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Abstract 
 
In this paper, a new conjugate gradient formula  and its algorithm for solving unconstrained optimiza-
tion problems are proposed. The given formula  satisfies  with k  satisfying the descent 
condition. Under the Grippo-Lucidi line search, the global convergence property of the given method is dis-
cussed. The numerical results show that the new method is efficient for the given test problems. 
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1. Introduction 
 
The primary objective of this paper is to study the global 
convergence properties and practical computational per-
formance of a new conjugate gradient method for 
nonlinear optimization without restarts, and with suitable 
conditions.  

Consider the following unconstrained optimization prob-
lem:  

 min
nx R

f x


, 

where : nf R  R  is smooth and its gradient g  is 
available. LS conjugate gradient method for solving un-
constrained optimization problem is iterative formulas of 
the form 

1k k k kx x d   ,             (1.1) 
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where kx  is the current iterate, k  is a positive scalar 
and called the steplength which is determined by some 
line search, k  is the search direction; d kg  is the gra-
dient of f  at kx , and k  is a scalar and 
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[2] proved the global convergence of the LS method 

with Grippo-Lucidi line search. And the Grippo-Lucidi 
line search is to compute  
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satisfying : 

    22δk k k k k kf x d f x d     ,     (1.4) 

2 2T
2 1 1 1 1 1k k k kc g g d c g       ,     (1.5) 

where , δ 0 0  ,  0,1   and 0 1 . 1 2

It is well known that some other people have studied 
many of the variants of the LS method, for example [3-4]. 
In this paper, a kind of the LS method is proposed: 
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where 
1

k
k

k

g
t

g 

 ,and   is the Euclidean norm. 

In the next section, we prove the global convergence 
of the new method for nonconvex functions with the 
Grippo-Lucidi line search. In Section 3, numerical ex-
periments are given. 
 
2. Global Convergence of the New Method 
 
In order to prove the global convergence of the new 
method, we assume that the objective function satisfies 
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the following assumption. 
Assumption (H): 
1) The level set     1N x f x f x   is bounded, 

where 1x is the starting point. 
2) In some neighborhood W  of , the objective 

function is continuously differentiable, and its gradient is 
Lipschitz continuous, i.e., there exists a constant  
such that 

N

0L 

    ,g x g y L x y    for all ,x y W .   (2.1) 

Lemma 2.1 [5]. Suppose Assumption (H) holds. Con-
sider any iteration in the form (1.1) and (1.2), where k  
satisfies  for 

d
T 0k kg d  k N   and k  satisfies Grip- 

po-Lucidi line search. Then  
22
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k
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  .         (2.2) 

where  Tcos k k k k kg d g d     and k  is the an-
gle between kg  and . kd

The following Lemma shows that the Grippo-lucidi 
line search is suitable for the new formula. 

Lemma 2.2. Suppose that Assumption (H) holds. 
Consider the method of form (1.1) and (1.2), where  

VLS
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Proof. Since 1 1d g  , (1.5) holds for 1k  . Sup-
pose that (1.5) holds for . 1k

Denote 
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By (1.2), Lipschitz condition (2.1) and (1.5), for any  
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So (1.5) holds, for any 
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On the other hand, by the mean value theorem and 
Lipschitz condition (2.1), we have  
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We can test (1.4) holds, for 
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The existence of k  satisfying (1.4) and (1.5) has bean 
proved. Furthermore, the conclusion holds for  
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(2.4) 

By the Assumption (H), we know that Lemma 3.
holds. From (1.5), (2.2) and (2.4), we have  

1 Theorem 2.1. Suppose that Assumption (H) holds. 
Consider the method of form (1.1) and (1.2), where 
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ethod, LS method and VLS method. 

VLS 

Table 1. The performance of DY m

Problem Dim DY LS 

Beale 2 75/ 64 18 5 2  186/1 /65/5 5/72/64

Box Thr nsional 

1727/ 043 85 5 65 8 

ee-Dime 3 1/1/1 1/1/1 1/1/1 

Penalty1 50 2117/2 /426/31 /112/9

 100 31/157/121 18/120/83 22/146/119 

 200 26/160/121 28/157/114 20/124/93 
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This result implies 
+
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3. Numerical Reusults 

w algorithm. 
Algorithm 3.1:  

 
In this section, we give the ne

Step 1: Data: 1
nx R , 0  . Set 1d  1 , if  g

1g  , then stop. 
Step 2: Compute k  b Gripp line sy the o-Lucidi ear- 

ches. 
Step 3: Let 1k k k kx x d   ,  1 1k kg g x  , if  

1kg   , then stop. 
pute Step 4: Com 1k   by (1 rate .6), and gene 1kd   

by (1.2). 
g

 the Algorithm 3.1 on the following problems, 
an ts perfor of the DY method 
an

Step 5: Set k k  o to step 2. 
We test

1 , 

d compare i mance to that 
d LS method with the strong Wolfe line searches 

where k  is computed by  

    T
k k k kx d f x    δ k kf g d ,k        (3.1) 

 T T
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In algorithm, the parameters: 

        (3.2) 

1.5  , 0.5  ,  

1 0.25c  , , 2 1.5c  δ 0.01 , 0.1  . The termina-
tion condition is 610kg  , or It-m

e m of iterations. 
The numerical r ur tests are reported in Ta-

ble 1. The column “Problem” represents th

 It-max > 9999. ax 
Maximu  number 

esults of o
e problem’s 

na

denotes th

me; “Dim” denotes the dimension of the tested prob-
lems. The detailed numerical results are listed in the 
form NI/NF/NG, where NI, NF, NG denote the number 
of iterations, function evaluations, and gradient evalua-
tions, respectively.  
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In the following, we give the tested functions: 
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From the nu , we know that the new 

method is efficient for the given problems un er the 
Grippo-Lucidi line searches. 
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