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Abstract

In this paper, we mainly focus on the Riesz means of eigenvalues of the subelliptic Laplacian on the Heisen-
berg group H". We establish a trace formula of associated eigenvalues, then we prove differential inequali-
ties, difference inequalities and monotonicity formulas for the Riesz means of eigenvalues of the subelliptic

Laplacian.
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1. Introduction

Until now, the eigenvalue estimations of Laplacian on the
bounded Euclidean domain have been extensively studied
(see [1-5]). In recent years, some academics have already
started to pay attention to the Heisenberg group H", such
as P. Levy-Bmhl [6], D. Miller [7], P. C. Niu [8], G. Jia[9]
and so on.

The Heisenberg group plays an important role in several
branches of mathematics such as representation theory,
harmonic analysis, several complex variables, partial dif-
ferential equations and quantum mechanics. In the past
decades research on Heisenberg sub-Laplacian has
achieved considerable progress. But the problem of the
invariant differential operator eigenvalue for the Heisen-
berg group, did not be studied deeply.

In this paper, the Riesz mean inequalities of eigenvalues
for the subelliptic Laplacian is treated. And some differen-
tial inequalities and difference inequalities are established.

The outline of the paper is as follows. In Section 2, we
first recall some definitions and the lemmas that will be
used in the following, and then establish the trace formula
of eigenvalues. Main results and their proofs will be given
in Section 3.

2. Preliminaries and Trace Formula

Let H" denote Heisenberg group which is a Lie group
that has algebra g = R*"*!, with a nonabelian group law

(le Yot )- (%, ¥auty)
:(X1+sz Yi+ Yo i+t +2(y2X1_X2y1))
Forevery u, =(X,¥;,t),U, =(X,,¥,.t,)eH"

2.1)
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The Lie algebra is generated by the left invariant vector
fields

Xi=i+2yig Yizi—ini,
o et oy (2.2)

i=12,---,n,
0
And T =—.Weset
ot

V.U =(Xy (U)X, (u), Y (U)o, Y, (u)).
Remark 2.1
Itis easy to see that X;, Y;, T are skew symmetric
operators, and

[ XY, ]=-4Ts;, [X,T]=[Y.T]=0,
where [X,Y] denotes the standard commutator
XY =YX .
Definition 2.1 [10].
The subelliptic Laplacian is defined as
n n 82 82 62
A=Y (X2+Y2)= b= —4x ——
W Z( L ) Z|:axi2 oy;? oyt

i=1 i=1

(2.3)

+4y, _t+4(xi2 + yiz)stz}

By the definitions and properties of X, and VY, itis
easy to see that A, is invariant with respect to left-
translations.

Let us concern with the eigenvalue problem

A ,U=-2u, inQ,
u=0, on 0Q.

where Q is a bounded domain of the Heisenberg group

(2.4)

AM



G.JIA ET AL 695

H" with smooth boundary. By [8], we see that the
Dirichlet problem (2.4) has a discrete spectrum on a Hil-
bert space with Inner product denoted (.-}, and its ei-
genvaluesby 0< A4 <4, <---< A4 -+ with

limA, =+ and orthonormallze its eigenfunctions

k—o0
U, Uy, - € Sg7 (Q) so that

u,u. uu;dxdydt = 5;,vi, j>1.
<' > j ij

Here, S$**(Q) denotes the Hilbert space of the func-
tions uel?(Q) such that X;(u), Y, (u)el’(Q),
and S;? denotes the closure of C (Q).

For the sake of simplicity, let L beaform

L=-A, :_;ﬂ(x‘i”“z)'

There will be a distinguished subset

J; =144, 4;; ofthe spectrumof L,
I7 =144, \{Xl,u- /1.} is the complement of

] L |

J;, and P P will be the corresponding spectral

projections. We shaII be interested in traces of P, f(L),

where f(4;) is any function defined on the spectrum
of L.
Definition 2.2.

If {lk}f:l is an increasing sequence of real numbers,
for z>0, the Riesz mean of order o>0 of {4}
can be defined as [11,12]

R (2)=2(2=4); (2.5)

k=1

=max(0,z—4,) is the ramp function.

where (z-4,), :
Definition 2.3.
Two symmetric operators V,,W, are defined as

Vu=xu, Wu=y.u, (e¢=1L--n).

Remark 2.2
X% ]=fy 27,

-y o)

[xa,wﬁ,]zo [Ya,vﬁ}:o,

is an identity operator. In fact, we have

0
X,V —
[X, Vo= % (1)

_Xa {a_u_;,_Zyaa_uj:u

here |

)
-2 2
—(xU)+2y,

OX ot

o

ie. [X,.V,]=1,similarly [Y,,W,]=1,and soon.
Theorem 2.1.

Let /1j and u;
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be eigenvalues and L*-normalized

eigenfunctions of the subelliptic Laplacian. Let

Toim - Kxauj,um> ‘<Yauj,um>

and a=1---,n. Then for each fixed

2

for j,m=12,---
al

f(4)-1 (/1m)T |
ﬂj_ﬂm ajm
+22 ( ) an
Ajedj

/lquC
Specializedto f(4;)=(z- 4 )j , We can obtain

(2-4) (=)

Ajedj Aj.Am€dj

(2.6)

R (z)= )
) Z A =, ) @.7)
2 Y (=2)
jadj sz, /Iq —,1J aja

To derive out Theorem 2.1, we need the following
lemma.

Lemma 2.1 [6].

Let O<x<y and o>0.Then

' X e (ytex?) 2.8)
y—X

where

Zif 0<o<lor2<o<ow
C =<2 .

o

1 if1<o<2

Proof of Theorem 2.1. B
Observe that because {uj}‘_1 is a complete or-
thonormal system, -

‘<Yau1’“m>

According to [10] the formal commutator identity
[A.BC]=B[AC]+[AB]C, we have
[LV,]=[-X,-X,-Y,Y,.V,]=-2X,. Similarly, we
get [LW,]=-2Y,.

Thus

T =23 LV, Juun) LW, Juy )

a=lm=1 (2.9)
= IQ‘VH" J‘ - ﬂ’

By [2], we obtain

tr(Py, (L)) =tr(Py, f (L)[X,.V,

]) and
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f(2)-f(4) 2
tr(P, f(L)):—zl]%EJJ /‘Ij_im (X,u;,u,)
2% 2m
f(/?. ) 2
" 2 )
2qedf
(2.10)

And similarly tr(P f(L )) r(Pij(L)[Ya,Wa]),

then
(P, f(L)=-2 % f(4)-f (M)

Aj:Amedj i m

o)

2
+4Z <Yauj,uq>‘
Ajedj q
AquC
(2.11)
Summing of the (2.10) and (2.11), we obtain
f(4;)-f(4n)
2tr (P, f(L))=-2 ! T
( J] ( )) Aj,ijer /Ij _/Im ]
Aj;tjm
4y (lj)T .
Z»eJ»ﬂ' -4 s

/qul

Since Y f(4 .)—tr(Pij(L)), we get (2.6), and

Ajedj

the proof of the Theorem is completed.
3. Riesz Means Inequalities

In this section, we derive differential inequalities and
difference inequalities for the Riesz means

Ra(z):i(z—ﬂk)f. Here {4}, are ordered eigen-

k=1
values of the subelliptic Laplacian on a bounded domain.
Theorem 3.1.
For 0<o <2 and z> 4, then we have

R (2)2 (1%}% R, (2),

(3.1)

(3.2)

R;(z)z[1+gj%Rg(z),

is a nondecreasing function with respect to

For 0>2 and z> 4, then we have
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ET AL.
R (z)z(“ﬂ]ER (2) (3.3)
o-1 oz (ol
R;(z)z(a+n)%Ra(z) (3.4)
R,(z) . ) _ .
and ———= is a nondecreasing function with respect to
z
z.
Proof. Let the first term on the right of (2.7) be
2-2.) —(z2-2,)
G(oa,z)= )| ( J)" ( )+Tajm
§m:Aj Am <z lm _ij
/1j¢lm

By Lemma 2.1, the expression can be simplified to

(2-4), -(2-4)
- Ta'm
=2 ‘

G (J, a, Z) =
IRURRVMES

/I-¢Am

<2c, > Z(z )

Jm/ <zm=1

l

ajm

—2c, Y (z—/lj)f’lTajm

j,m:/1]r£z<}1ﬂ

By symmetry in j <> m, extending the sumto all m
subtracting the same quantity from the final term in (2.7),
we find

> o-1
R <2C, - T.
A7) s mzl(z 1) T (3.5)
+2R(0,a,1)
where
R(O',a,Z)
(Z ’1) C, (ﬂq_/lj)
= T. A .
j,q:/lJZS:KAQ an(Z ) ﬂq—ﬂj

We average over a =1,---,n in (3.5),

0

R, (z)<2C, > (z- 4 )"1 2 +2§n: R(o,a,2) (3.6)

j=1 a=1

Since Rg(z)zg(z—ﬂk)f Jand R (2)=0R,,(2),

i(z W) A =R ()-R(2) BD)
By (3.6) and (3.7),
R (2) 7= (R, (2) R, (2)]+2 SR(ova)
and then
AM
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-2

Now we separate into three cases.
Casel. 1<o<2.Inthiscase C, =1 and

R(o,a,1)

=Y T ZJ)+1{(Z—JZ:(iq—/1j)]SO

jadj<z<y

R, (2 )}_ <23'R(0,0,2)(38)

a=1

> I

then (1+EJRU( )—ER
n
Since R!(z)=0R,
can get (3.2).
Case 2. 0<o <1. Since the sum defining R(o,a,z)
runs over /1j <2< /1q ,

(2-4)-C. (4 -4)

.(2)<0 whichis (3.1).

(z), substituting it to (3.1), we

(4, -4

i)
Ay —

Therefore

X 1

> R(o.a,2)<(1-C,) X (z-4) "4,

7 ( Rg_l(z)—RU(Z))

=(1-C,)(z
Substituting this into (3.8), we have
2 (2)= (1+2

— 1R (z
2JR. (2
which is equivalent to (3.1), also we can get (3.2).
On the other hand

2z
n

Case 3. o =2. Similar to case 2, we obtain

C.) Y Tu(z-24)"

Aj<z<iy

R(o,a,z)<(1-

but now 1—C0=1—%<0, then R(o,a,2)<0. Sub-
stituting it into (3.8),
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[ ZC“ch(z)—zi“ZRa_l(z)SO

” (z)z(l+§]§Ra(z), which is

Then we have R_,
(3.3).
Since R!(z)=0R,

R (2)2(o+ n)%RJ (2), which is (3.4).

(z), we have

Similarly
R,(2)) RL(z)z""-R,(2)(c+n)z""*
Zo-+n - ZZ(o-+n)

>0

R, (z) . . . .
thus f’g(m) is a nondecreasing function with respect to
z

z . This completes the proof of the theorem.
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