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Abstract 
In this paper an attempt has been made to study the unsteady incompressible flow of a genera-
lized Oldroyd-B fluid between two oscillating parallel plates in presence of a transverse magnetic 
field. An exact solution for the velocity field has been obtained by means of Laplace and finite 
Fourier sine transformations in series form in terms of Mittage-Leffler function. The dependence 
of the velocity field on fractional as well as material parameters has been illustrated graphically. 
The velocity fields for the classical Newtonian, generalized Maxwell, generalized second grade and 
ordinary Oldroyd-B fluids are recovered as limiting cases of the flow considered for the genera-
lized Oldroyd-B fluid. 
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1. Introduction 
The magneto hydrodynamic flow problem between two parallel plates has shown immense attention during the 
last several decades. The study has significant applications in the field of hydrodynamical machines and appara-
tus, magnetic storage devices, computer storage devices, lubrication, crystal growth processes, radial diffusers, 
MHD pumps, MHD power generators, purification of crude oil, petroleum industries etc. Bandelli et al. [1] dis-
cussed start-up flows of second grade fluids in domains with one finite dimension. Fetecau et al. [2] investigated 
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exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between 
two side walls perpendicular to the plate. Hayat et al. [3] made homotopy analysis of MHD boundary layer flow 
of an upper-convected Maxwell fluid. Jamil and Khan [4] studied slip effects on fractional viscoelastic fluids. 
Shen et al. [5] studied the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional 
derivative model. Vieru et al. [6] discussed the flow of a generalized Oldroyd-B fluid due to a constantly acce-
lerating plate. Wenchang et al. [7] investigated unsteady flows of a viscoelastic fluid with the fractional Max-
well model between two parallel plates. Vieru et al. [8] studied the unsteady flow of a generalized Oldroyd-B 
fluid due to an infinite plate subject to a time-dependent shear stress. 

In the present paper we consider the flow of a generalized Oldroyd-B fluid between two oscillating infinite 
parallel plates in presence of transverse magnetic field. We have formulated the expression for the velocity field 
for the said flow in terms of Mittage-Leffler function. In the constitutive equation of the fluid model, the time 
derivative of integral order has been replaced by Riemann-Liouville fractional calculus operator. The exact solu-
tion for the velocity field is obtained by using the method of integral transformations and the dependence of the 
said field on the material as well as fractional calculus parameters is illustrated graphically. 

2. Mathematical Formulation and Basic Equation 
Let us consider an incompressible generalized Oldroyd-B fluid bounded by two infinite parallel plates as shown 
in Figure 1. The plates are initially at rest and at 0t +→  the plates start to oscillate in its plane with the veloc-
ity ( )1cosV tω  and ( )2cosV tω  where V  is the fluid velocity. Due to the shear, the fluid is moved gradually. 
We have taken Cartesian coordinate system. x- and y-coordinates are taken along and perpendicular to the pa-
rallel plates respectively. Accordingly, the initial condition is given by ( ),0 0u y = , 0 1y≤ ≤  and the boun-
dary conditions are given by ( ) ( )10, cosu t V tω= , ( ) ( )2, cosu d t V tω= . 

We take the velocity and stress of the form 

( ) ( )ˆ, ,     ,V u y t S S y t= =i                                 (1) 

where ( ),u y t  is the velocity component in the x-direction. 
The constitutive relationship for the fluid associated with the present problem is given by, 

( ) ( ) ( ),
1 1t xy r t

u y t
D S D

t
α α β βλ µ λ

∂
+ = +

∂
                           (2) 

In the relation (2), tDα  and tDβ  are Caputo operators defined by 

( ) ( ) ( ) ( )
0

1 d ,     0 1
1

t
pp

tD g t t g p
p

τ τ τ− ′= − ≤ <
Γ − ∫                    (3) 
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Figure 1. Geometry of the problem. 
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According to our problem, 

0,     xx yy zz xz yz xy yxS S S S S S S= = = = = =  

We consider a generalized Oldroyd-B fluid between two infinite parallel disks in presence of an imposed 
magnetic field 0B  that acts in the direction of the positive y-axis. Then in the presence of the body force 

2
0B uσ , the momentum equation is given by 

2
0xy

u S B u
t y

ρ σ∂ ∂
= −

∂ ∂
                                 (4) 

where “σ ” is constant and “ ρ ” is the density of the fluid. 
Eliminating xyS  between the Equations (2) and (4) we have the governing equation 

( ) ( ) ( ) ( ) ( ) ( )
2

2

, ,
1 1 1 ,t r t t

u y t u y t
D D M D u y t

t y
α α β β α αλ ν λ λ

∂ ∂
+ = + − +

∂ ∂
               (5) 

where 
µν
ρ

=  is the kinematic viscosity and 
2
0 .

B
M

σ
ρ

=  

Introducing the non-dimensional quantities, 

2 2,    ,    ,    u y tu y t
V d d d

α
α αµ νλ λ

ρ
∗ ∗ ∗ ∗  = = = =  

 
 

2

2 ,    ,    r r
dM M

d

α
β β ν µλ λ ν

ρ ν
∗ ∗ = = = 

 
 

we get the governing equation in non-dimensional quantities as 

( ) ( ) ( ) ( ) ( ) ( )
2

2

, ,
1 1 1 ,t r t t

u y t u y t
D D M D u y t

t y
α α β β α αλ λ λ

∂ ∂
+ = + − +

∂ ∂
              (6) 

(Omitting the dimensionless mark “*”) 

( )subject to initial condition ,0 0u y =                            (7) 

and the boundary conditions ( ) ( )10, cosu t tω= , for 0t >  

( ) ( )21, cos   for  0u t t tω= >                                (8) 

Taking finite Fourier sine transformation we get from Equation (6) 

( ) ( ) ( ) ( ) ( ) ( )
21

20

d1 , 1 sin π d 1 ,
dt s r t t s

uD U n t D n y y M D U n t
t y

α α β β α αλ λ λ∂
+ = + − +

∂∫          (9) 

where ( ) ( ) ( )1

0
, , sin π dsU n t u y t n y y= ∫  is the finite Fourier sine transformation of ( ),u y t . 

Using the boundary conditions (8) the Equation (9) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( )

( ) ( )

1 2
2 1

d1 , 1 π 1 cos cos π ,
d

                                       1 ,

n
t s r t s

t s

D U n t D n t t n U n t
t

M D U n t

α α β β

α α

λ λ ω ω

λ

+ + = + − + −  

− +
     (10) 

Taking Laplace transformation and using ( ),0 0sU n =  we get from the above equation 



D. Bose, U. Basu 
 

 
109 

( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( )
( )

( )( ) ( ) ( )

1
2 2 2

2

2 2 2
1

1

2

1π, 1
1 π 1

1π                 
1 π 1

π 1 1
                

1 π 1

n r
s

r

r

r

n
r

r

pn pU n p
p p M p n p

pn p
p p M p n p

n

p M p n p

β β

α α β β

β β

α α β β

β

α α β β

λ
ω λ λ

λ
ω λ λ

λ

λ λ

+

+

+
= −

+ + + + +

+
+

+ + + + +

 − + −
+ + + +

                 (11) 

Now in order to avoid the lengthy procedure of residues and contour integrals, we rewrite the Equation (11) 
into series form as 

( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )

1 11

1

11

1

1 1

2 2 12 1 1
0 , 0 , 0 12

1

2 2 2 1
0 , 0 , 0 11

1 1 1 ! ! 1, 1
π ! ! ! !π

1 1 !1 !     1
π ! ! ! !π

n k n n ln w km l k
m

s kk k
k m l n w r r

k nn w km l k
m

k
k m l n w

kp k p pU n p M
n m l n wp n p

kp kM
n m l n wp n

α α α α

β β β

α

λ λ
ω λ λ

λ
ω

+ ++ =∞ + = +

++ + −= ≥ ≥

+ =∞ + = +

+
= ≥ ≥

 − − + + = −
 + +  

− +
+ −

+

∑ ∑ ∑

∑ ∑ ∑ ( ) ( )

( ) ( )
( ) ( )

( )

( )

1

1

1

11

1
1

2 11
0 , 0 , 0 1

1

1 ! !     1 1
π ! ! ! !π

n l

kk
r r

k k mkn w km l k
n mr

k kk
k m l n wr r

p p

p

k k pM
n m l n wn p

α α α

β β β

αβ α

β β β

λ
λ λ

λ λ
λ λ

+

++ −

+ −+ =∞ + =
+

++ −= ≥ ≥

 
+ 

 +  

− − − +  +
∑ ∑ ∑

   (12) 

Now we have an important Laplace transformation of the nth order derivative of Mittage-Leffler function 
( ),E zα λ  given by 

( ) ( )
( )

1
, 10

!e dnpt n
n

n pt E at t
p a

α λ
α λ α

α λ
α

−
∞ − + −

+− =
+

∫                         (13) 

where 

( ) ( ) ( ) ( )
( ), , 0

!d
!d

jn
n

n j

j n z
E z E z

j j nzα λ α λ α α λ
∞

=

+
= =

Γ + +∑                      (14) 

Taking Laplace Inverse transformation we get from the Equation (12) 

( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( )

( )( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )

11

1

1 1
1 1

1 1 1

2 2 1 1
0 , 0 , 0 1

1 1 1 1 1
2 , , 10

1
0

1 1 1 1 ! 1, cos
π π ! ! ! !π

cos d

11 1cos
π π

n n k nn w km l k
m

s k k
k m l n w r

t k kk n l k n l
r rn l n l

k

k

k
U n t t M

n n m l n wn

t E E

t
n n

α

β

β α β αβ β β β
β β α β β α

λω
λ

ω τ τ λ τ τ λ τ τ

ω

+ + + =∞ + = +

+ +
= ≥ ≥

+ − − − + − + − −− −
− − − + −

∞

=

− − − +
= −

 × − − + − 

−
+ −

∑ ∑ ∑

∫

∑
( ) ( )

( )
( )

( )( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )
( ) ( )

11

1

1 1
1 1

1

2 1 1
, 0 , 0 1

1 1 1 1 1
1 , , 10

1
2 1

0 , 0

1 ! 1
! ! ! !π

cos d

1 !1 1
! !π

nn w km l k
m

k k
m l n w r

t k kk n l k n l
r rn l n l

k m l k
n mr

k k
k m l nr

k
M

m l n wn

t E E

k M
n m ln

α

β

β α β αβ β α β β
β β α β β α

β

β

λ
λ

ω τ τ λ τ λ τ λ τ τ

λ
π λ

+ =+ = +

+ +
≥ ≥

+ − − − + − + − −− −
− − − + −

∞ + =
+

+
= ≥

+

 × − − + − 

− − − + 

∑ ∑

∫

∑ ∑ ( ) ( )
( )

( ) ( )
1

1

1 1 1
, 1

, 0 1

1
! !

n w k
kk k mk

rk m
w

t E t
n w

β αα β β
β β αλ λ

+ =
+ − + + − −

− + +
≥

−∑

  (15) 

Taking inverse finite Fourier sine transformation we get the velocity profile from the Equation (18) as 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( )

( )( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )

11

1

1 1
1 1

1

2 1 2 1 1
1 0 , 0 , 0 1

1 1 1 1 1
2 , , 10

1 1 1 ! 1, cos 1 cos 2 sin π
π ! ! ! !π

      cos d

n k nn w km l k
m

k k
n k m l n w r

t k kk n l k n l
r rn l n l

k
u y t y t y t n y M

n m l n wn

t E E

α

β

β α β αβ β α β β
β β α β β α

λω ω
λ

ω τ τ λ τ λ τ λ τ τ

+ =∞ ∞ + = +

+ +
= = ≥ ≥

+ − − − + − + − −− −
− − − + −

− − +
= + − +

 × − × − + − 

∑ ∑ ∑ ∑

∫

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

( )
( )

( )( ) ( ) ( )

1

11

1

1
1

, 12 1
1 0

1

2 1 1
1 0 , 0 , 0 1

1 1
1 ,

11      2 sin π
π π

1 1 !1 1             2 sin π
π ! ! ! !π

      co

d

s

k
k

rn lk
n k

k nn w km l k
m

k k
n k m l n w r

kk n l
rn l

n y E
n n

k
n y M

n m l n wn

t E

β β
β β α

α

β

β α β
β β α

λ τ

λ
λ

τ

ω τ τ λ τ

∞ ∞
−

− + −+
= =

+ =∞ ∞ + = +

+ +
= = ≥ ≥

+ − − − −
− −

−
− −

− +
−

× −




−

∑ ∑

∑ ∑ ∑ ∑

( ) ( ) ( )
( )

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

1
1

1

1

1 1 1
, 10

1

1

1 1 1
, 12 1

0 , 0 , 0 1

d

sin π
      2 1 1

π

( 1) ! 1      .
! ! ! !π

t kk n l
rn l

n
r

n

k n w km l k
kk k mm k

rk mk k
k m l n wr

E

n y
n

k M t E t
m l n wn

β αβ α β β
β β α

β

β αα β β
β β αβ

λ τ λ τ τ

λ

λ λ
λ

+ − + − − −
− + −

∞
+

=

+ =∞ + =
+ − + + − −

− + ++
= ≥ ≥

 + − 

 − − + 

−
× −

∫

∑

∑ ∑ ∑

(16) 

3. Limiting Cases 
Case-I If 0.0α → , 0.0rλ →  then the equation of motion is given by 

( ) ( ) ( ) ( ) ( )
2

2

, ,
1 1 ,

u y t u y t
M u y t

t y
α αλ λ

∂ ∂
+ = − +

∂ ∂
                        (17)

 
subject to the initial and boundary conditions given by the Equations (7) and (8) respectively.

 The Equation (17) represents the governing equation of a classical Newtonian fluid and the corresponding 
velocity field is given by 

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 1

1 1
0 2 2

2,1 22 1
1 0 , 0 , 0

1 1

2 1
1 0 , 0 , 0

cos 1 cos

1 1 1 ! 1 !
     2 sin π

π ! ! ! !π

1 1 ! 1 !1     2 sin π
π ! ! ! !π

n k m l k s i k
l s m

mk
n k m l s i

k m l k s i k
l

k
n k m l s i

u y t y t

k k
n y M t E t

n m l s in

k k
n y M

n m l s in

α

α

ω ω

λ ω

λ

∞ ∞ + = + + = +
−

−+
= = ≥ ≥

∞ ∞ + = + + = +

+
= = ≥ ≥

= + −

− − + +
+ −

− + +
−

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ( ) ( )0 2 2
2,1 1 .s m

mt E tω−
− −

   (18) 

Case-II If 0.0β ≠ , 0.0rλ →  then the equation is given by 

( ) ( ) ( ) ( ) ( )
2

2

, ,
1 1 ,t t

u y t u y t
D M D u y t

t y
α α α αλ λ

∂ ∂
+ = − +

∂ ∂
                    (19) 

subject to the initial and boundary conditions given by the Equations (7) and (8). 
The Equation (19) represents the governing equation of a generalized Maxwell fluid and the corresponding 

velocity field is given by 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 1

1 1
0 2 2

2,1 22 1
1 0 , 0 , 0

1 1

2 1
1 0 , 0 , 0

cos 1 cos

1 1 1 ! 1 !
     2 sin π

π ! ! ! !π

1 1 ! 1 !1     2 sin π
π ! !π

n k m l k s i k
s ml s

s mk
n k m l s i

k m l k s i k
l

k
n k m l s i

u y t y t

k k
n y M t E t

n m l s in

k k
n y M

n m ln

αα
α

ω ω

λ ω
∞ ∞ + = + + = +

− +
− −+

= = ≥ ≥

∞ ∞ + = + + = +

+
= = ≥ ≥

= + −

− − + +
+ −

− + +
−

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ( ) ( ) ( )0 2 2
2,1 1 .

! !
s ms

s mt E t
s i

αα
αλ ω− +
− − −

  (20) 
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Case-III If 0.0α ≠ , 0.0λ →  then the equation of motion is given by 

( ) ( ) ( ) ( )
2

2

, ,
1 ,r t

u y t u y t
D Mu y t

t y
β βλ

∂ ∂
= + −

∂ ∂
                        (21) 

subject to the initial and boundary conditions given by the Equations (7) and (8) respectively. 
The Equation (21) is the governing equation for a generalized second grade fluid and the velocity field is 

given by 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )( ) ( )

2 1

1
1 2

2 , 12 1 1 0
1 0 , 0

1
1 2

12 1 1
1 0 , 0

cos 1 cos

1 1 1 !
2 sin π cos d

π ! !π

1 1 !12 sin π cos
π ! !π

n k mm l k t k m k k
m k rk k

n k m l r

k mm l k
k m k

k k
n k m l r

u y t y t

k Mn y t E
n m ln

k Mn y t
n m ln

β β β
β ββ

β
β

ω ω

ω τ τ λ τ τ
λ

ω τ τ
λ

∞ ∞ + = +
+ + − − −

+ − −+ +
= = ≥

∞ ∞ + = +
+ + − −

+ +
= = ≥

= + −

− − +
+ − −

− +
− −

∑ ∑ ∑ ∫

∑ ∑ ∑ ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

, 10

1 1 1
,2 1

1 0 , 0

d

sin π 1
2 1 1 .

π ! !π

t k
m k r

k mm l k
n k m k k

r m k rk k
n k m lr

E

n y M t E t
n m ln

β β
β β

ββ β β
β ββ

λ τ τ

λ λ
λ

−
+ − −

∞ ∞ + =
+ + + − − −

+ −+
= = ≥

−

− − − + − 

∫

∑ ∑ ∑

 (22) 

Case-IV If 1.0α → , 0.0rλ →  then the equation of motion is given by 

( ) ( ) ( )
2

2

, ,
1 1 ,

u y t u y t
M u y t

t t ty
α αλ λ

∂ ∂∂ ∂   + = − +   ∂ ∂ ∂∂   
                    (23) 

subject to the initial and boundary conditions given by the Equations (7) and (8) respectively. 
The Equation (23) represents the governing equation of an ordinary Oldroyd-B fluid and the corresponding 

velocity field is given by 
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 1

1 1
0 2 2

2,1 22 1
1 0 , 0 , 0

1 1

2 1
1 0 , 0 , 0

cos 1 cos

1 1 1 ! 1 !
     2 sin π

π ! ! ! !π

1 1 ! 11     2 sin π
π ! !π

n k m l k l w k
m l m k l

m k lk
n k m l l w

k m l k l w k
m

k
n k m l l w

u y t y t

k k
n y M t E t

n m l l wn

k k
n y M

n m ln

α

ω ω

λ ω
∞ ∞ + = + + = +

− −
+ − −+

= = ≥ ≥

∞ ∞ + = + + = +

+
= = ≥ ≥

= + −

− − + +
+ −

− + +
−

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ( ) ( )0 2 2
2,1 2

!
.

! !
l m k l

m k lt E t
l w

αλ ω− −
+ − − −

  (27) 

4. Conclusions and Numerical Results  
In this paper we have presented the flow of a generalized Oldroyd-B fluid between two oscillating infinite pa-
rallel plates. The velocity field has been determined by means of Laplace and finite Fourier sine transformations 
in series form in terms of Mittage-Leffler function. The dependence of the velocity field on the fractional calcu-
lus parameters and material parameters has been illustrated graphically. The solutions for the four limiting cases 
have been discussed from the solution of the flow problems of a generalized Oldroyd-B fluid. 

In Figure 2 the velocity is depicted against the distance from the lower plate for different values of the frac-
tional calculus parameter α . As α  increases, the fluid velocity increases and there are points of local mini-
mum and local maximum in the velocity curves which are oscillatory in nature. Negative velocity can be ob-
served near the upper plate for values of α  near zero in Figure 2. The velocity is depicted against the distance 
from the lower plate for different values of fractional calculus parameter β  in Figure 3. As β  increases, the 
fluid velocity decreases, which is opposite to the case in Figure 2 and the points of local minimum and maxi-
mum can be observed in the velocity curves. The flow patterns are oscillatory in nature. In Figure 4 the velocity 
is plotted against the distance from the lower plate for different values of the parameter M. As the parameter M 
takes increasing values, the fluid velocity increases and the velocity curves are oscillatory in nature. The velocity 
profile is plotted against the distance from the lower plate for different values of the frequency of oscillation 1ω  
of the lower plate in Figure 5. It is evident from the figure that the fluid velocity decreases for higher values of 
the parameter 1ω . The initial points of the velocity curves near the lower plate are different in domain of spatial  
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Figure 2. The velocity profile is depicted against the distance from the lower plate for different values of the fractional cal-
culus parameter α . 1 1.2ω = , 2 1.5ω = , 10M = , 6λ = , 3rλ = , 0.8β = , π 4t = , 0.1α = _______, 0.2α =

________, 0.3α = _______. 
 

 
Figure 3. The velocity profile is depicted against the distance from the lower plate for different values of the fractional cal-
culus parameter β . 1 1.2ω = , 2 1.5ω = , 10M = , 6λ = , 3rλ = , 0.2α = , π 4t = , 0.6β = ________, 0.7β =

_______, 0.8β = _______. 
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Figure 4. The velocity is depicted against the distance from the lower plate for different values of parameter M . 1 1.2ω = , 

2 1.5ω = , 6λ = , 3rλ = , 0.2α = , 0.8β = , π 4t = , 10M = _______, 11M = _______, 12M = ________. 
 

 
Figure 5. The velocity is depicted against the distance from the lower plate for different values of the parameter 1ω . 

2 1.5ω = , 10M = , 6λ = , 3rλ = , 0.2α = , 0.8β = , π 4t = , 1 1.2ω = _______, 1 1.5ω = _______, 1 1.8ω = _______. 
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Figure 6. The velocity profile is depicted against the distance from the lower plate for different values of the parameter 2ω . 

1 1.2ω = , 10M = , 6λ = , 3rλ = , 0.2α = , 0.8β = , π 4t = , 2 1.5ω = _______, 2 1.8ω = _______, 2 2.1ω =
_______. 
 

 
Figure 7. The velocity profile is depicted against the distance from the lower plate for different values of the fractional cal-
culus parameter α  and for equal values of 1ω  and 2ω , 1 2 1.2ω ω= = , 10M = , 6λ = , 3rλ = , 0.8β = , π 4t = , 

0.1α = _______, 0.2α = ________, 0.3α = _______. 
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variable Y for different values of frequency of oscillation 1ω  of the lower plate. There is negative velocity in 
Figure 5 near the lower plate for values for higher frequency of oscillation of the lower plate. In Figure 6 as the 
frequency of the oscillation 2ω  of the upper plate changes, the terminal points of the velocity curves near the 
upper plate differ. The fluid velocity decreases with the increase of the frequency of oscillation 2ω  of the upper 
plate near that one. It can be noticed that there are points of local minimum and maximum for velocity curves 
for all the three cases. Negative velocity can be observed near the upper plate in Figure 6 for higher values of 
the frequency of oscillation of the upper plate. In Figure 7 the velocity profile is depicted against the distance 
from the lower plate for different values of the parameter α  in which the frequencies of oscillations of the 
plates are equal i.e. 1 2ω ω= . The fluid velocity increases with increasing values of α  and the velocity curves 
are oscillatory in nature. It can be noticed that for equal frequency of oscillations of the two plates, the heights of 
the initial and terminal points on the velocity curve in the domain of spatial variable are equal. 
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