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Abstract 
 
The entropy production rate was determined for avascular tumor growth. The proposed formula relates the 
fractal dimension of the tumor contour with the quotient between mitosis and apoptosis rate, which can be 
used to characterize the degree of proliferation of tumor cells. The entropy production rate was determined 
for fourteen tumor cell lines as a physical function of cancer robustness. The entropy production rate is a 
hallmark that allows us the possibility of prognosis of tumor proliferation and invasion capacities, key fac-
tors to improve cancer therapy. 
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1. Introduction 
 
Cancer is a generic name given to a group of malignant 
cells which have lost their specialization and control over 
normal growth. These groups of malignant cells are 
nonlinear dynamic systems which self-organize in time 
and space, far from thermodynamic equilibrium, and 
exhibit high complexity [1], robustness [2] and adapta-
bility [3]. 

In spite of achievements in molecular biology and ge-
nomics, the growth mechanism for tumor cells and the 
nature of its robustness are still unknown. According to 
Kitano [4,5], cancer robustness is due to functional re-
dundancy and feed-back control systems. This robustness 
enables a system to maintain its functionality in the face 
of various external and internal perturbations. 

For Hauptmann [6], cancer is an adaptive phenomenon 
which is the response to cellular stress induced by an 
energetic overload which ultimately leads to an increase 
in cellular entropy. Recently Luo [7] demonstrated that 
the entropy production rate of cancer cells is always 
higher than that of healthy cells. 

In previous work it was demonstrated that the entropy 
production rate is a Lyapunov function [8]. The objective 
of this work is to extend the thermodynamic formalism 
as applied to cancer, leading us to the suggestion that the 
entropy production rate for avascular tumor growth is a 
“hallmark of cancer”. The plan of the paper is the fol-
lowing: Section 2 gives a summary of the phenomenol-
ogy of irreversible processes and sets the stage for the 
results of entropy production rate to follow. In Section 3, 

a formalism is obtained from the master equation (ME) 
to obtain the mesoscopic model which describes the tu-
mor growth dynamics in absence of external fluctuations, 
taking into account that the tumor grows in a limited area. 
The microscopic variable considered to describe the state 
of the system is the total number of tumor cells, and the 
macroscopic variables are the expected value of the ra-
dius and the fractal dimension, which is a result of inter-
nal fluctuations. In Section 4, Results and Discussion, the 
behavior of different types of tumor cell colonies, char-
acterized by Brú [9] is predicted by using the formalism 
developed in Section 2 and 3; and finally, some conclu-
sions are presented. 
 
2. Thermodynamic Formalism 
 
We know from classic thermodynamics that if the con-
straints of a system are the temperature T and the pres-
sure P; the entropy production can be evaluated using 
Gibbs’s free energy [10], as: 

1
δ di TPS G

T
                   (1) 

If the time derivative of (1) is taken, we have that: 

δ d1

d d
i TPS G

t T t
                   (2) 

where δ diS t  represents the entropy production rate, 

iS . The term d dTPG t  can be developed by means of 
the chain rule as a function of the degree of advance of 
the reaction as: 
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d d
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G G

t t




 
   

                (3) 

where  TP
G   —according to De Donder and Van 

Rysselberghe [11]—represents the affinity A, with op-
posed sign, and the term d dt  is the reaction rate  . 
Taking into account (2) and (3), we get: 

δ 1

d
i

i

S
S A

t T
                     (4) 

The affinity can be calculated as [9]: 

 ln C
k

k

K
RT

C

 
    

 
              (5) 

where c f bK k k  is the Guldberg-Waage constant 
(  and f bk k  are the forward and backward rate constants), 
Ck is the concentration of the species k, whose 
stoichiometric coefficients  k  are negative for reac-
tants and positive for a products. The formula (5) we 
rewrite as: 

 
 

 
 ln

k
f k f

k
b k b

k C
RT

k C





 
  
 
 




           (5a) 

The reaction rate   can be evaluated according to the 
difference between the forward f and backward reac-
tion rates b , as: 

   
 

 
 k k

f b f bk f k bk C k C               (6) 

Substituting (6) and (5a) on (4) is obtained: 

  ln 0f
i f b

b

S R


 


  


  
             (7) 

The formula (7) is always positive by virtue of the 
second law. As demonstrated as a proof in reference [8] 
the relation (7) is a Lyapunov function, and thus provides 
a directional criterion and stability for the dynamical 
system, in other words, characterizes a complexity of the 
system. As a matter of fact, we postulate the entropy 
production given by (7) as a “hallmark of cancer” useful 
to the prognosis of tumor proliferation. 
 
3. Mesoscopic Model 
 
To obtain a mathematical model to predict avascular 
tumor growth, the following considerations were made: 

First: The considered system is a tumor in vitro with a 
circular geometry in 2D and an irregular contour, where 
the increase of the number of cells n occurs because of 
the reproduction of the contour cells. The total number of 
cells n is the microscopic variable that describes the be-
havior of the system, and macroscopic variables consid-
ered were the tumor radius r and the fractal dimension of 

the interface df , related by the expression: 
2π

,
r

n 


                      (8) 

 1
2 ,

2fd G y                  (9) 

 
 1

ln
lim ,

lnl

w
y

l





               (10) 

where 2L     is the area occupied by an individual cell, 
w  is an non-dimensional magnitude that express the 
height difference between two points in the contour 
separated by an non-dimensional distance l , and  G y  
is a linear function of y . Because the reproduction and 
death of the cells on the contour are considered as sto-
chastic process, r is a stochastic variable who’s variance 
is related with the contour roughness. 

Geometrically, a tumor has the shape shown in Figure 
1, in which the distance between the centre of the tumor 
and the point at the interface more distant from the centre 

 H L , the expected value of the tumor radius  R L , 
and the difference between the maximum heights of two 
points in the contour  W L  are useful variables. (What 
is the variable L?) 

Second: As the contour rugosity is a property of the 
tumour, not all the surface of radius H is covered by tu-
mour cells. If it is considered that internal fluctuations 
scale with the area occupied by the microscopic entities 
that characterize the tumour (tumour cells) then the per-
centage of the host area occupied by tumour cells de-
pends on the relation between the size of the entity and 
the expected value of the area occupied by the tumour, 
expressed by: 

2

2 2
,

R
f

H R

   
 

             (11) 

 

H 

R 

W

 

Figure 1. Geometry representation of the tumour:  H L is 

the distance between the centre of the tumour and the point 

at the interface most distant from the centre,  R L  is the 

expected value of the tumour radius and  W L  the dif-

ference between the maximum heights of two points on the 
contour. 
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where f is a function of the relation  2R  with the 
following properties: 

I think the function f is missing in these following 2 
equations?? 

2

2
lim 1 0; 1f

o
R

W d
R



      
 

       (12) 

and 

2

2
lim 0 ; 2f

R

W d
R



       
 

      (13) 

Third: Because the change of n depends of the prolif-
eration and death of the contour cells and if the formula 
(7) is considered, then the transition probability per unit 
of time Tr t–1 associated with the increases of n is writ-
ten a priori as: 

0.5
rT n                    (14) 

While that the transition probability per unit of time 
associated to the decrease of n, Td  t–1 is assumed as: 

0.5
d dT k n                    (15) 

where: 

 1 ;

;
d ak b F

b ctc

 


 What is ctc??   (16) 

2

2
.a

r n
F

ND
                   (17) 

In Equations (14) and (15)   t–1 is the cell reproduc-
tion rate constant, and kd  t–1 is the cell death rate con-
stant. The death rate constant kd includes a correction 
term Fa, which represents the relation between the tu-
mour radius r and a characteristic length D of the area 
(see Equations (16) and (17)) and takes into account the 
finite area of the host. The term Fa is equivalent to the 
relation between the total number of cells and the total 
sites which can be occupied. 

Considering the transition probabilities (14) and (15) 
the master equation ME [12] which describes the prob-
ability behaviour P(n;t) of having n cells in time t is 
written as: 

     

   

 

1 0.5

1 0.5

0

;
1 ;

                1 1 ; ,

;0 1,

n

n

P n t
n P n t

t
n

b n P n t
N

P n






  


     
 



   (18) 

where a
n  is the step operator. 

Since the reproduction or death of a single cell pro-
duces a negligible effect on the system: 

0,
n

n


                 (19) 

then the variable n can be considered continuous. If the 
step operator is expressed in its differential form: 

2
1

2

1
1 ,

2n n n
  

   
 

           (20) 

2
1

2

1
1 ,

2n n n
  

   
 

           (21) 

The Fokker-Planck equation (FPE) is obtained [12,13] 
for P(n,t): 

   

 

0.5 0.5

2
0.5 0.5

2

;
1 ;

1
               1 ; .

2

P n t n
n b n P n t

t n N

n
n b n P n t

Nn





             
             

 

(22) 

If we take into account the following relations be-
tween the probability related to the microscopic P(n,t) 
and the one related to the macroscopic variables P(r,t) 
[13]: 

   ; ; ;P n t n P r t r              (23) 

   ; ;
,

P n t P r tr

t n t

 


  
           (24) 

then the FPE related to the behavior of the macroscopic 
variable is: 

   

 

2 2

2 2 2

2 2

2 2

;
1 1 ;

2

1
                1 ; ,

2 2

P r t r r
P r t

t r D r D

r
P r t

rr D

   

 

        
                       

    
           

 

(25) 

in which the relations among macroscopic and micro-
scopic rate constants are: 

0.5

4
    

 
               (26) 

0.5

.
4

b    
 

                (27) 

In FPE (XXV), the first term on the right is a convec-
tive term related to the expected or deterministic value, 
while the second term is a diffusive term related to the 
fluctuations value. Taking into account that the macro-
scopically observed cell size  is independent of the 
tumour size r2, we can consider that: 

2 2

2 2 21 1
2

r r

D r D
   

    
            

      (28) 
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in such a way that Equation (25) is written as: 

   

 

 

2

2

2 2

2 2

0 0

;
1 ;

1
                1 ; ,
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P r t

 

 

    
             

    
           



 (29) 

From the FPE (29) the expected radius of the tumour 
R is obtained [12]: 

2 2

2 2

0

d d
1 ; ,

d d
0

R R R R

t tD D
R

   
 

     
 




     (30) 

where   and  L. t–1 are the macroscopic parameters 
associated to mitosis and apoptosis rate and   L. t–1 is 
the tumour growth rate (     ) macroscopically 
observed during the linear growth stage [9]; and for 
variance : 

2

2 2

0

d
2 1 ,

d 2

0

R R

t RD D

    



  
         


      (31) 

The system of ordinary differential equations given by 
(30) and (31) represents the mesoscopic model which 
describes the tumour dynamics in absence of external 
fluctuations considering the finite host area.  

The stability analysis [14] shows that the radius grows 
to a stable stationary state, also called dormant tumour 
stage [15]. 

Forth: The tumour fractal dimension depends on the 
physiological condition of active cells at the interface, 
and it must include the reproduction and death rate con-
stants. To determine the characteristic fractal dimension 
of the tumour, the right side of Equation (31) is equalled 
to zero, so: 

d
0; ,

d
D H

t


                    (32) 

and the variance is expressed as: 

2 2

2 21 .
4

H R

R H




 
   

 
          (33) 

As the height difference between two points at the in-
terface is equivalent to the magnitude of internal fluctua-
tions, expressed by the square root of the variance [16], 
the following non-dimensional expression is obtained 
from Equation (33): 

2
2 21 ,

4

l
w Z




 
   

 
              (34) 

where: 

0.5

,w
H


                    (35) 

0.5

2
,l

R

   
 

                 (36) 

,
R

Z
H

                      (37) 

 2 2 .Z f l                   (38) 

In Equation (38) f(l2) is, according to the pre-estab- 
lished considerations (see Equation (11)), a scale down 
function which takes into account the fact that that inter-
nal fluctuations will depend on the size of the micro-
scopic entities and the size of the system. 

Also, as there is a linear relation between the expected 
value of the radius and the perimeter, the non-dimen-
sional variable l is equivalent to the distance between 
two interface points. Consequently, the following scaling 
relation can be assumed: 

    2 2 21- ,Z f l l               (39) 

So, Equation (34) is expressed as: 
2

2 22 .
4

l
w l




 
   

 
               (40) 

Substituting Equation (40) in (10) gives: 
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





            


                   
  
 
 
 

 
   
 

   

(41) 

And finally (41) in Equation (9) gives: 

1 2

1
2 ,

2fd C C
b




  
      

         (42) 

where the constants C1 and C2 are evaluated taking into 
account the interval of values physically possible that 
can be obtained by the relation between the reproduction 
and endogenous death rate constants. Then two extreme 
cases appear: 
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1 2,fd


                 (43) 

Because when 1    the tumour does not grow so 
the fractal dimension is equal to the surface dimension, 
and: 

2 1,fd


                 (44) 

because when 2    the contour rugosity is zero and 
the fractal dimension is equal to the topological dimen-
sion of the contour of a circle of radius H. Taking into 
account both extreme conditions given by Equations (43) 
and (44) the following expression is proposed to deter-
mine fractal dimension fd  as a function of the quotient 
between mitosis and apoptosis rates [17], which quanti-
fies the tumour capacity to invade and infiltrate healthy 
tissue [18]. 

5

1
fd






  
 
  
 

                 (45) 

 
4. Results 
 
Diagnosis of tumour proliferation capacity and invasion 
capacity is very complex because these terms include 
many factors such as the tumour aggressiveness, which is 
related with the tumour growth rate  , and the tumour 
invasion capacity, which is associated with the fractal 
dimension df [18] among others factors. 

In order to analyze the validity of the previously de-
veloped formalism, the tumour growth rate (    ), 
where  and  L. t–1 are the macroscopic parameters 
associated to mitosis and apoptosis rate, macroscopically 
observed during the linear growth stage [9] was substi- 

tuted, for example, in Equation (7) resulting in: 

  lniS R
 


               (46) 

The expression (46) represents the entropy production 
rate and includes the macroscopic parameters associated 
to mitosis and apoptosis rate  and  L. t–1 which are 
indexes which characterize tumour proliferation. 

Substituting (45) in (46) the following formula is ob-
tained: 

 
5

ln
1

f
i

f

d
S R

d
 

 
     

          (47) 

In the formula (47) two properties observed in tumour 
growth are included. The first is its growth rate, which is 
associated with its invasive capacity (    ). The 
second is its complexity, a morphology characteristic, 
such as the fractal dimension of the tumour interface, 
which quantifies the tumour capacity to invade and infil-
trate the healthy tissue [18]. 

The entropy production rate (formula (XXXXVII)) 
was determined by fourteen tumour cell lines which are 
shown in Table 1. On one hand, as can be seen in cells 
lines with equal tumour invasion capacity, fd  (Mv1Lu 
and AT5) but a different tumour aggressiveness,  , 
exhibits differences on the entropy production rate. On 
the other hand, the cells lines with equal tumour aggres-
siveness,   but difference tumour invasion capacity, 

fd  (HT-29 M6 and 3T3K-ras) exhibit differences tak-
ing place the entropy production rate. In other words, this 
unifying hallmark, allow us to use the entropy production 
rate as a physical function to measure cancer robustness. 

In summary, this hallmark allow us, via the use of the 
entropy production rate to make a diagnosis of the tumor 
proliferation capacity and invasion capacity, key factors 
to improve cancer therapy. 

 
Table 1. Entropy production rate for different tumour cell lines. 

Cell line f
d (a) 

Growth rate(a)  m h   Entropy production rate  J m mol K hSi     

Mv1Lu 1.23 11.50 50.11 
AT5 1.23 8.72 38.06 
B16 1.13 5.83 30.08 

C-33a 1.25 6.40 27.26 
VERO C 1.18 5.10 23.77 
MCA3D 1.09 3.73 19.45 

C6 1.21 2.90 13.46 
HT-29 1.13 1.93 9.64 
Car B 1.20 2.06 9.39 

HT-29 M6 1.12 1.85 9.31 
3T3K-ras 1.32 1.89 7.23 

HeLa 1.30 1.34 5.32 
3T3 1.20 1.10 4.99 

Saos-2 1.34 0.94 3.49 
(a) Experimental results reported by Brú et al. [9] 
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