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Abstract

Based on Nehari manifold, Schwarz symmetric methods and critical point theory, we prove the ex-
istence of positive radial ground states for a class of Schrodinger-Poisson systems in R®, which

doesn’t require any symmetry assumptions on all potentials. In particular, the positive potential is
interesting in physical applications.
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1. Introduction

In this paper, we consider the following nonlinear Schrodinger-Poisson systems

{—Au +V (x)u—2p(x)@u+Q(x)u" *u=0, xeR? 1.1)

—AD = p(Xx)u?, xeR?,

where >0, 2<p<4; V(x), p(x) and Q(x) are positive potentials defined in R®.

In recent years, such systems have been paid great attention by many authors concerning existence, non-
existence, multiplicity and qualitative behavior. The systems are to describe the interaction of nonlinear Schro-
dinger field with an electromagnetic field. When 1=-1, V(x)=p(x)=1, Q(x)=-1, the existence of non-
trivial solution for the problem (1.1) was proved as pe(4,6) in [1], and non-existence result for pe(0,2]
or pe(6,+) was proved in [2]. When A<0, V(x)=p(x)=1, Q(x)=-1, using critical point theory,
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Ruiz [3] obtained some multiplicity results for pe(2,3), and existence results for p e[3,6). Later, Ambro-
setti and Ruiz [4], and Ambrosetti [5] generalized some existence results of Ruiz [3], and obtained the existence
of infinitely solutions for the problem (1.1).

In particular, Sanchel and Soler [6] considered the following Schrodinger-Poisson-Slater systems

2
~Au+au+®u-uiu=0, xeR’ (1.2)
—AD =U?, xeR?,

where @ <R . The problem (1.2) was introduced as the model of the Hartree-Foch theory for a one-compo-
nent plasma. The solution is obtained by using the minimization argument and @ as a Lagrange multiplier.
However, it is not known if the solution for the problem (1.2) is radial. Mugani [7] considered the following ge-
neralized Schrodinger-Poisson systems

(1.3)

—Au+ou—A0u+W, (x,u)=0, xeR®
—AD = U, xeR?,

where weR, 2>0 and W(x,s)=W (|x|s) , and proved the existence of radially symmetric solitary waves
for the problem (1.3).

In this paper, without requiring any symmetry assumptions on V (x), p(x) and Q(x), we obtain the ex-
istence of positive radial ground state solution for the problem (1.1). In particular, the positive potential Q(x)
implies that we are dealing with systems of particles having positive mass. It is interesting in physical applica-
tions.

The paper is organized as following. In Section 2, we collect some results and state our main result. In Section
3, we prove some lemmas and consider the problem (1.1) at infinity. Section 4 is devoted to our main theorem.

2. Preliminaries and Main Results

1

Let L°(R®), 1<s<+oo denotes a Lebesgue space, the norm in L°(R®) is |ul, =[j|u|sde S , D"*(R?)
]R3

is the completion of Cg (R?) with respect to the norm
)
2
Julle =| [ IVufax
R3
H*(R®) be the usual Sobolev space with the usual norm
1
.
ul = (ol )|
RS
Assume that the potential V (x) satisfies
H1) V(x)eCHR%R), inf .V (x)=1, V(x)<V, =lim, ,V(x)<w.

xeR3 X0

Let Hy (R®) be the Hilbert subspace of ueH"(R®) such that

)
(|Vu|2 +V (x)|u|2)de (2.1)

bl =

Rr3

Then H; (R*)c H'(R®)c LS(]R?, 2<s<6 with the corresponding embeddings being continuous (see
[8]). Furthermore, assume the potential p(x) satisfies

H2) p(x)>0, lim, .. p(x)=p.>0, py(x)=p(x)-p, € LZ(R3).
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It is easy to reduce the problem (1.1) to a single equation with a non-local term. Indeed, for every v e D*? (R3) ,
we have

= J'(p(x)—pw)uzvdx+J'pmu2vdx

R® RS

< [|p ()= p.|u? Mdx+ [ p,u?|vidx
RS R?

<[] (Ipo<x>|u2)@dx]@{ [ (V)dej@ Al (uZ)@dx]@(J <v>6dx}@ @2

Rr3

Jp(X)uZVdX

Rr3

TR
< ok [0 1) |
RS RS
since py (X)=p(X)-p, €’ (R*), ueH!(R®) and (2.1), by the Lax-Milgram theorem, there exists a
unique ®[u] such that
jV(D[u]Vvdx= jp(x)uzvdx, YV e D“(R3) (2.3)
]R3

Rr3

It follows that ®[u] satisfies the Poisson equation
—AD[u] = p(x)u?
and there holds

Y= e

p(X)u*(y
R® |X y|
Because p(Xx)>0,wehave ®[u]>0 when u=0,and ||cI>[u]||D1‘2 =M |jull,., M is positive constant.
Substituting CD[u] in to the problem (1.1), we are lead to the equation with a non-local term
—Au+V(x)u—/Ip(x)cD[u]u+Q(x)|u|p72u=O. (2.4)

In the following, we collect some properties of the functional <D[u] , Which are useful to study our problem.
Lemma2.1. [9] Forany ueH*(R®), we have
1) ®[u]:H!(R*)— D**(R?) is continuous, and maps bounded sets into bounded sets;

2)if u, >u weaklyin H'(R°), then ®[u,]—>®[u] weaklyin D**(R?);

3) (D[tu(x)] = tZGD[u(x)] forall teR.
Now, we state our main theorem in this paper.
Theorem 2.2. Assume that 1 >0, 2< p<4, the potential V(x) satisfies condition H1), the potential

p(x) satisfies condition H3) and p(x) > p,, the potential Q(x) satisfies
6

H3) Q(x)>0, lim, . Q(x)=Q, >0, Q(x)=Q(x)-Q, e L (R’)
and Q(x)<Q,, Q(x)—Q, <0 on positive measure. Then there exists a positive radial ground state solution

for the problem (1.1).
Remark 2.3. If 1<0, V(x), p(x) and Q(x) are positive potentials defined in R®, and 2<p<6,
(u,@)e Hy (R®)xD**(R®) be asolution for the problem (1.1). Then (u,®)=(0,0), Indeed, we have

0= J.3(|Vu|2 +V(x)uz)dx—/i_[p(x)d)[u]uzdx+ J;Q(x)|u|pdx

> L(|Vu|2 +V (x)uz)dx.
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Since V(x)>0, thisimplies u=0.By Lemma 2.1, we have ®=0.

3. Some Lemmas and the Problem (1.1) at Infinity

Now, we consider the functional 1, : H; (R®) - R given by

Ii(u):%J'(|Vu|2 +V (x)u )dx——j 2dX+—J.Q )|u|"dx
R3
1,2 4
_Euu”H& —Zﬂg;p(x)GD[u]ude-i-Bﬂg;Q(x)|u| dx.

Since p(x) satisfies condition H2), by (2.2), the Holder inequality and Sobolev inequality, we have

[o90fulocsS| 515, .53 [ Moo @2
R} (sj
where S =inf "u”Dl'z and S =inf M Since the potential Q(x) satisfies condition Q
ueDl'z(]R3)\{0} |u|6 ueH\i,(R?’)\{o} |u|6 ) !
2< p<4,wehave
[Q()|uf’dx<|[(Q JulPdx+ [ Q, |u|°dx
RS R
SH ||u| dx+_[Q |u|”dx
R RS
6;!)] p
6
S(I|Qo(x)|[s—dexJ (I(u)edx} +Q .[|u| dx
RS RS
By Sobolev inequality, we obtain that
I Q(X)|u’dx <M ||u|||’f|6 (3.3)
R3

Combining (3.2) and (3.3), we obtain that the functional I, is a well defined C' functional, and if
ueH; (R?) is critical point of it, then the pair u,®[u]) isaweak solution of the problem (1.1).
Now, we define the Nehari manifold ([10]) of the functional I,

N, ={ueHj (R?)\{0}: H, (u) =0},
where
H (0) =1 ()[u]=[ulfy ~2 [ p()@[u]u’aer [ Q(x)jul"dx
Hence, we have

1, 2 1 1 p
o), =l + (35 J QM
(22l 4 22 (oo lule 3.4

Rr3

(3-3] T2 [ oo fulrax

O,
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Lemma 3.1. 1) For any A>0, ueH, R3)\{0}, there exists a unique t(u)>0 such that t(u)ueN,.

Moreover, we have |, (t(u)u)=max,, I, (tu).
2) 1,(u) isbounded from belowon N, by a positive solution.

Proof. 1) Taking any ueH, (R3)\{O} and ||u||H§ =1, we obtain that there exists a unique t(u)>0 such
that t(u)ueN,. Indeed, we define the function g(t)=1,(tu). We note that g'(t)=(1;(tu),v)=0 if only

if tueN,.Since g'(t)=0 isequivalentto

t2||u||i|6 —2t* [ p(x)@[u]udx+t? Q(x)|u)"dx =0.
R® R®
By p(x), Q(x)>0 and (D[u]>0,we have
b= j Ju?dx >0, C=IQ(X)|U|de>0.

Rr3

By 1>0, 2<p<4,theequation 1-Abt*+ct’? =0 hasaunique t(u)>0 and the corresponding point

t(u)ueN, and I, (t(u)u)=max,, I, (tu).
2) Let ueN,, by (3.4)and 2< p<4,wehave

0= 33 o (23] pt00 1o
(32, >0

By the definition of Nehari manifold N, of the functional I, , we obtain that
u isacritical pointof 1, ifandonlyif u isa critical pointof |, constrainedon N,.
Now, we set

m, =inf{l, (u):ueN,|

By 2) of Lemma 3.1, we have m, > 0.

(3.5)

Since lim,  V(x)=V,, lim, _ p(x)=p,, lim,  Q(x)=Q,, we consider the problem (1.1) at infin-

ity
~AUHV, U—2p, DU+Q, |u"u=0, xeR?
-AD = p,u°, xe R

Similar to (2.2), we obtain that there exists a unique Cf>[u] such that

0 _ 2 1,2 (13
LVCD[U]Vvdx_Rmeu vdx, vveD (R )

It follows that ®[u] satisfies the Poisson equation
~Ad[u]= p,u?
Hence substituting ®[u] into the first equation of (3.6) we have to study the equivalent problem
~AU+V, U~ 2p, ®[u]u+Q, [ufu=0

The weak solution of the problem (3.8) is the critical point of the functional

17 (u :—j(|Vu| +V,u )dX——jpw 2dx+—jQ Ju| dx

L IR DS DAY

©,

(3.6)

3.7)

(3.8)
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where H; (R®)=H*(R®) isendowed with the norm

, 2
lull. :( [ (|vU| +un2)de
Voo e
Define the Nehari manifold of the functional |7
N7 ={ueHj (R*)\{0}:H; (u)=0},
where

Hy ()= 15" (o] =Julfy 2] o, ®[uludre [ Q. Juf'as
© 3 RS

R

and
my =inf {17 (u):ueN;}>0

The Nehari manifold N} has properties similar to those of N,.
Lemma 3.2. The problem (3.8) has a positive radial ground state solution @, € N; such that

©

Ijlo(a)oo) = ml

For the proof of Lemma 3.2, we make use of Schwarz symmetric method. We begin by recalling some basic
properties.

Let f el®(R*) such that f >0, then there is a unique nonnegative function f* e L° (R3), called the
Schwarz symmetric of f , such that it depends only on |x| , whose level sets

{XERai f(x)>t}={XeR3 . f*(x)>t}.
We consider the following Poisson equation
-Ag=1f and —-Av=f"
From Theorem 1 of [11], we have

I |Vv|sdx > j |V¢|de, V0<s<2.
R® R®

Hence, let ¢=®[u], f=p,u° and v=d[u"], f’ :,om(u”‘)2 , We have
[ p,®[u]uPdx < .[pmti)[u*](u*)zdx. (3.9)
RS R3
The Proof of Lemma 3.2. Let u, € Ny be such that 17 (u,)—>m;. Let t >0 such that t, |u |e N}
then we have
| (|Vun|2 +V, (u, )z)dx—ﬁf p.®[u,](u, ) dx+ [ Q, |u,[*dx =0,
R® R® R®

and

(t,) j (IVu,[* +V. (4, )7 )ax=2(t,)" [ p.®[u, (v, )'dx+(t,)° j Q. |u,|"dx=0.

Rr3

Hence, we obtain that

((6)=(t)') j (Ivu, [+ V. () Jax+((8)" = (8)°) j Q, |u,|"dx=0. (3.10)

O,
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Since t, >0 and 2< p<4,(3.10) implies that t, =1. Therefore, we can assume that u, >0.
On the other hand, let (u,)" be the Schwartz symmetric function associated to u, , then we have

p _ «|P 2 «12
I[é[3|un| dx_ﬂy(un) ‘ dx, and D!g|Vun| dxzﬂyv(un) ‘ dx (3.11)

Let (t,) >0 besuchthat (t,) (u,) eN;,and u, e N7, by (3.9) and (3.11), we have

0:[0”)*}2]]!3( *2+Vw[( )J]dx /1[ :|jpw [ ][ )dev{ }
S[(tn)*fﬂi(lwnlzww )= 2 (t, ] jpw dx+[(tn)]pHJ3Qw|un| dx
_ {[(tn Tty ]“} | (Ve +V. (1, ) o {[(tn )*]" -y T} [o ;"

This implies that (t,)" <1. Therefore, we have 17 ([un]*)g 17 (u,), and we can suppose that u, is radial

v(u,)

‘P

in HY (g *). since Hy, (Rs) is compactly embedded into L"(R®) for 2< p <4, we obtain that m? is
achieved at some @, eN which is positive and radial. Therefore, Lemma 3.2 is proved.

4. The Proof of Main Theorem

In this section, we prove Theorem 2.2. Firstly, we consider a compactness result and obtain the behavior of the
(PS) sequence of the functional I, .

Lemma4.1. Let u, bea (PS)qsequence of the functional I, constrainedon N,, thatis

u,eN,, 1,(u)—>d and 1(u,)

" -0, as n—o>w (4.2)
A

Then there exists a solution u of the problem (2.4), a number keNu{O}, k functions u',u?,---u* of
HY (R3) and k sequences of points y), 0< j<k suchthat

1) |y, Ya =Y
2) un—zk:uj(~—y,{)—>ﬁ;
=
3) Ii(un)ali(U)Jer:If(ui);
=1

4) u' are non-trivial weak solution of the problem (3.8).
Proof. The proof is similar to that of Lemma 4.1 in [9].

By Lemma 4.1, taking into account that 17 (u’)>m, for all j and de(0,m,), we obtain that k=0

and u, > 0T in HJ (R‘*) (strongly), i.e. u, is relatively compact forall d e (O, ml). Hence we only need to
prove that the energy of a solution of the problem (2.4) cannot overcome the energy of a ground state solution of
the problem (3.8).

The proof of Theorem 2.2. By Lemma 4.1, we only prove that m, <m7 . Indeed, let @, € N7 such that
17 (w,)=m} ,andlet t>0 suchthat tw, € N,.Since V(x)<V,, p(x)=p, and Q(x)<Q,,we have

— +o0,

—> 400, if i# ], N—>ow;

mlslﬁ(ta)m)zg (|Va) |+V ) x——_[ wdx+—jQ x)|, | dx
EJ'(W@ |2 +V a)z)dx——j Pl ]wzdx+—IQ | |de
2 R3 ” o 4 ]R3pm ” ” pJR3 ” ” .

(4.2)
<

Since @, € N7 and tw, € N,, we have
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t* J. (|Va)cc|Z +Vwa)i)dx+t4 I Q, |a)w|pdx =t I pwcf)[a)w]a)idx
R3 R R®
<t I p(x)(l)[a)w]a)idx

Rr3

=t* [ (|Va)i|+v (X)a)i)dx+tp | Q(x)|e, | dx
R? R®

<t? f (|Va)w|2 +Vw0)i)dx+tp I Q, |a)wu|pdx.
R® R®

Therefore, we have
4 12 2 2 4 ip p
(t -t )RL(IV%I V08 o (t -t )Di[ng|wwu| dx <0

By 2<p<4,wehave t<1.If t=1,wehave @, N7 and @, € N,.Hence, by @, € N7, we have

j (|V%|Z +wai)dx+ _[ Q, |a)w|pdx = ij P, @[, |oldx (4.3)
R® R® R®

andby @, € N,, we have
[([Ve.f +Vv(x)e? )dx+ [ Q1) dx=2[ p(x)®[w,]oldx. (4.4)
R? R® R?
Combining (4.3) and (4.4), we have
J' (V, -V (X))a)f)dx+ I (Q, —Q(X))|a)w|pdx—/1j- pwcb[a)w]a)fcdx+/1f p(X)0[w, |w2dx=0
R? R3 R® R?
Since V(x)<V,, p(x)=p,, Q(x)<Q,,and Q(x)-Q, <0 on a positive measure, we have
] (Q.=Q())]e|"ax
RS

which is not identically zero, and is contradiction. Hence, we have t<1. By (4.2), we have

1 A ~ 1
m, <EH£3(|V%|2 +V°°w§’)dx_z]é[p”q)[w”]widx+gungw|w°°|pdx
=17 (w,)=m;].

Then there exists a positive radial ground state solution for the problem (1.1).
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