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Abstract 
In this paper I introduce the geometric notion of a differential system describing surfaces of a 
constant negative curvature and describe a family of pseudo-spherical surface for Kaup-Ku- 
pershmidt Equation with constant Gaussian curvature −1. I obtained new soliton solutions for 
Kaup-Kupershmidt Equation by using the modified sine-cosine method. 
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1. Introduction 
Many partial differential equations which continue to be investigated due to their role in mathematics and phys-
ics exhibit interrelationships with the geometry of surfaces, or submanifolds, immersed in a three-dimensional 
space [1]. In particular, it has been known for a while that there is a relationship between surfaces of a constant 
negative Gaussian curvature in Euclidean three-space, the Sine-Gordon Equation and Bäcklund transformations 
which are relevant to the given equation [2]. Moreover, the original Bäcklund transformation for the Sine-Gor- 
don Equation is also a simple geometric construction for pseudospherical surfaces [3]-[5]. It is well known that 
nonlinear complex physical phenomena are related to nonlinear partial differential equations (NLPDEs) which 
are involved in many fields from physics to biology, chemistry, mechanics, etc. 

As mathematical models of the phenomena, the investigation of exact solutions to the NLPDEs reveals to be 
very important for the understanding of these physical problems. Many mathematicians and physicists have well 
understood this importance when they decided to pay special attention to the development of sophisticated me-
thods for constructing exact solutions to the NLPDEs. Thus, a number of powerful methods have been pre-
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sented. 
We can cite the inverse scattering transform [6], the Bäcklund and Darboux transform [7]-[10], Hirota’s bili-

near method [11], the homogeneous balance method [12], Jacobi elliptic function method [13], the tanh method 
and extended tanh-function method [14]-[20], F-expansion method [21]-[23] and so on. The notion of conserva-
tion laws is important in the study of nonlinear evolution equations (NLEEs) appearing in mathematical physics 
[24]. 

Consider Kaup-Kupershmidt Equation, 

2
5 3 2

255 5
2t x x x x xu u uu u u u u= + + +                                (1) 

where ( ),u u x t=  is a function of two independent variables t  and x . 

2. Kaup-Kupershmidt Equation Which Describes Pseudo Spherical Surfaces 
I recall the definition [25]-[28] of a differential equation (DE) that describes a pss. Let 2M  be a two dimen-
sional differentiable manifold with coordinates ( ),x t . A DE for a real function ( ),u x t  describes a pss if it is a 
necessary and sufficient condition for the existence of differentiable functions 

,   1 3,   1 2,ijf i j≤ ≤ ≤ ≤                                    (2) 

depending on u and its derivatives such that the one-forms 

1 11 12 2 21 22 3 31 32,    ,    ,f dx f dt f dx f dt f dx f dtω ω ω= + = + = +                     (3) 

satisfy the structure equations of a pss, i.e., 

1 3 2 2 1 3 3 1 2,    ,   . d d dω ω ω ω ω ω ω ω ω= ∧ = ∧ = ∧                         (4) 

I obtain that the Kaup-Kupershmidt Equation (1) describes pseudospherical surfaces, with associated one 
forms 1 2i i if dx f dtω = +  1 3i≤ ≤  given by 
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As a consequence, each solution of the DE provides a local metric on 2M , whose Gaussian curvature is con-
stant, equal to −1. Moreover, the above definition is equivalent to saying that DE for u  is the integrability 
condition for the problem [19] [29]: 

1

2

,     ,d
φ

φ φ φ
φ
 

= Ω =  
 

                                  (6) 

where d  denotes exterior differentiation, φ  is a column vector and the 2 2×  matrix ( )Ω Ω , , 1, 2ij i j =  is 
traceless 
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3. Exact Solution for Kaup-Kupershmidt Equation 
With the rapid development of science and technology, the study kernel of modern science is changed from li-
near to nonlinear step by step. Many nonlinear science problems can simply and exactly be described by using 
the mathematical model of nonlinear equation. Up to now, many important physical nonlinear evolution equa-
tions are found, such as Sine-Gordon Equation, KdV Equations, Schrodinger Equation all possess solitary wave 
solutions. There exist many methods to seek for the solitary wave solutions, such as inverse scattering method, 
Hopf-Cole transformation, Miura transformations, Darboux transformation and Bäcklund transformation [7]-[10], 
but solving nonlinear equations is still an important task [27]-[30]. In this paper, with the aid of Mathematica, a 
traveling wave solution for a class of Kaup-Kupershmidt Equation, 

2
5 3 2

255
2

.5t x x x x xu u uu u u u u= + + +  

In order to obtain the soliton solution of (1), I will use the modified sine-cosine to develop traveling wave so-
lutions to this equation. The modified sine-cosine method admits the use of solutions [30] 

( ) ( )0, cos ,    ,nu x t a x ct bρ ρ µ= = − +                            (8) 
and 

( ) ( )0, sin ,    ,nu x t a x ct bρ ρ µ= = − +                            (9) 

where a  is the soliton amplitude, µ  is the width of the soliton, c  is the soliton velocity and 0b  is constant 
to be determined later, the unknown index n  will be determined during the course of derivation of the solution 
of Equation (8). From Equation (8), I obtain 
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From Equation (9), I obtain 
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With the aid of Mathematica or Maple, from (8) and (10), we can get 
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Now, from Equation (12) equating the exponents n − 5 and 2n − 3 leads 5 2 3n n− = − , which gives 2n = − , 
such that ( )( )( )( )1 2 3 4 0.n n n n n− − − − ≠  

Also from Equation (12) equating the coefficients of like powers of 3cos sinρ ρ− , 5cos sinρ ρ−  and 7cos sinρ ρ−  
to zero, I get 

5 5 0,ac n a nµ µ+ =                                    (13) 

( )( )( ) ( ) ( )5 2 2 3 2 2 3 2252 1 2 2 2 5 2 2 0,
2

a n n n n n a n n a n nµ µ µ− − − − + − − − − =            (14) 

( )( )( )( ) ( )( ) ( )5 2 3 2 3 2 3251 2 3 4 5 1 2 1 5 0.
2

a n n n n n a n n n a n n a nµ µ µ µ− − − − + − − + − + =       (15) 

Solving the above system by the aid of Wu elimination method [31], I obtain the three solutions  

2 412 ,   , 16
7

a cµ µ= − = −                                 (16) 

and  
2 43 ,    ,16a cµ µ= − = −                                  (17) 

and 
2 424 ,   . 16a cµ µ= − = −                                 (18) 

Then the soliton solutions of the Kaup-Kupershmidt Equation is given by 

( ) ( )2 2 4
1 0

12, sec 16 ,
7

u x t x t bµ µ µ= − + +  see Figure 1 and Figure 2            (19) 

and 

( ) ( )2 2 4
2 0, 3 sec 16 ,u x t x t bµ µ µ= − + +  see Figure 3 and Figure 4             (20) 

and 

( ) ( )2 2 4
3 0, 24 sec 16 .u x t x t bµ µ µ= − + +  see Figure 5 and Figure 6             (21) 

If setting iµ σ= , then the solutions (19) and (21) are given by 

( ) ( )2 2 4
4 0

12, sech 16 ,
7

u x t x t bσ σ σ= + +  see Figure 7 and Figure 8            (22) 

and 

( ) ( )2 2 4
5 0, 3 sech 16 ,u x t x t bσ σ σ= + +  see Figure 9 and Figure 10             (23) 

and 

( ) ( )2 2 4
6 0, 24 sech 16 .u x t x t bσ σ σ= + +  see Figure 11 and Figure 12           (24) 

The double-kink solutions (19), (20), and (21) are characterized by the eigenvalue 1µ =  (see Figures 1-6). 
The solutions (22), (23) and (24) are the single-soliton solutions (see Figures 7-12) corresponding to the eigen-
value 1σ = . 

4. Conclusions 
The new types of exact traveling wave solution obtained in this paper for the Kaup-Kupershmidt Equation will  
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Figure 1. See [6]: solution 1u  is shown at 1t = , 1µ =  and 0 3b = . 
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Figure 2. See [20]: solution 1u  is shown at 1µ =  and 0 3b = . 

 

 
Figure 3. See [6]: solution 2u  is shown at 0t = , 1µ =  and 0 0b = . 
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Figure 4. See [20]: solution 2u  is shown at 1µ =  and 0 3b = − . 

 

 
Figure 5. See [6]: solution 3u  is shown at 2t = , 1µ =  and 0 0b = . 
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Figure 6. See [20]: solution 3u  is shown at 1µ =  and 0 0b = . 
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Figure 7. See [6]: solution 4u  is shown at 1t = , 1σ =  and 0 3b = . 
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Figure 8. See [20]: solution 4u  is shown at 1σ =  and 0 3b = . 

 

 
Figure 9. See [6]: solution 5u  is shown at 0t = , 1σ =  and 0 0b = . 
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Figure 10. See [20]: solution 5u  is shown at 1σ =  and 0 3b = − . 

 

 
Figure 11. See [6]: solution 6u  is shown at 2t = , 1σ =  and 0 0b = . 
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Figure 12. See [20]: solution 6u  is shown at 1σ =  and 0 0b = . 
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be of benefit to future studies. 
The Soliton Equations play a central role in the field of integrable systems and also play a fundamental role in 

several other areas of mathematics and physics. 
A soliton is a localized pulse-like nonlinear wave that possesses remarkable stability properties. Typically, 

problems that admit soliton solutions are in the form of evolution equations that describe how some variable or a 
set of variables evolves in time from a given state. The equations may take a variety of forms, for example, 
PDEs, differential difference equations, partial difference equations, integro-differential equations, as well as 
coupled ODEs of finite order. 

In this paper, we considered the construction of exact solutions to Kaup-Kupershmidt Equation. I obtain tra-
velling wave solutions for the above equation by using the modified sine-cosine method with the aid of Mathe-
matica. 

A travelling wave of permanent form has already been met; this is the solitary wave solution of the nonlinear 
evolution equation itself. Such a wave is a special solution of the governing equation which does not change its 
shape and propagates at constant speed. 

The soliton phenomena of nonlinear evolution equations represent an important and well-established field of 
modern physics, mathematical physics and applied mathematics. Solitons are found in various areas of physics 
from hydrodynamics and plasma physics, nonlinear optics and solid state physics, to field theory and gravitation. 
NLEEs which describe soliton phenomena have a universal character. 
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