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Abstract 
 
In this paper, we prove a result on the uniqueness of meromorphic functions sharing three values counting 
multiplicity and improve a result obtained by Xiaomin Li and Hongxun Yi. 
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1. Introduction and Main Results 
 
Let f  and g  be two non-constant meromorphic func- 
tions in the complex plane. It is assumed that the reader 
is familiar with the standard notations of Nevanlinna’s 
theory such as ,  ,T r f  ,m r f ,   ,N r f  ,N r f  
and so on, which can be found in [1]. We use  to 
denote any set of positive real numbers of finite linear 
measure, not necessarily the same at each occurrence. 
The notation  denotes any quantity satisfying 

. A meromorphic 
function 

E

 ,S r f
  ,r f r S r f  , r E  , =  T

 b    is called a small function with respect 
to f  provided that T r . A meromorphic 
function 

  , =b S r , f
 b    is called a exceptional function of f   

provided that  , = ,N r S r f
f b  

1 
.  

Let  be a complex number, we say that a f  and g  
share the value a  CM provided  and af  ag   
have the same zeros counting multiplicities (see [2]). We 
say that  and f g  share  CM provided that  1 f  
and 1 g  share 0  CM.  

Xiaomin Li and Hongxun Yi prove the following 
theorem:  

Theorem A ([3]). Let  and f g  be two distinct 
nonconstant meromorphic functions sharing three values 

 and  CM, if there exists a finite complex 
number  such that a  is not a Picard value of 

, and  

0,1

f


0 ,1a

    1

1
, ,N r T r f S r f

f a

 
   

, ,  

then 

   1

1 2
, = , ,

k
N r T r f S r f

f a k

  
  

  

and one of the following cases will hold:  

1) 
   1 1e 1 e

= ,  =
e 1 e 1

k k

s s
f g

 

 

  



1 
 

, with  

   
 

1 1

1 1

1 1
=

1

k s k ss

k k

a s k s

a k

   

 

  


 and 

1k
a

s


 ;  

2)    1 1

e 1 e 1
= ,  =

e 1 e

s s

k k
f g

 

 



   1

 

 
,  

with    
 

1
1

1

1
1 =

1

k ss
k ss

k

s k s
a a

k

 
 



 



 

and 
1

s
a

k



;  

3)    1 1

e 1 e 1
= ,  =

e 1 e

s s

k s k s
f g

 

 



    

 

1 
, with  

 
 

 
 

1

1 1

1
=

1 1

s k ss

k k

a s k s

a k

 

 

  

 
 and 

1

s
a

k s
 

 
; 

4) 
 

e 1 e 1
= ,  =

e 1 1 e 1

k k

s s
f g

 

  





 
 

, with  

and 

0,1 k

   1
=

k s k ss

k k k

a s k s

a k

  
;  

5) 
 

e 1 e 1
= ,  =

e 1 1 e 1

s s

k k
f g

 

  





 
 

, with  

and 

0,1s 

   
1 =

k ss
k ss s

k

s k s
a a

k



 

 ;  

6)      
e 1 e 1

= ,  =
e 1 1 e

s s

k s k s
f g

 

  



  

 

1 
, with  

*The Project-sponsored by SRF for ROCS, SEM. 



C. J. LI  ET  AL. 719 
 

s 0,1  and 
 
 

 
=

1

s k ss

k k

a s k s

ka

  


.  

where   is a nonconstant entire function, s  and 
 are positive integers such that  2k   s  and 1k  

are mutually prime and ks 1  in 1), 2), 3), s  and 
 are mutually prime and k 11  ks  in 4), 5), 6).  
Xinhou Hua and Mingliang Fang proved the following 

theorem: 
Theorem B ([4]). Let f  and g  be two non- 

constant meromorphic functions sharing three values 
 and   CM, if  0,1

      , , ,T r f N r b z f S r f  ,  

   0,1,b z    is a small function of , then one of 
the following holds:  

f

1) f g ;  
2) f bg , and  are exceptional functions of ,  1b

f ;  
3) , and  are exceptional 

functions of 
 f 1 1 1g   b  ,  0b

f ;  
4)   1 1 f b g b b    b

f
, and  are ex- 

ceptional functions of .  
,  b 

As we all know, many results on constants are also 
valid for small functions, although some times they are 
more difficult. In this paper, we improve the above 
theorems and obtain the following result.  

Theorem 1.1. Let  and f g  be two distinct 
nonconstant meromorphic functions sharing three values 

 and  CM, if there exists a small function 
 of  such that  is a exceptional 

function of , and  

0,1
 b z


1,

f
 0,  f b z 

      1 , , , ,N r b z f T r f S r f         (1.1) 

then  

      1

2
, , = , ,

k
N r b z f T r f S r f

k


      (1.2) 

and one of the following cases will hold:  

1) 
   1 1e 1 e

= ,  =
e 1 e 1

k k

s s
f g

 

 

  



 
 

1
, with  

   
 

1 1

1 1

1 1

1

k s k ss

k k

b s k s

b k

   

 

  



 and 

1k
b

s


 ;  

2)    1 1

e 1 e 1
= ,  =

e 1 e

s s

k k
f g

 

 



  

 

 1
, with  

   
 

1

1

1
1

1

k ss
k ss

k

s k s
b b

k


 



 
 


 and 

1

s
b

k



;  

3) 
1

1
=,

1

1
=

)1()1( 









 







sk

s

sk

s

e

e
g

e

e
f , with  

1

1

1 1)(

)1(

)(1

)(




 






k

sks

k

s

k

sks

b

b
 and 

sk

s
b




1
; 

4) 
1))(1(1/

1
=,

1)(1

1
=



















 s

k

s

k

ecb

e
g

ecb

e
f , 

with  and 0,1k

  
     
      

2

1

1 1 2 1

1 2 1 ;

k

s

k s

k b b

sb cb b cb cb b

cb b k s b cb



  

  


  

     

     

 

5) 
    

e 1 e 1
= ,  =

1 e 1 1 1 e 1

s s

k k
f g

cb cb

 

  





 
   

,  

with  and  0,1s 

  
     
      

2

1

1 1 2 1

1 2 1 ;

s

k

s k

s b b

kb cb b cb cb b

cb b s k b cb



  

  


  

     

     

 

6)       
e 1 e 1

= ,  =
e 1 1 1 e

s s

k s k s
f g

cb

 

  



  

 

1  
, with 

 and 0,1s 

  
        

     

2

1

1 1 2 1

1 2 1 .

s

s k

k

s b b

s k b cb b cb cb b

cb b kb cb



  

  



  

      

    

 

where   is a nonconstant entire function, s  and 
 2k   are positive integers such that s  and 1k   

are mutually prime and ks 1  in 1), 2), 3), s  and 
 are mutually prime and  in 4), 5), 6),  

and 
k 1k1  s c

  are constants.  
 
2. Some Lemmas  
 
Lemma 2.1 ([4]). Let  and f g  be two nonconstant 
meromorphic functions sharing three values  and 0,1
  CM. If gf  , then for any small function 
   0,1,b z    we have  

         3 3, , , , = ,N r b z f N r b z g S r f .  

Lemma 2.2 ([3]). Let  be a nonconstant mero- 
rphic function, 1   and  be three distinct small 
functions of , if  

f
aa 2a 3

f

 
1 1

1 1
, , =N r N r S r f

f a f a

   
       

, ,  
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then  

    1
3

1
, = , ,N r T r f S r f

f a

 
  

.  

Using the same method of [3] in Lemma 2.2, we get 
the following result:  

Lemma 2.3. Let  and f g  be two nonconstant 
meromorphic functions sharing three values  and 

 CM. If  is a fractional linear transformation of 
0,1

 f
g , for any small function  b z 0,1, 

f
, then either 

 is a exceptional function of , or  b z 

    1

1
, = , ,N r T r f S r f

f b

 
  

.  

Lemma 2.4. Let s  and t  are two integers, and   
be a nonconstant meromorphic function and  b z  is a 
small function of  , if , then  1sb

   0 , 1, = ,s tN r b S r ,     

where  denotes the reduced coun- 
ting function of the common zero of  and 

0 , 1,s tN r b   
1s  t b  .  

Proof. If  is a zero of  and , then we 
have  

0z 1s  t b

 0 = 1,s z                 (2.1) 

and  

   0 =t z b z 0 .

,

             (2.2) 

From (2.1) and (2.2) we get , thus  0 = 1sb z

   0 , 1, = ,s tN r b S r     since .  1sb 
Lemma 2.5. Let  

  = n mP a   ,b           (2.3) 

where = e ,   is a nonconstant entire function, 
a    and  b   are two small functions of  , 
 and m  are positive integers such that .  n >n m
1)  

    3

1
, = , .N r S r
P




 
  
 

        (2.4) 

2) If 

   
,

n
b ab mab

a m n a a m n a

   
   

       
               

m

 (2.5) 

then  

    2

1
, = ,N r S r
P

.


 
  
 

        (2.6) 

3) If  and  are mutually prime, and n m

   
,

n m
b ab mab

a m n a a m n a

   
   

      
            





(2.7) 

then  

      2

1
, = 2 , ,N r T r S r
P

. 


 
  

 
    (2.8) 

Proof. 1) Differentiating  P   two times and eli- 
minating n  and m  from the three equations we 
obtain  

     1 2 = 1,P h P h P           (2.9) 

with      , = ,  = 1,2iT r h S r i . Thus (2.4) holds. 

2) Suppose    2

1
,N r S r
P

,


 
, and let  be  0z  

 
a zero of  P   with multiplicity , then from (2.3) 
we have  

2

       0 0 0 0 = 0,n mz a z z b z      (2.10) 

and  

 
     

   
     

0
0 0

0

0 0
0 0

0

(

= 0.

n

m

n z
z a z

z

a z z
z b z

z














 
   

 

   (2.11) 

From (2.10) and (2.11) we get  

         
         

0 0 0 0
0

0 0 0

= ,m b z nb z z z
z

a z m n a z z z

 


 
  

   0

 (2.12) 

and  

         
         

0 0 0 0
0

0 0 0

= .n ma z b z z z
z

a z m n a z z z

 


 


   0

 (2.13) 

Since = e ,   is a nonconstant entire function, we 
have  

   , = ,T r S r .             (2.14) 

From (2.7) (2.12) (2.13) and (2.14), we get (2.6) holds. 
3) Let 0  be a zero of z  P   with multiplicity , 

using proceeding as in 2) we can get (2.12) and (2.13). 
On the other hands, since  and  are mutually 
prime, there exist one and only one pair of integers 

2

n m
s  

and t  such that  

 = 1 0 < < ,0 < <ns mt s m t n      (2.15) 

From (2.12) (2.13) and (2.15) we can get  is a root 
of  

0z

   

=

   =

ns mt

s t
b nb ab

a m n a a m n a
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which implies (2.5) holds since   has two distinct 
exceptional functions. 

Lemma 2.6 ([5]) Let 1  and 2  be two non- 
constant meromorphic functions satisfying  

f f

   1
, , = ,  =i

i

N r f N r S r i
f

 
  

 
1,2.

 

 

Then either  

 0 1 2,1; , =N r f f S r  

or there exist two integers s , t   > 0s t   such that  

1 2 1f fs t   

where 2  denotes the reduced counting 
function of  and  related to the common 1-point 
and  

0 1,1; ,N r f f

1f 2f


     
      

1 2= , , ,  

=  ,

T r T r f T r f

S r o T r r r E



 
 

only depending on  and .  1 2

Lemma 2.7 ([6]) Let  be a nonconstant mero-  
f f

f

morphic function and    
 

=
P f

R f
Q f

, where  

   
=1 =1

=  and =
p q

k j
k

k j

P f a f Q f b f  j  

are two mutually prime polynomials in . If the co- 
efficients 

f
 ka z ,  jb z  are small functions of  and 

, , then  
f

0pa  0qb 

        , = max , , ,T r R f p q T r f S r f .  

 
3. Proof of Theorem 1.1 
 
If  is a fractional transformation of f g , by Lemma 
2.3 we have that either  is a exceptional function   b z

of , or f     1

1
, = , ,N r T r f S r f

f b

 
  

,  which  

contradicts with the assumption of Theorem 1.1. Thus 
 is not a fractional transformation of f g . By Theorem 

B we have  

   1
, = , , .      (3.1) N r T r f S r f

f b

 
  

From (1.1) and (3.1) we obtain  

  2

1
,N r S r f

f b

 
  

, .         (3.2) 

By Lemma 2.1 we have  

  3

1
, = ,N r S r f

f b

 
  

Combining (3.2) and (3.3) we get  

  2

1
,N r S r f

f b

 
  

, .        (3.4) 

Noting that  and f g  share 0,1 and  CM, we 
have  



1
= e ,  = e .

1

f f

g g
 


          (3.5) 

where   and   are two entire functions. From (3.5) 
we get  

e 1 e 1
= ,  =

e 1 e 1
f g

 

 



 ,
 
 

          (3.6) 

and  

e e 1
=

e 1

b b
f b

 



  



.          (3.7) 

Assume that    , = ,T r e S r f ,  Noting 0  and    

are Picard values of , from (3.6) we have e
1

e 1


 and  


  are exceptional functions of , by Lemma 2.2 we 
get  

f

    1

1
, = , ,N r T r f S r f

f b

 
  

,  

which contradicts with the assumption of Theorem 1.1.  

Thus    , ,T r e S r f  .   

Similarly, we have   ,T r e S r f ,  and  
   , ,T r e S r f  

z
.

f b
  

Let 0  be a multiple zero of , but not a zero of 
,,   and   . From (3.7) we obtain  

       0 0
0 0 1 = 0.

z z
e b z e b z
         (3.8) 

and  

             0 0
0 0 0 0 0e e

z z
z b z b z z b z

        = 0.

 (3.9) 
From (3.8) and (3.9) we have  

           
         

         
         

2
0 0 0 0 00

0 0 0 0 0

0 0 0 00

0 0 0 0 0

e =

e = .

z

z

b z b z z b z z

b z b z z b z z

b z z b z z

b z b z z b z z





 
 

 
 

  
   

   
   

,


 (3.10) 

Set 

1 22
= e ,  =

b b b b b b
f f

b bb b b
e ,    

  
        

       
 (3.11) 

and 

     
     

1 2= , , ,

=  ,

T r T r f T r f

S r o T r r r E



  .
      (3.12) .         (3.3) 
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.

From (3.5) (3.11) and (3.12) we get  

   , =S r f S r             (3.13) 

From (3.11) (3.12) and (3.13) we get  

   1
, , = ,  = 1,2i

i

N r f N r S r i
f

 
  

 
.       (3.14) 

From (3.10) and (3.11) we have   
. Thus  

 1 0 = 1,f z
 2 0 = 1f z

   0 1 22

1
, ,1; ,N r N r f f S r f

f b

 
   

, .



  (3.15) 

0 1,1; ,N r f f2  denotes the reduced counting function 
of the common 1-points of 1f  and 2f . From (3.4) 
(3.13) and (3.15), we obtain  

 0 1 2,1; , .N r f f S r           (3.16) 

From (3.16) and Lemma 2.5, we know there exist two 
integers  and p  > 0q p q   such that  

1 2 1.p qf f               (3.17) 

Noting ,  and 
, from (3.11) and (3.17), we have 

,  and , and  

   , e ,T r S r f 
 ,S r f

0 p q 

  , e ,T r S r f  
 , eT r  

0p  q

2

e =
p q

p q b b b b b

b b b b b b
     

   
           

             
.  (3.18) 

Let   =
b

Q z
b b b

 
 
 

   

.

, then from (3.18) we get  

   e = 1 1
p qp q Q bQ          (3.19) 

Noting that  is a small function of , we 
obtain that 

 b z f

  ,Q z c                (3.20) 

where  is a constant. From (3.19) and (3.20) we 
obtain  

c

   e = 1 1 .
p qp q c bc             (3.21) 

Without loss of generality, From (3.21) we may 
assume that  and  are mutually prime and .  p q > 0q

Let  = 1
p

qc   and  q= , where   is an entire  

function. Then from (3.6) and (3.21) we obtain 

 

  

e 1
= ,

1 e 1

e 1
= .

1 1 e 1

q

p

q

p

f
cb

g
cb


















 


 

       (3.22) 

Noting that ,  and , We discuss 

the following three cases.  

0p 0q qp 

Case 1. Suppose that , we discuss the 
following two subcases.  

0>> pq 

Subcase 1.1. If   1
q

cb 1  . Setting 1 =k q  
and ps = , let  = 1 cb    and e = es s  . From 
(3.22) and (3.7) we get  

   1 1 δ

δ

e 1 e
= ,  =

e 1 e 1

k k

s s
f g

  

 δ

1
.

 
 

     (3.23) 

And  

 1 δ δ

δ

e e
= .

e 1

k s

s

b b
f b

 1  



         (3.24) 

Since in this subcase b  is a constant, let  = , 
(3.23) assume the form (1) in Theorem 1.1. From the 
proof of Theorem A we know (1.2) holds with  

   
 

1 1

1 1

1 1

1

k s k ss

k k

b s k s

b k

  

 

  






 

and  

1k
b

s


  

Subcase 1.2. If   1
q

cb 1  . Setting  and qk =
=s p . From (3.22) we get  

 

  

e 1
= ,

1 e 1

e 1
= .

1 1 e 1

k

s

k

s

f
cb

g
cb


















 


 

       (3.25) 

which assume the form (iv) in Theorem 1.1.  
We have from (3.25) and (3.7)  

 
 

e 1 e
=

1 e 1

k s

s

b cb b
f b

cb

 






1  


 



1

    (3.26) 

Since   1
k

cb   , from (3.25) (3.26) Lemma 2.4 
and Lemma 2.7 we get  

     , = , ,T r f kT r e S r f  .         (3.27) 

    
 

0 ,0;e 1 e 1, 1 e

= ,

k sN r b cb b cb

S r f

   1s     
 

(3.28) 
where  

    0 ,0;e 1 e 1, 1 ek sN r b cb b cb   1s       

denotes the reduced counting function of common zeros 
of  e 1 ek sb cb b  1    1 and .   1 escb   

If  
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2

1

1 1 2 1

1 2 1

k

s

k s

k b b

sb cb b cb cb b

cb b k s b cb



  

 


  

     

     

 

by Lemma 2.5 (2), we get a contradiction with (3.4).  
Thus From (3.27) (3.28) and Lemma 2.5 (3) we obtain 

(1.2) holds with 

  
     
      

2

1

1 1 2 1

1 2 1 .

k

s

k s

k b b

sb cb b cb cb b

cb b k s b cb



  

  


  

     

     

 

Case 2. Suppose that , we discuss the 
following two subcases.  

> > 0p q

Subcase 2.1. If . Setting  
 and 

  1 1
q

cb  
=1 =k p  s q = 1 , let  and   cb 

ke = ek  . From (3.22) and (3.7) we get  

   

δ δ

1 δ 1 δ

e 1 e 1
= ,  =

e 1 e

s s

k k
f g



  

 

 1
       (3.29) 

and  
δ δ

δ

e e
=

e 1

s k

k

b b
f b

  



1

        (3.30) 

Since in this subcase  is a constant, let b = δ , 
(3.29) assume the form of 2) in Theorem 1.1. By the 
proof of Theorem A we know (1.2) holds with  

   
 

1
1

1

1
1

1

k ss
k ss

k

s k s
b b

k

 
 



 
 


 

and  

.
1

s
b

k



 

Subcase 2.2 If . Setting   1
q

cb   1 p=k   and 
=s q , from(3.22) we get 

 

  

e 1
= ,

1 e 1

e 1
= .

1 1 e 1

s

k

s

k

f
cb

g
cb


















 


 

        (3.31) 

Which assume the form 5) in Theorem 1.1. We have 
from (3.31) and (3.7)  

 
 

e 1 e
= .

1 e 1

s k

k

b cb b
f b

cb

 






   


 

1
     (3.32) 

In the same manner as Subcase 1.2 we know (1.2) 
holds with  

  
     
      

2

1

1 1 2 1

1 2 1 .

s

k

s k

s b b

sb cb b cb cb b

cb b s k b cb



  

  


  

     

     

 

Case 3. Suppose that , we discuss the follow- 
ing two subcases.  

> 0p

Subcase 3.1. If   1
q

cb 1  . Setting  
1 =k p q   and =s q  


, let  and  = 1 cb 

 δe =k s e k s     . From (3.22) and (3.7) we get  

   

δ δ

1 δ 1 δ

e 1 e 1
= ,  =

e 1 e

s s

k s k s
f g



    


.

1



 
       (3.33) 

and  

 

 

1 δδ

1 δ

e e 1
= .

e 1

k ss

k s

b b
f b

  

  

  



       (3.34) 

Since in this subcase b  is a constant, let = δ , 
(3.33) assume the form (3) in Theorem 1.1. By the proof 
of Theorem A we know (1.2) holds with  

 
 

 
 

1

1 1

1

1 1

s k ss

k k

b s k s

b k

 

 

  


 
 

and  

1

s
b

k s
 

 
 

Subcase 3.2. If   1
q

cb 1  . Setting  
=k p q  and =s q , we have from (3.22) 

   

    

e 1
= ,

1 e 1

e 1
= .

1 1 e 1

s

k s

s

k s

f
cb

g
cb













 







 



 

          (3.35) 

which assume the form (6) in Theorem 1.1. From (3.35) 
and (3.7) we get  

   

   
e 1 e

= .
1 e 1

k ss

k s

b cb b
f b

cb









 

 

1  


 


   (3.36) 

In the same manner as Subcase 1.2 we get (1.2) holds 
with 

  
     
    

2

1

1 1 2 1

1 2 1 .

s

k

k
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Theorem 1.1 is thus completely proved.  
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