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Abstract 
 
The Operator Splitting method is applied to differential equations occurring as mathematical models in fi-
nancial models. This paper provides various operator splitting methods to obtain an effective and accurate 
solution to the Black-Scholes equation with appropriate boundary conditions for a European option pricing 
problem. Finally brief comparisons of option prices are given by different models. 
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1. Introduction 
 
Finance is one of the most rapidly changing and fastest 
growing areas in the corporate business world. Because 
of this rapid change, modern financial instruments have 
become extremely complex. New mathematical models 
are essential to implement and price these new financial 
instruments. The world of corporate finance once man-
aged by business students is now controlled by mathe-
maticians and computer scientists. In the early 1970’s, 
Merton [1,2] and Black and Merton [3], made an impor-
tant breakthrough in the pricing of complex financial 
instruments by developing what has become known as 
the Black-Scholes model. Originally, their models are 
formulated in terms of stochastic differential equations. 
Under certain restrictive assumptions, these models are 
written as linear evolutionary partial differential equa-
tions with variable coefficients. The Black-Scholes model 
displayed the importance that mathematics plays in the 
field of finance. It also led to the growth and success of 
the new field of mathematical finance or financial engi-
neering [4-10].  

In this paper, first, we will give the derivation of the 
Black-Scholes partial differential equation [4] once more 
to refresh the minds and ultimately solve the equation for 
a European call option with the variants of Operator 
Splitting method. 
 
2. Derivation of the Black-Scholes Equation  

and Its Similarity Solution 
 
In this section, the price of a derivative security  ;V S t  

is re-derived [4]. We let the option  ;V S t  whose value 
depends only on  and t , and the option S  ;V S t  be, 
at least, twice differentiable in  and differentiable in 

. It is not necessary at this stage to specify whether 
S

t
 ;V S t  is a call or a put option. In fact,  can be 

the value of a whole portfolio of different options al-
though for simplicity the reader can think of a simple call 
or put. 

 ;V S t

From Ito’s process we have  

 
2

2 21

2
S

S


 2
d

V
t


d , dV S t S  dt

V V

S t

 
 

    (1) 

This gives the random walk followed by  ;V S t . 
Now suppose that at time  the asset price is  

which obeys to stochastic differential equation  
t S

dS
d dX t

S
                 (2) 

where   is a number called volatility and   is a 
measure of the average rate of growth of the asset price, 
also known as the drift. 

Plugging (2) into (1) for , we have  dS
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S S  

and this simplifies to  
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d ,V S dB d
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t S S S t

S S t S
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    
        
   

(3) 

Now set up a portfolio long one option, V, and short an  
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amount 
V

S




 stock. 

Note from above that this portfolio is hedged. The 
value of this portfolio, , is π

π
V

V
S


 


S                  (4) 

The change, , in the value of this portfolio over a 
small time interval  is given by 

dπ
dt

dπ d
V

V
S


 


dS                 (5) 

Now plugging (3) and stochastic differential equation 
into (5) for  and  we get  dV dS
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2

        d d
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S S t S
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S t S B
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      


 


d
V 

 (6) 

This simplifies to 

2
2 2

2

1
dπ d

2

V
S

t S


  
    

V
t           (7) 

It is important to note that this portfolio is completely 
riskless because it does not contain the random Brownian 
motion term. Since this portfolio contains no risk it must 
earn the same as other short-term risk-free securities. If it 
earned more than this, arbitrageurs could make a profit 
by shorting the riskfree securities and using the proceeds 
to buy this portfolio. If the portfolio earned less arbitra-
geurs could make a riskless profit by shorting the portfo-
lio and buying the risk-free securities. It follows for a 
riskless portfolio that 

dπ πdr t                  (8) 

where  is the risk free interest rate. Substituting for 
 and  from (6) and (3) yields  

r
dπ π

2
2 2

2
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d d

2

V V
S t r V S

t S

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     (9) 

or 
2

2 2
2

1
0

2

V V V
S rS rV

t SS
  

  
 

       (10) 

This is the Black-Sholes partial differential equation 
and is parabolic type equation as in many financial prob-
lems. Furthermore, (10) is called backward parabolic 
equation since the signs of particular derivatives are the 
same, namely, they appear on the same side of the equa-
tion. 

With its extensions and variants, it plays the major 
role in the option pricing theory. By deriving the partial 

differential equation for a quantity, such as option price, 
we hope to be able to find an expression for this value by 
solving this equation. However a partial equation on its 
own generally has many solutions. The value of an op-
tion should be unique (otherwise, arbitrage possibilities 
would arise) and so, to pin down the solution, we must 
also impose boundary conditions. A boundary condition 
specifies the behavior of the required solution at some 
part of the solution domain. For the moment we restrict 
our attention to a European call with value denoted by 
 ;C S t  with exercise price  and expiry date . E T

 
2.1. Boundary and Final Conditions 
 
Having derived the Black-Sholes equation for the value 
of an option, we must next consider final and boundary 
conditions. But, for the moment we restrict our interest to 
a European call denoted by , with exercise price 

 and expiry date T . The final condition at time 
 ;C S t

E
t T  can be derived from the definition of a call option. 
If at expiration  the call option will be worth S  E
S E  because the buyer of the option can buy the stock 
for  and immediately sell it for . If at expiration E S

S E  the option will not be exercised and it will expire 
worthless. At t T  , the value of the option is known 
for certain to be the payoff  

  ; max ,0C S t S E              (11) 

This is the final condition for our differential equation. 
In order to find boundary conditions we consider the 

value of C  when 0S   and as : If S  0S   
then it is easy to see from stochastic differential equation  
that dS 0 , and therefore,  will never change. If at 
expiry 

S
0S   then from (10) the payoff must be 0. Con-

sequently, when 0S   we have 

 ;C S t  0                  (12) 

Now when  it becomes more and more likely 
the option will be exercised and the payoff will be 

S 

S E . The exercise price becomes less and less impor-
tant as , so the value of the option is equivalent 
to 

S 

 ;  as C S T S S              (13) 

 
2.2. Similarity Solution 
 
It may occasionally occur that the solution  ;C S t  of a 
partial differential equation, together with its initial and 
boundary conditions, depends only on one special com-
bination of the two independent variables. In such cases, 
the problem can be reduced to an ordinary differential 
equation in which this combination is the independent 

Copyright © 2011 SciRes.                                                                                  AM 



Y. DAOUD  ET  AL. 773 
 
variable. The solution to this ordinary differential equa-
tion is called a similarity solution to the original equation. 
In [7]; Wilmot et al. have given the similarity solution of 
the Black-Scholes equation for a European call option 
(see pages 97-100). The mathematical reasons for the 
existence of this reduction are subtle and outside of the 
scope of this paper, although the numerical calculations 
of the solution given on the Table 1 which, we think, 
necessary for comparison of our numerical results. 
 
3. The Mathematical Foundation of  

Operator Splitting 
 
In numerous applications in the past revealed that a mix-
ing of the various terms in the equations for the discreti-
zation and solver methods made it difficult to solve them 
together. To overcome this drawback, in 60’s or early 
70’s so called the decomposition methods or splitting 
methods have been introduced [11]. The main idea of 
these methods is to decouple a complex equation in 
various simpler equations and to solve the simpler equa-
tions with adapted discretization and solver methods. In 
general, the simpler parts are collected via the initial 
conditions the results are coupled together. This decoup-
ling procedure allows us to solve a few simpler systems 
instead of the whole one [11-14]. 

In this study, we apply operator splitting and the point 
in operator splitting is the replacement of the original 
model with one in which appropriately chosen groups of 
the sub processes, described by the model, take place 
successively in time. To illustrate the idea, let S denote 
some normed space and consider the initial value prob-
lem 

     

  0

d
,  0, ,

d
0 ,

w t
Aw t t T

t
w w

 


         (14) 

where  : 0,w T  S
S

 is the unknown function, and A is 
an operator of type . Assume that the operator A 
can be decomposed into a sum of two simpler operators, 
for example, as A1 and A2. Then defining the splitting 
step by 

S 

,  where T n n   , is given, we consider the 
sequence of initial value problems of the form 
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    (15) 

for k = 1, 2, ···, n, where 0 . This procedure is 
called sequential splitting and can directly be extended to 
more than two sub operators in a natural way. 

   2
0 0w 

Obviously, the alteration of the original problems with 
the subproblems generally results in some error so called 
local splitting error. The local splitting error, n , of the 
sequential operator-splitting method can be given as fol-
lows: 

E

       

 
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exp exp exp

      

n n n n
n
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O

  



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

nA w
 

(16) 

where splitting time step, n , is defined by  
 1n n t n t       

Now, we extend the method to the Black-Scholes 
equation given in (10). 
 
4. The Operator Splitting of the  

Black-Scholes Equation and Its  
Numerical Solution 

 
Splitting methods are important for partial differential 
equations, because of reducing computational time to 
solve the equations and accelerating the solver process, 
see [11]. Based on the splitting launched in Section 3, we 
have split the Black-Scholes equation given in (10) as 
follow: 

2
2 2

2

1
0

2

V V V
S rS

t SS
  

  
 




        (17a) 

0
U

rU
t


  


              (17b) 

Next, we discuss our underlying time- and space-dis-
cretization approach for our coupled system of Black- 
Sholes equation given in 17(a-b). Often decoupling 
methods are applied after discretizing time and space 
variables. Here, the balance between the time and space 
discretization methods is important. So, the spatiotem-
poral schemes can be balanced in implicit-explicit dis-
cretization methods. The decoupling in time and space 
has the advantage of more efficiency and acceleration 
[11]. 
 
4.1. Finite-Difference Approximation 
 
Finite-difference methods are one of the resources of 
obtaining numerical solutions to partial differential equa-
tions and linear complimentary problems. They consti-
tute a very powerful and flexible technique, and, if they 
applied appropriately, competent of producing accurate 
numerical solutions to all of the model problems arising 
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in both the physical and financial sciences. 
The underlying idea behind finite-difference methods 

is to replace the partial derivatives occurring in partial 
differential equations by approximations based on Tay-
lor’s series expansions of functions near the point or 
points of interest. For example, a partial derivative 

u t   may be defined to be the limiting difference 

     
0

, δ ,
, lim

δt

u x t t u x tu
x t

t t 

 



 

If instead of taking the limit , we regard  
as small but nonzero, hence, we obtain the approxima-
tion 

δ 0t  δt

       
, δ ,

, δ 0
δ

u x t t u x tu
x t O t

t t

 
 


  

This is called a finite-difference approximation or a fi-
nite difference of u t   because; it involves small but 
not infinitesimal, differences of the dependent variable 

. Furthermore, higher order derivatives can be derived 
in a similar manner. To continue with the finite differ-
ence approximation, we divide the x-axis into equally 
spaced nodes a distance 

u

δx h  apart, and t-axis into 
equally spaced nodes a distance  apart. This di-
vides the 

δt k
,x t

k

 plane into a mesh, where the mesh 
points have the form . In our case, the grid is 
made up of the points at asset values  and times 

 for the convenience. 

 . , .j ki h

iS ih
t T j 

Balancing of time and spatial discretization here addi-
tional balancing is taken into account, and we proposed 
the Theta methods. 

The following theorem, addresses the delicate situa-
tion of time and spatial steps and the fact of reducing the 
theoretical promised order of the scheme: 
 
4.2. Theta Method 
 
Detaining our attention to values of  at mesh points, 
and using appropriate finite- difference for the deriva-
tives in (17a) Theta method reads: 

V
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 
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     

  
    

    
           

 (18) 

or  

      
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where 

2 2

2 2

2 2

1 1

2 2

1 1

2 2

i

i

i

A i k rik

B i k r

C i k







   
 
 
 



ik

               (20) 

Detaining our attention to values of U  at mesh 
points, and using appropriate finite- difference for the 
derivatives in (17b) Theta method reads: 

  
1

11
j j

ji i
i

U U
r U U

k
 




    j
i       (21) 

or 

 
  

1 1

1 1
j j

i

rk
U

rk




 


  iU             (22) 

For readers familiar with Theta method or so called 
weighted average approximation reduces to: 

1) The Explicit Finite Difference Method when we 
take 1  . 

2) The Implicit Finite Difference Method when we 
take 0  . 

3) The Crank-Nicolson method when we take 1 2  . 
Now we will make numerical calculations for each 

method for the cases 1), 2) and 3) to show the applicabil-
ity and efficiency of each case for Black-Sholes call op-
tion model. 
1) Explicit Finite Difference Method 
For Black-Sholes equation, (18), the explicit method is 
allocated when 1  , with 0.2  ,  and 0.05r 

100E  , hence we obtain: 

1
2 2 1 1 1

2

21

2 2

j j j j j j j
i i i i i i i

i i

V V V V V V V
S rS

k hh



      
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  

1 



(23) 

or 

 1
1 1 1

j j j j j j j
i i i i i iV A V B V C V

i                 (24) 

where 
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j
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A i k rik
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





   
 



   
 

ik
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            (25) 

Equation (24) only holds for , i.e. for 1, , 1i M 
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interior points, since 1

jV  and 1
j

MV   are not defined. 
Thus there are M − 1 equations for the M + 1 unknowns, 
the j

iV . The remaining two equations come from the 
two boundary conditions on  and i . These 
two end points are treated separately. 

0i M

If we know j
iV  for all i  then Equation (24) tells us 

1j
iV  . Since we know , the payoff function, we can 

easily calculate .  

0
iV

1
iV

The second split equation, (21), reduces to 

1j j
ji i

irU



U U

k

 

1

 



            (26) 

or 

1j jrki   iU  U             (27) 

To solve, (27), we take the solution of the first split 
equation as an initial condition for second split equation, 
i.e., 

0 1
i iU V  

and calculate  easily, which is the option value of 
one time step before expiry. Using these values we can 
work step by step back down the grid as far as we re-
quired. Table 2 shows the calculated call option values 
of Black-Sholes equation. The comparison with exact 
solutions (see Table 1) shows that obtained results are 
well-matched with exact ones except for lower strike 
prices, 110 and 120. 

1
iU

2) The Implicit Finite Difference Method 
The implicit method for Black-Sholes equation is at-
tained when we take 0   in (18). The calculation 
may be done in similar manner as in case 1) by using 
basic numerical linear algebra for the linear systems. The 
comparison with exact solutions (see Table 1) shows 
that obtained results are well-matched with exact ones 
except for lower strike prices, 110 and 120 as in the case 
1). 
3) Crank-Nicolson Method 
The Crank-Nicolson method for Black-Sholes equation 
is attained when we take 1 2   in (18). Table 3 
shows the calculated call option values of Black-Sholes 
equation with the Crank-Nicolson method. The com-
parison with exact solutions (see Table 1) shows that 
obtained results are well-matched with exact ones except 
for lower strike prices, 110 and 120 as in the cases 1) and 
2). The calculation may be done in similar manner as in 
cases 1) and 2) by using the Crank-Nicolson solver fre-
quently used for solving the linear systems. 
 
4.3. Weighted Operator Splitting Method  

(WOSM) 
 
A more general finite-difference approximation to split 

Black-Sholes equation, (17(a)-(b)), than those considered 
is given by  
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(28) 

  
    

1
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1 1 1
j j

i i

r w k
U U

r w k




  

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         (29) 

This approximation may be called as Weighted Op-
erator Splitting Method (WOSM) and we think it is use-
ful for practical consideration for unstable equations. 
Next we will consider this approximation for the 
Crank-Nicholson case in the following. 

Letting 1 2   in Equations (28) and (29) where 
 0,1w  is the weighting factor which is determined 

by trial and error, gives the results shows in Table 4. 
To arbitrate the accuracy of our results given in Ta-

bles 2-5, we have calculated numerical values of the ex-
plicit (similarity) solution of the Black-Scholes equation 
for option call problem for call option for 0.2  , 

0.05r   and 100E  , given in Table 1. 
 
5. Conclusions 
 
In this paper, Black-Scholes equation is solved as a call 
option problem by variants of splitting method numeri-
cally. The comparison of the results obtained by various 
splitting methods (see Tables 2-5) shows that obtained 
results are well-matched and the diversity among the 
numerical values are negligible. This may be considered 
as the splitting method applied to call option problem is 
consistent. Our calculations, to some extent, for certain 
values differ from the values obtained by the similarity 
solution given in Table 1. We think that the dissimilarity 
is practically expected and is due to the fundamental na-
ture of the similarity solution. Because, notice that, the 
similarity solution contains only one parameter, instead 
of the four parameters  and r  in the original 
statement of the problem. The only vital factor control-  

2,  ,  E  T

ling the option value is 21

2
r  , which is the only di- 

mensionless parameter in the problem. The effect of all 
other factors is simply brought in by a straightforward 
arithmetical calculation. On the other hand, the similarity 
solution technique is rarely successful in solving a com-   
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Table 1. Explicit solution for call option for σ = 0.2, r = 0.05 and E = 100. 

 0 0.111 0.222 0.333 0.444 0.556 0.667 0.778 0.889 1 

110 10 10.7514 11.7398 12.7085 13.6288 14.511 15.3455 16.1461 16.9173 17.663 

120 20 20.5586 21.1794 21.8672 22.5857 23.3198 24.0453 24.7635 25.4718 26.169 

130 30 30.5535 31.1096 31.6848 32.2835 32.9058 33.534 34.1683 34.8046 35.4403 

140 40 40.5535 41.1042 41.6554 42.2125 42.7832 43.3571 43.9375 44.5226 45.1106 

150 50 50.5535 51.1039 51.6516 52.1984 52.7513 53.3017 53.8552 54.4115 54.9701 

160 60 60.5535 61.1039 61.6513 62.196 62.7438 63.2858 63.8278 64.3701 64.913 

170 70 70.5535 71.1039 71.6512 72.1956 72.7421 73.2815 73.8191 74.3553 74.8906 

180 80 80.5535 81.1039 81.6512 82.1955 82.7418 83.2804 83.8164 84.3502 84.8821 

190 90 90.5535 91.1039 91.6512 92.1955 92.7417 93.2801 93.8156 94.3485 94.8789 

200 100 100.5535 101.1039 101.6512 102.1955 102.7417 103.28 103.8154 104.3479 104.8777 

 
Table 2. Call option values output by the explicit code. Stock price ranges from 110 to 200, time from 0 (expiration) to 1 with 
σ = 0.2, r = 0.05 and E = 100. 

 0 0.111 0.222 0.333 0.444 0.556 0.667 0.778 0.889 1 

110 10 10.5531 11.1032 11.6502 12.1941 12.7399 13.2777 13.8126 14.3444 14.8734 

120 20 20.5529 21.1028 21.6495 22.1933 22.7388 23.2765 23.8111 24.3428 24.8714 

130 30 30.5527 31.1023 31.6489 32.1924 32.7377 33.2752 33.8096 34.3411 34.8695 

140 40 40.5525 41.1019 41.6483 42.1916 42.7367 43.2739 43.8081 44.3394 44.8676 

150 50 50.5523 51.1015 51.6476 52.1907 52.7356 53.2726 53.8066 54.3377 54.8657 

160 60 60.5521 61.1011 61.647 62.1899 62.7346 63.2714 63.8052 64.336 64.8638 

170 70 70.5519 71.1006 71.6464 72.189 72.7335 73.2701 73.8037 74.3343 74.8619 

180 80 80.5517 81.1002 81.6457 82.1882 82.7324 83.2688 83.8022 84.3326 84.86 

190 90 90.5514 91.0998 91.6451 92.1873 92.7314 93.2675 93.8007 94.3309 94.8581 

200 100 100.5512 101.0994 101.6445 102.1865 102.7303 103.2663 103.7992 104.3292 104.8562 

 
Table 3. Call option values output by the Crank-Nicolson code. Stock price ranges from 110 to 200, time from 0 (expiration) 
to 1 with σ = 0.2, r = 0.05 and E = 100. 

 0 0.111 0.222 0.333 0.444 0.556 0.667 0.778 0.889 1 

110 10 10.5533 11.1036 11.6508 12.1949 12.7409 13.2789 13.8139 14.346 14.8751 

120 20 20.5531 21.1032 21.6501 22.1941 22.7398 23.2776 23.8125 24.3443 24.8732 

130 30 30.5529 31.1027 31.6495 32.1932 32.7387 33.2764 33.811 34.3426 34.8713 

140 40 40.5527 41.1023 41.6489 42.1924 42.7377 43.2751 43.8095 44.3409 44.8694 

150 50 50.5525 51.1019 51.6482 52.1915 52.7366 53.2738 53.808 54.3392 54.8674 

160 60 60.5523 61.1015 61.6476 62.1907 62.7355 63.2725 63.8065 64.3375 64.8655 

170 70 70.5521 71.1011 71.647 72.1899 72.7346 73.2713 73.8051 74.3359 74.8638 

180 80 80.5519 81.1007 81.6465 82.1892 82.7337 83.2703 83.804 84.3346 84.8623 

190 90 90.5518 91.1004 91.646 92.1885 92.7329 93.2693 93.8028 94.3333 94.8608 

200 100 100.5516 101.1001 101.6455 102.1879 102.7321 103.2683 103.8016 104.3319 104.8593 
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Table 4. Call option values output by the Weighted Crank-Nicolson code. Stock price ranges from 110 to 200, time from 0 
(expiration) to 1 with σ = 0.2, r = 0.05 and E = 100. 

 0 0.111 0.222 0.333 0.444 0.556 0.667 0.778 0.889 1 

110 10 10.5535 11.104 11.6514 12.1957 12.7419 13.2803 13.8156 14.3479 14.8774 

120 20 20.5535 21.1039 21.6512 22.1956 22.7417 23.28 23.8153 24.3476 24.877 

130 30 30.5534 31.1038 31.6511 32.1954 32.7415 33.2797 33.815 34.3473 34.8766 

140 40 40.5534 41.1037 41.651 42.1952 42.7413 43.2795 43.8147 44.3469 44.8762 

150 50 50.5534 51.1036 51.6509 52.1951 52.7411 53.2792 53.8144 54.3466 54.8758 

160 60 60.5533 61.1035 61.6507 62.1949 62.7409 63.279 63.8141 64.3463 64.8755 

170 70 70.5533 71.1035 71.6506 72.1947 72.7407 73.2788 73.8138 74.3459 74.8751 

180 80 80.5532 81.1034 81.6505 82.1946 82.7405 83.2785 83.8136 84.3457 84.8748 

190 90 90.5532 91.1033 91.6504 92.1945 92.7403 93.2783 93.8134 94.3454 94.8745 

200 100 100.5532 101.1033 101.6503 102.1943 102.7402 103.2781 103.8131 104.3451 104.8742 

 
Table 5. Call option values output by the implicit code. Stock price ranges from 110 to 200, time from 0 (expiration) to 1 with 
σ = 0.2, r = 0.05 and E = 100. 

 0 0.111 0.222 0.333 0.444 0.556 0.667 0.778 0.889 1 

110 10 10.5538 11.1045 11.6523 12.197 12.7436 13.2823 13.818 14.3509 14.8808 

120 20 20.554 21.105 21.6529 22.1978 22.7446 23.2836 23.8195 24.3526 24.8827 

130 30 30.5542 31.1054 31.6535 32.1987 32.7457 33.2848 33.821 34.3543 34.8846 

140 40 40.5544 41.1058 41.6542 42.1995 42.7467 43.2861 43.8225 44.356 44.8865 

150 50 50.5546 51.1062 51.6548 52.2004 52.7478 53.2874 53.824 54.3577 54.8884 

160 60 60.5548 61.1067 61.6554 62.2012 62.7489 63.2886 63.8255 64.3594 64.8903 

170 70 70.5551 71.1071 71.6561 72.2021 72.7499 73.2899 73.827 74.361 74.8922 

180 80 80.5553 81.1075 81.6567 82.2029 82.751 83.2912 83.8284 84.3627 84.8941 

190 90 90.5555 91.1079 91.6573 92.2037 92.752 93.2925 93.8299 94.3644 94.896 

200 100 100.5557 101.1083 101.658 102.2046 102.7531 103.2937 103.8314 104.3661 104.8979 

 
plete boundary value problems, because it requires such 
special symmetries in the equation and initial and boun-
dary conditions. Therefore, we can not be confident that 
the effects we have neglected in making the approxima-
tion in both, i.e. splitting method and similarity solution 
are genuinely unimportant. 
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