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Abstract 
In this study, tubular pinewood (Pinus sylvestris L.) specimens are tested and shear strain meas-
urements are performed by applying torsion in z  direction in the consideration of light weight 
aircraft engineering. The objective of this paper is to contribute and generate the nonlinear mate-
rial model in terms of shear modulus presented with power functions under the consideration of 
nonlinear behavior of wood under torque. Strain gauge measurements are performed for the 
maximum shear stresses which develop on the tubular specimen, along the radial ( )r r rin out, , 
circumferential ( )in out,φ φ φ  and z  directions, in a point-wise manner. The data is gathered and 
examined for the determination of the local variations of empirical shear modulus functions on 
transversely isotropic surfaces of the specimens. The coordinate dependent shear modulus func-
tions of ( )zG rφ , ( )zG φ φ , ( )zG zφ  are derived for ( ), ,zG r zφ φ  as the function of r , φ  and z , re-
spectively, by analyzing the gathered data. It is proposed to represent the shear modulus functions, 

( )zG φ φ  and ( )zG zφ  with the parabolic polynomials, and, to represent the shear modulus function 

( )zG rφ  with a linear equation. 
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1. Introduction 
Wood is modeled as a fiber composite material of transversely isotropic type. The elastic material constants of 
fiber composites vary along fiber directions. It is known that; the wood material behaves like a nonlinearly elas-
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tic composite structure under torsion loading. However, in addition to this phenomenon, it also exhibits visco- 
elastic properties. Transversely isotropic structure of wood is related to the natural growth of a tree. Annual rings 
of the wood form fairly regular concentric circles in nature, giving the wood cylindrically symmetric structure. 
Wood material enters the lightweight materials group with its composite structure. Therefore, the use of wood 
materials will take place between other light composite materials considered in aircraft engineering. 

Coordinate dependent material elastic constants which were represented with mathematical equations, were 
studied analytically by scientists [1]-[4]. An extensive body of experimental data according to the variation of 
in-plane shear modulus ( )G φ , and the variation of Young’s modulus ( )E φ  of plywood panels were gathered 
and analyzed, in this sense. The mathematical relations between elastic properties of fiber and matrix structure 
and the wood polymer elastic constants in micromechanical level were studied [5]. In the literature we have 
found out that, the simulation of wood nonlinearity was formulated as equivalent stresses and equivalent plastic 
strain relationships by using power functions [6]-[9]. 

Fundamental works on wood compression were represented as continuous functions [10] [11]. Beside these, 
these researchers have used bilinear or tri-linear functions for the wood nonlinear modeling [12]-[17]. Generally, 
2D analyses with plane-stress or plane-strain assumption were employed by most FE models for wood or wood 
composites and they were generally unable to completely describe the 3D stress fields. 

Few attempts were found in the literature concerning with the 3D analysis of wood and associated constitutive 
models. In the literature survey, we haven’t found an accepted nonlinear constitutive model for wood that de-
scribes the change of elastic constants in 3D as the stiffness becomes nonlinear [7] [16]. 

It is noteworthy that, “Japanese Iosipescu Shear Testing Method” standardized for fiber-reinforced plastics 
(FRP) was given in the American Society for Testing Material (ASTM) D5379. In this survey, radial and/or lon-
gitudinal plane shear behavior was mentioned. 

The above mentioned test method was used in measuring the shearing properties of wood type materials [18]. 
The nonlinear material model presents the power functions which represent the stiffness change based on initial 
stiffness or stiffness of previous recurrences. Interestingly, typical nonlinearity of wood was observed under the 
compression loading and along with the shearing directions. 

According to another study, in the modeling of the lateral buckling strength of large cross-section beam-co- 
lumns, the values of the shear modulii GLT and GLR should be known. Thereafter, their variation under creep 
can be easily defined. In the above mentioned study, power law and exponential law were adopted for creep 
testing on the wood-species and a linear-parabolic model was adopted for the short term behavior. Power and 
exponential laws have been chosen as creep functions due to their ease of handling properly in the numerical 
computation of the creep strain rates [19]. 

In the literature, it is possible to find specific studies on the simulation of wood nonlinearity under shear and 
compression. The objective of one of these studies was developing a “3D finite element modeling” that corre-
sponds to the wood material behavior [20].  

In the literature survey, researchers have focused on both theoretical and experimental studies that based on 
genetic optimization and optical metrology in order to obtain whole displacement fields of wood-based panels 
under bending loading. Tests were named as “Non-statically determined tests” because of the absence of unique 
analytical relations. In these studies, the developing complex stress fields were found as not only depending on 
boundary conditions, but also on constitutive equations [21]. 

In order to obtain the balanced modulii in torsion (GJ) of wood-based composite materials, two finite element 
method (FEM) Fortran approaches (in displacement and stress) were proposed under the Saint Venant assump-
tion. In this study, finite element analysis results were compared with the experimental values which were ob-
tained from the torsion tests on specimens [22]. 

The Norway spruce was analyzed numerically using the bilinear material law, and the experimental data are 
available in the literature. According to this study; as the rolling shear of RT plane has shown mostly nonlinear-
ity, it is seldom observed on the LT plane. The results of analyses with modified bilinear parameters reflected 
good correspondence with the experimental findings. The parameters were found to be nearly equal to the 
Weibull statistical distributions [23]. 

In the another study, the test which was named as “Arcan shear test” was used to investigate orthotropic shear 
modulus values of softwood Norway spruce. Video extensometer method was used in measuring the strain on 
the critical specimen section, and the determined moduli were evaluated by means of FEM calculations. In this 
study it was stated that, the 3-parameter Weibull distribution was the most appropriate method for the probabil-
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istic description of the three orthotropic shear modulii of wood [24].  
In another similar publication; in which the Norway spruce was investigated again by means of the Arcan 

shear test, the data were obtained until failure occurs in each of the three orthotropic shear planes. In this latter 
study, the stress-strain curves were adapted to the linear, bilinear and Voce models [25]. 

A new relationship to calculate the shear modulus 12G  in terms of off-axis modulus of elasticity oE  of 
orthotropic specimens such as wood-based panels was proposed. The verification of shear modulus transforma-
tion rules to obtain basic engineering constants that agrees with reliable test data and the anisotropic elasticity 
theory was performed [26]. The shear stress versus shear strain expressions of transversely isotropic cylindrical 
bar under torsion, having a finite length, was described in terms of partial differential equations [27] [28]. In the 
current study, two coordinate systems were used to define the coordinate dependent strain variations of pine-
wood specimens under torque, applied in z direction. The results which were obtained by performing pointwise 
incremental measurements, were illustrated as curves of point-wise shear stress zφτ  vs. shear strain zφγ , along 
the principal directions at the gauge locations. The torque loading was applied to the specimen in the ( )r φ−  
plane at one end, while the other end was fixed. The related data which was gathered from all these points was  
shown as separate curves for each test case. The purpose was to show the variations of the ( ), ,

z
G r z

φ
φ  as func- 

tions of ( ), ,r zφ  [29] [30]. Consequently, these curves were formulated as empirical mathematical equations. 
In each test case, the coordinate dependent variations of the shear modulus functions ( )

z
G r

φ
, ( )

z
G

φ
φ  and 

( )
z

G z
φ

 along the r , φ  and z  directions, respectively, were generated on the circumferential surface of the 
tubular specimen. 

2. Experiment and Method 
Tubular pinewood specimens were used in this study (Figures 1(a)-(c)). The average moisture content of the 
material was measured and tabulated around 6% - 7% levels. Meanwhile, the geometry of the specimens were 
formed by taking fillet depths equal to the radius of the outer portion of the wood shaft (see Figure 1(c)). Thus, 
it became possible to minimize stress concentrations around specimen headings. The torsion load in Equation (1) 
was applied on the transverse plane (r φ−  plane, Figure 1(b)) which had a unit normal vector k  along the z  
direction. 

zT=T k                                          (1) 

The measured coordinate dependent point-wise shear strain data ( )z pwφγ  generated by the applied torque T . 

All experiments were performed in room temperature by making use of uni-axial and tri-axial rosette gauges. 
These gauges were bonded onto the specimens at definite locations (Figure 1(a)). In order to minimize the de-
viations in the test results; these specimens were manufactured from a single tree trunk. The forming procedure 
was performed on the wood specimens in such a way that their fibers lay longitudinally parallel to the trunk. 
However, there were intrinsic structural differences stemming from the number and radii of annual rings in the 
part of the trunk from which the specimen was taken out. The experimental set-up was displayed as a schematic 
diagram in Figure 2. The torsion loading was applied by using TQSM-21 torsion testing machine [31]. Data was 
collected by employing a specialized units [32]-[34]. The set-up included torsion test machine and two different 
data acquisition systems. In this study, the data was simultaneously stored in terms of output voltage difference 
( )oV∆ . As a first step, the normal strain values were obtained by reading the voltage differences from the display 
of the unit, and as a second step, these normal strains were converted into shear strains by using Mohr’s circle 
[35].  

3. Measurements 
In the consideration of the resultant curves ( )z z pwφ φτ γ− , different failure stresses were established at the for-  

ward and backward rotation directions. Directions of forward and backward torque loadings, refα+  or refα− , 
indicated the fiber angles [36]. Only the forward loading case was considered in the empirical formulation of 
this study. Results of the experimental studies were analyzed mainly in two steps. Firstly, specific locations  
were defined along the r , φ , z  directions on the specimens and shear stress versus strain ( )z z pwφ φτ γ−  

curves were obtained for each location. 
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(a) 

 
(b) 

 
(c) 

Figure 1. (a) The specimen was modeled by employing two different coordi-
nate systems. The first coordinate system was the cylindrical coordinate system 
with ,  ,  r zφ  coordinates (global system). The second coordinate system was 
fiber oriented principal axes system, 1-2-3 or (LRT); (b) MA stands for meas-
urement axis which is taken at 45˚ from fiber direction on the tangent plane;  
(c) Dimensions of tubular pinewood specimen (mm).                         
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Figure 2. Schematic diagram of the experimental torsion test set-up with data 
acquisition systems, cables, tubular specimen with gauges on it. Additionally, 
sequence of the experimental operations were also shown.                    

 
Secondly, the variations of point-wise shear modulus values of each specimen were shown as shear modulii 
( )zG rφ , ( )zG φ φ , ( )zG zφ  versus ,  ,  r zφ  directions [28]. Subscripts of shear modulus, z φ−  represent the 

transverse surface; on which the torque was applied, On the other hand, circumferential surface is represented by 
using subscripts r φ− . Strain gauges, on which measurements were taken, were installed along the z-axis (Fig- 
ure 1(a)). At the following step of the experiment; exponential and quadratic equations of the variations were 
tabulated. Measurements were performed by considering two reference coordinate systems in order to explain 
the wood specimen behavior: global cylindrical coordinate system ( ), ,r zφ  and local coordinate system (wood 
fiber arrangement based on principal material directions; 1, 2, 3) (Figure 1(a)). The local and global coordinate 
systems were used together for the definition of MA (measurement axis). MA served as a variable of wood fiber 
direction ( )ref0 15α≤ ≤  . The angular positions of the strain gauges on the circumferential surface relative to 
z -axis, were aligned with respect to maximum shear stress. The maximum shear stress was the stress formed 
around MA. These angular positions were denoted as MAA (Measurement Axis Angle) and they were taken as 
Equation (2). 

refMAA 45α= +                                       (2) 

(Each MA lies on the 1-3 principal plane which corresponds to r φ−  plane (Figure 1(b)). Measurement 
Axis Angle MAA is relatively different from the geometrical central axis angle φ . MAA was defined on the 1-3 
principal material plane which was attached on the surface of the cylinder. The first strain gauge was attached 
with 45+   angle in the principal material axis-1. All other gauges were also located along this direction (Fig- 
ure 1(a)). Application of gauges in inr , outr , inφ , outφ  locations were repeated in similar way. In the rest of 
the study, z-axis was rotated to be z′  such that it coincided with MA.  

Invariants 1 2 3,  ,  I I I  remain constant with respect to coordinate transformations. Stress and strain compo-
nents were uncoupled along the principal directions for 

1
0pθ =   and 

2
45pθ =   (Figure 1(b)). Only along the 

principal directions, principal stress and strain values of the isotropic materials coincided with the principal val-
ues of fiber composite materials on the Mohr’s circle [30] [37] [38]. Thus, it became easier to understand the 
behavior of the wood material under torsion and to compare it with that of the isotropic material. Accordingly, 
the shear modulus functions were derived along the MA directions for the corresponding principal stresses and 
strains. In literature, the shear modulus, shear strength, and principal strain angle were measured from the shear 
stress/ shear strain relation obtained by Iosipescu shear tests. Tests were conducted, and the validity of the 
in-plane shear tests was examined for the thin strips of western hemlock (Tsuga Heterophylla Sarg.) [39]. In this 
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work, the torque value T  as measured incrementally from the torsion testing machine. Variation of 
( )z z pwφ φτ γ−

 
were plotted by using the inner or outer shear stresses zφτ  and their corresponding principal shear 

strains. Consequently, shear modulus functions for the principal shear strains and corresponding shear stresses 
were expressed in terms of ,  ,  r zφ  as in Equation (3):  

( )( )
( )( )
( )( )

ref

ref

ref

MA 45

MA 45

MA 45

z

z

z

G r

G

G z

φ

φ

φ

α

φ α

α

= ±

= ±

= ±







                               (3) 

Experimental results were discussed in the following section in detail. 

4. Results and Discussion 
Distributions of shear modulus functions and related empirical formulas were determined for pinewood. Beside 
this, average and equivalent mechanical properties of shear modulus values avgG  corresponding to the average 
shear stresses zφτ  for different types of wood (pine, oak, chestnut, hornbeam) were measured and results were 
listed in Table 1. These measurements were performed without using strain gauges and the related data was ob-
tained from the second form of the nonlinear exact tri-linear curve ( )z zφ φτ γ− . 

In the application direction of torsion loading; since the resultant curves ( )z zφ φτ γ−  were affected, different 
failure values were formed. Applied loading directions refα+  or refα− , represent the backward and forward 
loadings of torque, respectively. Forward loading applications yield higher failure values than the backward ones. 
The empirical equations of ( )zG φ φ , ( )zG zφ  and ( )zG rφ  were expressed in terms of various functions and 
were listed in the Table 2. The descriptions of the results were explained according to the relative differences of 
slopes in shear stress-strain ( )z z pwφ φτ γ−  and their corresponding ( )zG rφ , ( )zG φ φ , ( )zG zφ  versus ,  ,  r zφ  
curves for forward loading applications. Figure 3 presents ( )zG φ φ  (GPa) versus φ  (degree) distribution of 
data obtained from six gauges at 0 /120 / 240φ =     for the tubular specimen. This distribution is obtained 
through the specified coordinates of MAA at the outer and/or inner surfaces of specimens (see Figures 1(a)-(c)).  

In Figure 3, the outer and inner surface ( )zG φ φ  reactions due to the shear stress-strain distributions were 
formed in reverse orders at the measurement point where z  is equal to 200 mm . Through the circumferential 
direction, ( )zG φ φ  forms a convex curve at the inner surface and ( )zG φ φ  forms a concave curve at the outer 
surface. Figure 4 presents ( )zG zφ  (GPa) versus z  (mm) distribution from four gauges at 

65,157,177,200 mmz =  for the tubular specimen. Variation of function ( )zG zφ  shows parabolic distribution. 
It is concluded that ( )zG zφ  at the loaded end is bigger than ( )zG zφ  at the fixed end. Figure 5 presents 

( )zG rφ  (GPa) versus r  (mm) distribution at 0 /120 / 240φ =     for the data obtained from six gauges at 
200 mmz = . It demonstrates dependency of ( )zG rφ  (GPa) versus r  (mm) on the MA angles φ . In these  

 
Table 1. Average shear modulus values of typical wood types obtained without using strain gauges ( )ref0 15α≤ ≤  .       

Material types of  
wood specimens 

Shear modulus (GPa) 
avgG  (test#1/test#2/test#3/test#4) 

Forward (+) and backward (−) torque 
directions (test#1/test#2/test#3/test#4) 

Average shear modulus  
values (GPa) avgG  

Standard  
deviation YS  

Pine (tube) 0.29/0.46/0.27/0.32 −/−/+/+ 0.34 0.085 

Pine (solid) 0.35/0.46/0.27/0.32 −/−/+/+ 0.35 0.080 

Hornbeam (tube) 0.46/0.46/0.40 +/+/+ 0.44 0.035 

Hornbeam (solid) 0.38/0.43/0.39 +/+/+ 0.40 0.026 

Oak (tube) 0.32/0.36/0.40/0.43 +/+/+/+ 0.38 0.048 

Oak (solid) 0.47/0.43/0.3 +/+/+ 0.40 0.089 

Chestnut (tube) 0.45/0.47/0.41 +/+/+ 0.44 0.031 

Chestnut (solid) 0.31/0.31/0.36 +/+/+ 0.33 0.029 
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Table 2. Experimentally determined linear and nonlinear shear modulus functions of pinewood.                          

Fiber angle Quadratic expressions (Pa) Exponential expressions (Pa) 

(MAA) ( )zG rφ  ( )zG φ φ  ( )zG zφ  ( )zG rφ  ( )zG φ φ  ( )zG zφ  

GROUPS Linear function ( ) avg avgzG r A r Bϕ = +  Exponential function ( ) avg

avg eB r
zG r Aϕ =  

45  
(inner/outer) 

8

9

4 10
8 10

G r= − ×

+ ×
   11 0.3453 10 e rG −= ×    

45  
(outer) 

  
3 2

6 7

4.3 10
4 10 4 10

G z
z

= − ×

+ × + ×
   8 0.00622 10 e zG = ×  

45   
(outer) 

 
4 2

7 9

9.9 10
2 10 8 10

G φ
φ

= ×

− × + ×
   9 0.00097 10 eG φ= ×   

45  
(inner/outer) 

10

11

2 10
3 10

G r= − ×

+ ×
   14 0.66078 10 e rG −= ×    

45  
(outer) 

 
3 2

6 7

4.3 10
4 10 4 10

G z
z

= − ×

+ × + ×
    8 0.00622 10 e zG = ×  

45  
(inner) 

 
6 2

8 10

2 10
3 10 6 10

G φ
φ

= − ×

− × + ×
   10 0.00858 10 eG φ−= ×   

45  
(inner) 

 
3 2

5 8

3 10
6.7 10 3 10

G φ
φ

= − ×

+ × + ×
   8 0.00023 10 eG φ−= ×   

45  
(inner/outer) 

8

9

5 10
9 10

G r= − ×

+ ×
    11 0.35373 10 e rG −= ×   

45  
(outer) 

 
4 2

6 8

2.37 10
6 10 7 10

G φ
φ

= − ×

+ × + ×
   8 0.00098 10 eG φ−= ×   

45  
(outer) 

  
4 2

7 9

5.9 10
1 10 5 10

G z
z

= − ×

− × + ×
   8 0.00364 10 e zG = ×  

  

  
Figure 3. Plots of ( )zG φ φ  (GPa) versus φ  (degree) at 200 mmz = .       

 
tests, gauges were located on both inner and outer surfaces with 0 ,120 ,240φ =     (see Figure 6). At these lo-
cations of φ , the variations of ( )zG rφ  from inner to outer surface decrease. Hence, it is concluded that: 

1) ( )zG rφ  (GPa) versus r  (mm) varies linearly along the circumferential surface. This is a consequence of 
( )zG rφ  values on the inner surface are being bigger than ( )zG rφ  values on the outer surface. 

2) Shear stresses formed on the outer surface are smaller than the shear stresses formed on the inner surface 
because shear stresses on the inner surface accumulate densely and shear stresses on the outer surface do not 
accumulate that densely. 
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Figure 4. Two plots of ( )zG zφ  (GPa) versus z  (mm) 
at z = 65, 157, 177, 200 mm.                                        

 
 

  

Figure 5. Plots of ( )zG rφ  
(GPa) versus r  (mm) at 200 mmz = .      

 
Empirical expressions of ( )zG φ φ , ( )zG zφ  and ( )zG rφ  were obtained for tubular specimens by statistically 

evaluating the coefficients avg avg avg,  ,  A B C  from the related experimental data. These coefficients were tabu-
lated in Table 3 in five groups (GPa) with their standard deviation (SY), coefficient of deviation (c.v.) and mean 
values (GPa) as follows: 

1) First group coefficients of the linear and exponential ( )zG rϕ  functions were 0.24avgA = − , 5.1avgB =  
and 22.4avgA = , 0.13avgB = −  respectively. 2) Second group coefficients of the parabolic and exponential 

( )zG ϕ ϕ  functions were obtained as 42.35 10avgA = − × , 61.76 10avgB = × , 86.2 10avgC = ×  and 1.19avgA = , 
44.0 10avgB −= ×  respectively. 3) Third group coefficients of the parabolic functions ( )zG ϕ ϕ  on the inner 

surface of the tubular specimens were 43.78 10avgA = − × , 62.65 10avgB = × , 86.875 10avgC = × . Corresponding 
coefficients for the exponential function were calculated as 10.13avgA = , 41.75 10avgB −= × . 4) Fourth group 
coefficients of the parabolic functions ( )zG ϕ ϕ  on the outer surface were 40.72 10avgA = × , 60.74 10avgB = × , 

85.43 10avgC = × . Coefficients for the exponential function were obtained as 13.75avgA = , 46.13 10avgB −= × , 
accordingly. 5) Fifth group coefficients of the parabolic functions ( )zG zϕ  on the outer surface were obtained 
as 40.5 10avgA = − × , 63.65 10avgB = − ×  and 814.3 10avgC = × . Corresponding coefficients for the exponential 
function were determined as 0.21avgA = , 37.5 10avgB −= ×  (Table 2).  
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Figure 6. Pinewood specimens with strain gauges.                    

5. Conclusions 
In this research study, variations of the shear modulus of transversely isotropic pinewood specimens under tor-
sion were examined. The set of equations of shear modulus in z φ−  and r φ−  planes along the principal di-
rections were formulated. All measurements were performed in terms of local coordinate system. As a continua-
tion of this study for the future an extended experimental study is planned. In this future study it is suggested to 
calculate additional shear modulus functions and related coefficients by using different loading types on differ-
ent wood species. As is known, the elastic constants’ matrix ijC  appearing in the Hooke’s general law is used to 
define the elastic constants of materials. In this matrix, it is possible to identify these constants in the form of 
linear and nonlinear functions by replacing ( )zG rφ , ( )zG φ φ  and ( )zG zφ  with 13G , 23G  and 21G  for the 
pinewood (Pinus sylvestris L.) material. 

Results were summarized below as follows: 
1) In our study, we have shown that zφτ  and rφτ  can be written as ( ), ,z r zφτ φ  and ( ), ,r r zφτ φ  and these 

functional values can be calculated by substituting the values of the normal strain components ,  ,  r zφε ε ε  and 
the shear strain terms ,  ,  r z rzφ φγ γ γ  into the Hooke’s general law (Equation (4)). The equations obtained by re-
placing linear and nonlinear shear modulus functions with unknown elastic constants, can be used in theoretical 
and numerical researches [28]. 

14 24 34 44 45 46

16 26 36 46 56 66

z r z z rz r

r r z z rz r

C C C C C C
C C C C C C

φ φ φ φ

φ φ φ φ

τ ε ε ε γ γ γ

τ ε ε ε γ γ γ

= + + + + +

= + + + + +
                     (4) 

2) According to our study it is concluded that, ( )zG zφ  values at z  is equal to 200 mm are greater than the 
( )zG zφ  values at z  is equal to 70 mm. Similarly, ( )outerzG φ φ  values are smaller than the ( )innerzG φ φ  values, 

and, ( )zG rφ  values at z  is equal to 200 mm are larger than ( )zG rφ  values at z  is equal to 70 mm.  
3) In our study it is also defined that, obtained shear modulus values along the 0˚ fibers are larger than the 

other two 45˚ and 90  directed measurements performed with tri-axial rosette gauges. Results obtained from  
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Table 3. Shear modulus linear/nonlinear functions including the statistical values of the coefficients (GPa).                 

GROUPS Linear function ( ) avg avgzG r A r Bφ = +  Exponential function ( ) avg

avge
B r

zG r Aϕ =  

(Group I) 
( )zG rφ  

( )exp∑ : 18 avgA  avgB  avgC  ( )exp∑ : 11 avgA  avgB  avgC  

c.v. (%) −136.3 80.9 - c.v. (%) 137.1 −85.6 - 

SY 3.31 4.65 - SY 30.69 0.11 - 

Mean (Pa) −0.24 × 109 5.74 × 109  Mean (Pa) 22.4 × 109 −0.13 × 109 - 

 Parabolic function ( ) 2
avg avg avgzG A B Cφ φ φ φ= + +  Exponential function ( ) avg

avge
B

zG A φ
φ φ =  

(Group II) 
( )zG φ φ  

( )exp∑ : 15 avgA  avgB  avgC  ( )exp∑ : 16 avgA  avgB  avgC  

c.v. (%) −187.39 −751.4 70.1 c.v. (%) 137.1 363.03 - 

SY 4.41 13.21 4.35 SY 1.64 0.0014 - 

Mean (Pa) −2.35 × 104 1.76 × 106 6.2 × 108 Mean (Pa) 1.19 × 109 0.000394  

 Parabolic function ( ) 2
avg avg avginnerzG A B Cφ φ φ φ= + +  Exponential function ( ) avg

avginner
eB

zG A φ
φ φ =  

(Group III) 
( )innerzG φ φ  

( )exp∑ : 8 avgA  avgB  avgC  ( )exp∑ : 8 avgA  avgB  avgC  

c.v. (%) −145.46 681.87 82.07 c.v. (%) 64.97 795.17 - 

SY 5.51 18.08 5.64 SY 6.58 0.00139 - 

Mean (Pa) −3.78 × 104 2.65 × 106 6.88 × 108 Mean (Pa) 10.1 × 104 0.000175 - 

 Parabolic function ( ) 2
avg avg avgouterzG A B Cφ φ φ φ= + +  Exponential function ( ) avg

avgouter
eB

zG A φ
φ φ =  

(Group IV) 
( )outerzG φ φ  

( )exp∑ : 7 avgA  avgB  avgC  ( )exp∑ : 7 avgA  avgB  avgC  

c.v. (%) −285.64 654.06 43.66 c.v. (%) 166.33 249.36 - 

SY 2.06 4.81 2.37 SY 22.87 0.00152 - 

Mean (Pa) 0.72 × 104 0.74 × 106 5.43 × 108 Mean (Pa) 13.75 × 104 0.000613 - 

 Parabolic function ( ) 2
avg avg avgr zG z A z B z C= + +  Exponential function ( ) avg

avge
B z

zG z Aφ =  

(Group V) 
( )zG zφ  

( )exp∑ : 8 avgA  avgB  avgC  ( )exp∑ : 7 avgA  avgB  avgC  

c.v. (%) −1005 −279.21 157.2 c.v. (%) 49.89 36.31 - 

SY 5.03 10.19 22.48 SY 1.07 0.0027 - 

Mean (Pa) −0.5 × 104 −3.65 × 106 14.3 × 108 Mean (Pa) 0.21 × 109 0.0075 - 

 
measurements along the 0˚ oriented wood fibers, yield very small positive or negative shear strain values in 
general. Additionally, forward or backward loadings cause extension or contraction along the fibers and in turn, 
this generates positive or negative shear strains respectively.  

4) The negative shear strains which develop at the measurement points as a consequence of forward loading 
applying can be explained by contraction of the material along the fibers. Thus, behavior of the shear strains are 
dependent both upon arrangement of the wood fibers and the load applying direction (Table 3). 

5) According to the results of measurements along the MA directions using tri-axial rosette gauges, we have 
concluded that, the relative shear strain changes between 0˚ - 45˚ and 45˚ - 90˚ angles are not equal to each other. 
The difference of shear strains between the 0˚ - 45˚ directions is smaller than the directions between 45˚ - 90˚. 

We recommend further additional experiments, in order to enhance the understanding of complex wood be-
havior under torsion loading. The stress accumulation phenomenon at the critical points along the wood fibers 
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should be supported by further experimental studies in future and in our opinion this is especially important for 
the aircraft engineering area.  
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