [3], has had limited application to 
predicting real ecosystem response to perturbation. 

This is primarily due to the fact that the community 
matrix is obtained from fits to time-series population 
data, and therefore it can be expected to be representative 
of nature only within the limited range of the available 
population data. 

A further problem debilitating the community matrix 
approach is that it is a two-body approach, while species 
interactions are really of a many-body nature. These 
many-body effects are usually absorbed within so called 
“environmental factors” which are included in the dy-
namical equations as fitted constants. However, these 
“constants” are not really constant for perturbed ecosys-
tems and anyhow fail to endow the resultant 2-body equa- 
tions with the true dynamics of inherently many-body 
natural ecosystems. 

A lack of a quantitative ecosystem theory means that 
today’s ecosystem health is usually surmised by making 
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painstaking field counts of the populations of particular 
species and then, somehow arbitrarily, deciding whether 
or not to include those species on an “in danger of ex-
tinction” list. Such one dimensional vigilance of ecosys-
tems is not satisfactory for a number of reasons: first, it 
fails to treat the ecosystem as an integrated whole and 
could thereby miscalculate the gravity of the situation 
about to unfold; second, since many ecosystems have a 
natural cyclical, or even chaotic, but stable dynamics, it 
may be difficult to distinguish normal stable periodic or 
chaotic behavior from a dangerous fall toward extinction; 
third, our human perspective tends to focus on species in 
which the individuals are physically large, easily ob-
servable, or likable, but not necessarily those key species 
that are most important to the stability of an ecosystem. 
Most important, however, is the fact that present ecosys-
tem theory provides little information for designing an 
integral approach to arresting an impending catastrophe, 
other than, perhaps, suggesting that the endangered spe-
cie be protected by law. 

There is clearly a need for attempts at constructing 
more quantitative approaches to population modeling 
based on fundamental science and measurements that can 
lead to prediction of ecosystem dynamics in regions in 
population space for which no data exist. There has been 
a growing realization that such a quantitative theory of 
ecosystems will ultimately have a thermodynamic basis 
[4-10]. The reasons are compelling: First, thermody-
namic laws derive from symmetry principles inherent in 
nature and thus are universal, applicable in suitable form 
to all macroscopic systems and processes, irrespective of 
the types of interactions involved. Second, thermody-
namics deals with a much reduced set of macroscopic 
variables which can be related with measurable ecosys-
tem variables (e.g. populations) involved in the dynami-
cal patterns observed in Nature. Third, the strictly hier-
archal control assumed in traditional ecology is sup-
planted by a more integral approach in which systems are 
thermodynamically embedded [8,9,11]. Finally, a num-
ber of problems and paradoxes existing in traditional 
ecosystem theory appear to have a simple resolution in 
terms of thermodynamic directives [7,10]. 

The objective of this paper is to demonstrate that, for 
particular ecosystems under constant boundary condi-
tions, a non-equilibrium thermodynamic framework for 
the population dynamics can lead to explicit predictions 
concerning ecosystem response to perturbation. In the 
following section we briefly outline the thermodynamic 
framework for treating ecosystems which has been pre-
sented elsewhere [10]. In Section 3 we present a simple 
model ecosystem and demonstrate how its population 
dynamics and stability characteristics are determined by 
thermodynamic constraints and criteria relating to energy, 
work, and mass flow among the species populations, and 

with the external environment. In Section 4, we perturb 
this ecosystem and analyze the response as predicated on 
the basis of non-equilibrium thermodynamic formalism. 
Finally, in Section 5, we discuss how our thermodynamic 
framework may have relevance in explaining the par-
ticular population dynamics observed in many real eco-
systems. 
 
2. Thermodynamic Framework 
 
To avoid misinterpretation at the outset, it is prudent to 
make a clear distinction between two existing, but fun-
damentally different, thermodynamic frameworks. Equi-
librium thermodynamics deals with isolated systems and 
the fundamental state variable governing the evolution of 
the isolated system toward the stable equilibrium state is 
the total entropy, S. Irreversible thermodynamics deals 
with open systems or processes, such as ecosystems, 
which exchange energy, work, and mass between com-
ponent parts and with the environment. Here, the vari-
able governing the evolution toward the stable stationary 
state (for constant boundary conditions) is the time varia-
tion of the total entropy of the system, dS/dt. Our 
framework is based on the latter, irreversible thermody-
namics, and we employ only that part of this framework, 
known as classical, developed by Lars Onsager [12] and 
Illya Prigogine [13], which has been extensively verified 
empirically. 

As for any open system, the time variation of the total 
entropy of the ecosystem may be divided into a part due 
to the internal entropy production arising from irreversi-
ble processes occurring within the ecosystem itself, and a 
second part due to the flow of entropy into, or out of, the 
ecosystem from the external environment [13], 

d dd

d d d
i eS SS

t t t
  .              (2.1) 

All macroscopic systems and processes, including 
ecosystems, are subject to definite thermodynamic law. 
The primary among these is the second law of thermo-
dynamics which states that the internal production of 
entropy due to irreversible processes occurring within the 
system must be positive definite, 

d
0

d
iS

t
 .                (2.2) 

For the case of ecosystems under the condition of con-
stant external constraints (see [10] for justification of this 
condition for a large class of ecosystems), classical irre-
versible thermodynamic theory states [13] that the sys-
tem will eventually arrive at a thermodynamic stationary 
state in which all macroscopic variables, including the 
total entropy, are stationary in time, 
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Therefore, from (2.1), at the stationary state, 

d d
,

d d
i eS S

t t
                 (2.4) 

implying from Equation (2.2) that 

d
0

d
eS

t
 .                  (2.5) 

Maintaining an ecosystem in a stable thermodynamic 
stationary state thus requires a continuous negative flow 
of entropy into the system. This was emphasized by 
Schrödinger [14], but was first recognized by Boltzmann 
[15]. 

The internal entropy production d diS t  can be writ-
ten as a sum of generalized thermodynamic forces X 
multiplied by their corresponding generalized thermo-
dynamic flows J, as stated by Prigogine [13] 

d
,

d
iS X J
t  


                (2.6) 

(for example, the entropy production due to heat flow 
can be obtained by multiplying  1QX T  gradient of 
the inverse temperature, and JQ = heat flow). 

The separation of the entropy production into its 
components of thermodynamic forces and flows is 
somewhat arbitrary and can often be chosen for conven-
ience in resolving a specific problem. However, there are 
a number of conditions that must be met for any particu-
lar choice. The first condition is that the product of the 
force and flow gives units of entropy production, and the 
second is that symmetry aspects must be respected, for 
example, a scalar force cannot give rise to a vector flow 
[16]. We have shown [10] that ecosystem dynamics can 
be treated consistently within this irreversible thermody-
namic framework by assigning the generalized thermo-
dynamic forces to the species populations ( X p  ) 
(where   represents the species type) and the general-
ized flows to the flows of entropy ( d dJ S t  ) (due to 
flows of energy, work, or mass, to or from species , see 
below). 

Within this framework, it was shown [10] that the 
ecological steady state, prevalent in nature [2,17], has the 
stability characteristics of the thermodynamic stationary 
state. In view of this, we have made the formal assertion 
that the ecological steady state is just a particular case of 
the more general thermodynamic stationary state [10]. 

A further criterion from classical irreversible thermo-
dynamic theory, considered by Prigogine as the most 
general result of irreversible thermodynamic theory, and 
valid for constant external constraints, is that the rate of 
change of the internal entropy production, due to changes 

in the generalized forces X (the populations), is negative 
semi-definite; the general evolutionary criterium [13], 

dd
0 where

d d
iX S

t t


  .          (2.7) 

Equation (2.7) implies that, under constant boundary 
conditions, all natural changes in the species populations 
must be in such a manner so as to reduce the internal 
production of entropy. This is a powerful auxiliary crite-
rion on ecosystem response to perturbation and it will be 
shown in §3 and that this, together with the second law 
of thermodynamics, and the fact that a system with con-
stant external constraints must arrive at a thermodynamic 
stationary state, effectively determines the population 
dynamics that the ecosystem can assume. In this manner, 
we can predict the dynamical response of the ecosystem 
to perturbation, be it either toward recovery, toward a 
new dynamics, or toward extinction. 
 
3. Model Ecosystem 
 
We now present our thermodynamic framework for an 
over simplified but illustrative 3-species model ecosys-
tem, including up to 3-body interaction terms. Two of the 
populations, 1p  and 2p , are considered variable, while 
the third, 3p  is fixed, and represents the constant 
boundary conditions over the ecosystem; such as the 
constant supply of nutrients due to a primary producer 
species. 

The total entropy brought into the ecosystem or car-
ried out of it through one-body transport processes can 
be written as, 

1

d
,

d

n
eeS p

t  


              (3.1) 

where the sum is over all n = 3 species and p  is the 
population of species  . e

  represents the average 
rate of exchange, or flow, of entropy with the external 
environment per individual per unit time of species   
as a result of energy (including heat), work, or matter 
flow (see below). 

Similarly, the internal entropy production, including 
production and exchange of entropy between individuals 
of the species, may be written as a many-body expansion 
[10], 

' ' ' '' ' ''
1 ' 1 ', '' 1

(4)

0.

i

n n n

d S

dt

p p p p O       
     



 
       

 


    

(3.2) 

The   represent the entropy production per indi-
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vidual of species   due to one-body irreversible proc-
esses occurring within the individual such as; photosyn-
thesis, transpiration, respiration, metabolism, etc. The 

'  represent the entropy production and exchange due 
to 2-body interactions between individuals of species   
and '  (e.g. those involved in competition, preda-
tor-prey, symbiosis, etc.); ' ''   corresponds to similar 
but 3-body interactions, and (4)O  represents the en-
tropy production due to 4-body and higher order interac-
tions (for example, those required for the functioning of 
societies). The 4-body and higher order N-body terms 
will be neglected in what follows since they would nor-
mally be small as they require increasingly improbable 
(except for social species) N-body localization in space 
and time. 

Equation (2.7), for the time change in the entropy 
production due to a change in the generalized forces X  
(the populations) then becomes, 

' ' ' '' ' ''
' ' ''

d d

0.

x p p p p       
   

        


    (3.3) 

The dynamics of the ecosystem can now be deter-
mined from Equations (2.4), (3.1), (3.2) and (3.3) once 
the 's  are specified. 

The 's  represent entropy production and flow be-
tween individuals of the species and between individuals 
and their environment. A general expression for this en-
tropy flow comes from the Gibb’s equation and results 
from the flow of energy, work, and matter [13]. For ex-
ample, the energy per individual per unit time taken in 
through photosynthesis de , or the heat dq  per indi-
vidual per unit time transported to the external environ-
ment, the work done on the environment per unit time 

dP V  at constant pressure P , and the matter compo-
nents (e.g. nutrients) of type   taken in or given out by 
species  , dn , of chemical potential  , give for 
the rate of entropy exchange per individual with the en-
vironment, 

d d d1

d d
d1

d

e e q VP

T t T t
n

T t

  









  

 
        (3.4) 

where the temperature T (of the participating individuals) 
may be approximated as being constant for the ecosys-
tem [5]. A similar expression can be written for the ' , 
representing the entropy production and exchange be-
tween individuals of species   and ' , i.e. in terms of 
the energy, work, and matter exchanged due to the 
2-body interactions between individuals of the species. 
The effect on the entropy flows due to a simultaneous 
interaction of a third individual (three-body effects) of 

species ''  is considered in the parameter ' ''   . 
Determining the ' s  for a real ecosystem therefore 

requires the determination of the flows of energy de , 
heat dq , volume dV , and mass dn  of type   be-
tween individuals of the participating species and be-
tween individuals and the external environment. Such a 
determination is possible in principle but obviously dif-
ficult in practice. Some of the experimental details for 
obtaining these types of flow measurements between the 
individuals, and between the individuals and their envi-
ronment, can be found in [5] and references therein, as 
well as in [18,19]. 

The entropy production due to the interaction between 
individuals '  is difficult to measure. However, 
much work has already been performed on determining 
the energy flow in ecosystems [20,21] and, as Equation 
(3.4) shows, determining the entropy flow requires 
merely extending this program to determining also mass 
[21] and work flow between individuals, and between 
individuals and the environment. 

In the absence of real ecosystem data concerning the 
production of entropy and the exchange of entropy, here 
we generate these coefficients   for a model ecosys-
tem subject to thermodynamic law with the aid of a ge-
netic algorithm [22]. The algorithm begins by randomly 
generating sets of initial values for the entropy produc-
tion and exchanges, the ' s , within fixed ranges. The 
algorithm then evaluates the fitness of each set by 
checking to see if the population dynamics, as deter-
mined by criteria (3.2) and (3.3), leads to a viable sta-
tionary state in the long time limit, i.e. one with 
lim d d d di e
t

S t S t


   (as required by classical irre-
versible thermodynamics for constant external con-
straints, see Equation (2.4)) and with d diS t  large and 
positive (consistent with what is known about the natural 
evolution of biotic systems to ever higher entropy pro-
duction regimes (see [6,13]). The best sets of ' s  are 
selected and evolved through mutation and crossover, 
optimizing (maximizing), the fitness function, 

d d
,

d d d d
i

i e

S t

S t S t
            (3.5) 

which, as required, is large for d diS t  large, and for 
lim d d d di e
t

S t S t


  . 
An example of a set of  ' s  so obtained is given in 

Appendix A. Using this set of s'  and a starting 
population set of populations ( 1 1000p  , 2 2000p  ) 
with 3p  fixed at 2000 (the constant external constraint), 
and generating infinitesimal variations of the populations 

1dp  and 2dp  at random ( 3d 0p  ) while only accept-
ing those sets  dp  which satisfy the thermodynamic 
criteria of Equations (3.2) and (3.3), leads to the stable 
cyclic attractor (oscillating) population dynamics as 
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shown in Figure 1. 
 
4. Response to Perturbation 
 
The response to perturbation obtained under the dictates 
of the thermodynamic criteria, Equations (3.2) and (3.3), 
once the ecosystem has arrived at a stationary state, 
Equation (2.4), are shown in Figure 1. This stationary 
state, for the particular set of  ’s obtained, is a cyclic 
attractor. The first perturbation, affected at time k = 5e6 
by reducing the population of p1 to 40, can be seen to 
have little effect on the ecosystem, a full recovery of the 
populations is obtained rapidly. The second perturbation 
affected by increasing the population of p1 to 800 at time 
k = 8e6 also produces only a small transient effect. 
However, if the ecosystem is perturbed in the same 
manner but at time k = 1.3e7, population p1 goes nega-
tive (as does the internal production of entropy d diS t ) 
implying the extinction of the species and the thermody-
namic non-viability of the ecosystem. The timing of a 
perturbation affected on an ecosystem with cyclic attrac-
tor population dynamics therefore appears to be crucial 
in deciding the fate of the ecosystem. 

Similar results are obtained if population p2 is per-
turbed. A perturbation of the ecosystem at time k = 1.7e7 
by increasing population p2 to 1600 has no long term 
consequences. However, when population p2 is reduced 
to 600 at time k = 2.0e7, the internal production of en- 

tropy and the population p1 both go negative, the ecosys- 
tem again becomes untenable. 

Figure 2 plots the dynamics of the ecosystem in 
population space p1:p2 for 50 different initial popula- 
tions. It is apparent from this figure that the recovery or 
not of an ecosystem from a particular perturbation de- 
pends on the region in population space into which the 
ecosystem is perturbed. 

Perturbation into the “regions of danger” marked on 
the figure leads to either one of the populations going 
negative, or to the internal production of entropy going 
negative. Both of these results are non physical and 
would foretell the collapse of the ecosystem in nature. 
Interestingly, these regions of danger do not necessarily 
correspond to regions of small population. 

We next examine the response of our model ecosys- 
tem to permanent changes in the boundary conditions. 
Figure 3 shows the ecosystem dynamics under new 
boundary conditions of p3 reduced to 200, down from its 
originally fixed value of p3 = 2000, implying a less nega- 
tive flow of entropy into the ecosystem. Without allow- 
ing time for the interaction coefficients   to evolve in 
response to the new boundary conditions, the cyclic at- 
tractor then becomes a point attractor as shown in Figure 
3. However, as can be seen from this figure, the point 
attractor is not a thermodynamic stationary state since 
the internal production of entropy is no longer equal to 
the negative of the external flow of entropy (Equation 

 

 

Figure 1. (a) Populations p1 (solid line) and p2 (dashed line) as a function of time k for the ecosystem given in Appendix A in 
response to various (see text) perturbations. (b) diS/dt (solid line) and −deS/dt (dashed line) as a function of time. (c) Trajec-
tory in population space showing the cyclic attractor dynamics and the effects of 4 distinct perturbations (see text). 

p 2
 

p1
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Figure 2. The dynamics in population space for 50 different initial populations showing that there are “regions of danger” in 
population space for which a perturbation into these regions would cause the system to become untenable, either because one 
of the populations extinguishes (goes negative) or because the internal production of entropy becomes negative (nonphysical). 

 

 

Figure 3. Ecosystem dynamics for the case where the fixed boundary conditions have been changed from p3 = 2000 to p3 = 200. 
The population dynamics becomes that of a point attractor. However, the system is not in a thermodynamic stationary state 
since diS/dt ≠ −deS/dt. A subsequent perturbation of p1 to 40 at k = 5e6, which did not affect the stability previously (see Fig-
ure 1), now leads to diS/dt going negative, violating the 2nd law of thermodynamics. The vulnerability of the ecosystem has 
thus been increased by reducing the external constraint of p3.  

p 2
 

p1
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(2.4) is no longer satisfied). The ecosystem fitness func- 
tion, Equation (3.5), is no longer at a local maximum 
value and the system, given time, would evolve its en- 
tropy production and exchange coefficients (the set  ) 
until reaching a new stationary state where the produc- 
tion and external flow of entropy are once again equal. 
Note that in the perturbed state with the new external 
constraint, p3 = 200, the same small perturbation of re- 
ducing the population p1 to 40 at time k = 5e6, which did 
not have any lasting affect on the ecosystem previously 
(Figure 1), now results in the collapse of the ecosystem 
since it moves it into the non-physical, thermodynamic- 
cally prohibited, regime of negative internal entropy 
production (Figure 3). 

Figure 4 shows the opposite effect of increasing the 
flow of negative entropy into the ecosystem, obtained by 
increasing the value of the fixed external condition to p3 
= 2200. Without allowing time for the interaction coeffi- 
cients   to evolve, the dynamics remains that of a cy- 
clic attractor but the orbit of the attractor increases sig- 
nificantly, bringing the population p1 very close to zero 
at one point in its orbit. A slight perturbation of popula- 
tion p2 at time k = 5e6 is sufficient to cause the popula- 
tion p1 to pass through zero and thereby cause the col- 
lapse of the ecosystem. We believe that this is a possible 
thermodynamic explanation of the “enrichment para- 
dox”[23]; contrary to naïve expectation, an increase in 
the inflow of nutrients is often observed to make an eco- 

system more vulnerable to perturbation. This will be 
considered in detail in a forthcoming paper [24]. 

We have also verified [25] that had the set of  ’s been 
chosen such that the thermodynamic stationary state cor-
responded to a point attractor in population space (some-
times referred to as an equilibrium state in the ecological 
literature), then increasing the value of the fixed external 
condition p3 leads to population oscilla- tions of p1 and p2. 
This may have relevance to the sudden outbreak of large 
population oscillations of certain spe- cies. 
 
5. Summary and Conclusions 
 
Acknowledging that ecosystems, like all macroscopic 
processes, are subject to definite thermodynamic law, we 
have demonstrated that under constant external con- 
straints, the response of ecosystems to perturbation can, in 
principle, be predicted. The thermodynamic criteria which 
direct the dynamics come from non-equilibrium thermo-
dynamic theory. They are; 1) the system must eventually 
arrive at a thermodynamic stationary state, Equation (2.4), 
2) the internal production of entropy must be positive 
definite, in accord with the second law of thermodynam-
ics, Equation (2.2), and 3) any natural change in the 
populations must be in such a manner so as to reduce the 
internal production of entropy of the entire system, 
Prigogine’s general evolution criterion, Equation (2.7). 

 

 
Figure 4. Ecosystem dynamics for the case where the fixed boundary condition has been increased from p3 = 2000 to p3 = 2200. 
In this case, the population dynamics is that of a cyclic attractor with a larger orbit, bringing p1 very close to zero at times. A 
subsequent small perturbation of p2 to 800 at k = 5e6 leads to diS/dt going negative and population p1 passing through zero. 
We believe that this is the thermodynamic origin of the “enrichment paradox” [23]. 

p1

p 2
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In the absence of data on the entropy production and 
exchange of real ecosystems, we considered a simple 
model ecosystem generated by evolving interaction coef-
ficients (representing entropy production and exchange) 
through selection with a fitness function favoring the 
thermodynamic criteria identified above. We then stud-
ied the response of this model ecosystem to perturbation 
of the populations under the same thermodynamic crite-
ria. We found that there exist regions in population space 
for which perturbation into these regions leads to the 
eventual extinction of one or more of the species, or to a 
negative internal production of entropy. The latter vio-
lates the second law of thermodynamics and would lead 
to ecosystem collapse since physical maintenance proc-
esses require positive production of entropy. An impor-
tant finding is that these regions in population space are a 
general feature of the thermodynamic framework and do 
not necessarily correspond to regions of small population. 
Assigning species to “in danger of extinction” lists, solely 
on the basis of the smallness of their populations may 
therefore not be an effective conservation policy. Our 
proposed approach, based on thermodynamic criteria, 
predicts the dynamics over all of population space and 
thus leads to quantitative elements for providing more 
informed policies for responding to ecosystem perturba-
tion. 

Increasing or decreasing the negative flow of entropy 
(natural resources) into the ecosystem has the effect of 
increasing or decreasing respectively both the amplitude 
of the orbit of the attractor in population space and the 
internal production of entropy of the system. In either 
case, this results in a more vulnerable ecosystem since 
the populations pass closer to zero or the internal pro-
duction of entropy may more easily become negative 
respectively. We believe that this result gives a thermo-
dynamic explanation of the “enrichment paradox”. 

Ecosystems are composed of many thousands of inter- 
acting species and unless the ecosystem can be reduced 
to a few key species, the details of the dynamics is, un-
doubtedly, significantly more complicated than the re-
sults obtained here. However, our thermodynamic frame- 
work can be straightforwardly applied to a much larger 
and more complex ecosystem simply by measuring all 
the entropy production and exchange coefficients   for 
all the species involved. Work in this direction is under-
way [24]. 

In conclusion, as for all macroscopic processes, eco-
systems are subject to definite thermodynamic law. For 
constant external constraints, these laws are sufficient to 
determine ecosystem response to perturbation. Our 
analysis of the population dynamics based on thermody-
namic law and the formulation of the interaction coeffi-

cients in terms of physical and measurable quantities (the 
production and exchange of entropy) is one step toward a 
more quantitative theory of ecosystems. 
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