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Abstract

Many equations possess soliton resonances phenomenon, this paper studies the soliton resonances of the
nonisospectral modified Kadomtsev-Petviashvili (mKP) equation by asymptotic analysis.
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1. Introduction

In the process of searching for explicit solutions, quite a
few systematic methods have been developed, such as
inverse scattering transformation [1], Darboux transfor-
mations [2], Hirota’s bilinear method [3-5], and so on.
Among them, the bilinear method first proposed by Hi-
rota provides us with a comprehensive approach to con-
struct exact solutions of nonlinear evolution equations
(NEEs). Meanwhile, as the interacting of the solution,
soliton resonance has been studied in many papers. Miles
obtained resonantly interacting solitary waves of KP
equation [6], these solutions are coherent structures that
describe the diffraction of a soliton at a corner, and sug-
gest that, under certain conditions, a KP soliton can’t
turn at a convex corner without separating or otherwise
losing its identity. Thus, these structures provide a solu-
tion of the problem of “Mach reflection” in water waves,
and this phenomenon is now known as soliton resonance.
Asymptotic analysis is a very important tool in studying
the behaviors of soliton solutions, we call the asymptotic
line soliton solutions as y — -« and as y — —o the
incoming and outgoing line soliton solutions, respec-
tively. The amplitudes, directions and even the number
of incoming solitons are in general different from those
of the outgoing ones, when resonance occurs two soliton
solutions under certain condition resonate and create a
new soliton solution.

Multisoliton solutions exhibiting nontrivial spatial
structures and interaction patterns were found in many
well-known soliton equations. Hirota studied resonances
of solitons in one-dimensional space theoretically taking
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the Sawada-Kotera equation with a nonvanishing bound-
ary condition as an example by his bilinear method [7],
in which he pointed out that two solitons at the resonant
state fused after colliding with each other, or a soliton
splited into two solitons. Other (1 + 1)-dimensional space
equations like KdV-SK and Hirota-Satsuma equations [8]
and Boussinesq equation [9].

However more emphases are placed on (2 + 1)-dimen-
sional ones, the most relevant with ours like the follow-
ing: Wadati clarified the fundamental properties of the
soliton in KP equation [10], Medina then went further in
this equation [11], Pashaev created four virtual soliton
resonance solution for KP-11 [12], Biondini made use of
tau-function in Wronskian to study it [13], after that Iso-
jima studied the parameter regions for resonance and
also study the “spider web”-like solution for cKP system
[14,15], the approach of the Reference [16] for MKP-I1I
equation allows audiences to interpret the resonance
soliton as a composite object of two dissipative solitons
in (1 + 1) dimensions, Hao investigated the resonance of
two line solitons of the nonisospectral KP equation [17]
which classified the resonance condition clearly. Reso-
nance can also occur in (3 + 1)-dimensional system [18]
and even multi-dimensional space [19,20].

In recent years, much attention has been paid to the
study of nonisospectral systems [21], as nonisospectral
evolution equations are of physical and mathematical
importance, which can be used to describe solitary waves
in a certain type of non-uniform media with a relaxation
effect. The aim of this paper is to clarify the fundamental
properties of the soliton resonances in the (2 + 1)-dimen-
sional nonisospectral mKP equation
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AU, + Y (U, —6U°u, +6u,07'u, +307'u, )

XXX

(1.1)
+2xu, —u?+307'u, =0

whose Wronskian and Grammian type solutions have
been studied by Deng [22] and Zhang [23] respectively.

This letter is organized as follows: in Section 2, the 2-
and 3-soliton solution of Equation (1.1) will be presented
using Hirota’s bilinear method. Then 2- and 3-soliton
resonances will be studied in Sections 3 and 4 respec-
tively. Finally, concluding remarks are given in Section
5.

2. 2- and 3-Soliton Solutions of the
Nonisospectral mKP Equation

Through the transformation u = (Iog %) , Equation (1.1)
can be transformed into the bilinear form

D,g-f-D’g-f=0 (2.1a)

4Dg- f+y(D%g-f+3D,D,g- )
+2xD,g-f+g,f+9f, =0

(2.1b)

where D is the well-known Hirota bilinear operator
D',D" D"a-b
=(ox—ax') (ay—oy")" (at—at')"
-a(x, y,t)b(x,y't')|x’
=xy =yt =t

If we note the N-soliton solution as u, é[log ?‘_NJ and
N Jx

N
MDY exp{Zgj(ﬁj +Iogbj)+ > gjg,Aj,},

=01 j=1 1<j<l

2.2)

fy=> exp{zgj(ej +loga; )+ Y gjg,Aj,},

=01 j=1 1<j<l

where the sum is taken over all possible combinations of
£;=(01) (j=12,---,N), then the first three soliton
solutions are

9, =1+ae*, f,=1+be*, (2.3a)

g, =1+ae* +a,e” +aa,et% "z,

(2.30)
f, =1+be® +b,e” +bb,e% "2,
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g; =1+a.e” +a,e” +a,e”+a,a,e"% " +a,3,e%% 4
+a, agegz%*Az3 +a,a, ageal+92 +05= A1~ A1 —Ag3
f, =1+be” +b,e” +be” +hb,e” *2 +hbh,eA% 4
+b2b3e9293*A23 +b1b2b3e91+92 +03—A1p~A13—Ag3
(2.3c)
where

o :(ki +qi)x_(ki2_qi2)y+§i' eig =,

corresponding to t, which satisfy the following disper-
sion relations:

e =A; >0, k,q,8,b and o, are all functions

1 1
Ki :Ekizath :_EQizv i =0, by =k,
wi,tzi(qi_ki)a),, (i=12.3).

What’s more, in order to avoid the divergence of u, we
suppose f, and g; are all positive. Let k +q; = g
and k —-0g,=v, , then 6 can be rewritten as

6 =u (x—viy)+5i and without lose of generality we
suppose v, > v, (i> j).

3. 2-Solitons

In general, a soliton is observed when the following two
conditions are satisfied:

1) Two terms of Equation (2.3b) are so large that other
two terms are neglected.

2) Under the condition 1), the large two terms are of
the same order. Under these two conditions, the peak of
the soliton is on the line 6, = constant .

3.1. Pure 2-Soliton

When 0<A <o and =1, for the limit y— -,
6, > 6, the condition 1) and 2) are satisfied in two re-
gions:

u® = (Iog

@ A6, ~A1p

e* +aae

u® =| jog & 4% X, 6 —+x,0, %A,
be® +byb,e%% 2

)
1+ae Jx, 6, ~ 0,6, — —o0

1+bet

3.1)
sowheny —»—o, u=u®+u®. As
a A0, —A1p 6~y
i) [t
2 2
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we will use the simplified for later convenience.
Similarly, when, y — +o0,

6 - 2
u= Iogl+L +| log 1+ azeg Above all, both
1+be™ )

of them have four arms and displays the regular interac-
tion, that means two soliton solutions maintain their
original amplitudes and velocities during the interaction
(See Figure 1).

3.2. Soliton Resonances

When A, —»+0, or A, -+, the phase shift |A,],
becomes +oo, the length of the intermediate region be-
comes infinite, this may be thought as “soliton reso-
nance”, and the dispersion relation plays a major role in
producing the soliton resonance. Further more, as

{Aiz —+0 < (k —k;)(0, —0,) > +0

A, >+ < (k +0,)(k, +0,) > +0’ (3:2)

we call them as “minus resonance” and “plus resonance”
respectively.

3.2.1. Minus Resonance
Case 1. By taking A, — +0, Equation (2.3b) becomes
g, =1+ae* +ae”, f,=1+be% +b,e”, from which
we have the asymptotic forms (see Equation (3.3)).

The solution has three arms each of which are exact
1-solitons.

Case 2. Substituting

gZ - AiZ_ng’ fZ - AiZ_l fZ’

(3.4)
et > A, e e” — A, e

YAN 687
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Figure 1. Pure 2-soliton solution.

A,g, =1+aA, et +a,A, "e” +aa,A, e?”  (3.5)
by taking A, — +0, Equation (3.5) becomes
g, =a.e* +a,e” +aa,e%” (3.6a)
Similarly
f, =be* +b,e” +hh,e% (3.6a)

The above substitutions are nothing but only a transla-
tion of the coordinates.

The corresponding asymptotic forms are Equation (3.7).

The solution has three arms again.

3.2.2. Plus Resonance
Case 1. Substituting e* — A, e into Equation (2.3 b),
then taking A, — +oo we get

9, =1+a,e” +aa,et"*,

) (3.8)
into Equation (2.4b), get f, =1+b,e” +hbe
a
u® :[Iog T Zlieﬂ J , Y > 0,0, ~ 0,6, - —o
+be
1+a,e”
u={u® :(Iog 1: bje‘gl J , y = +m0,0, - —x,6, =0 (3.3)
6 23
U = jogdE TRy 0 10,8, > 4o
be® +a,e® ' 2
2
0
u® =(Io i+ ZZeGZ] y — —0,6, = +0,60, ~ 0
+be” )
1+ae”
u=Ju? =(Iog 1:2691 J , y > +0,6, = Ap,,0, > +0© (3.7)
X
6 0
u®2 — [|og %J , Y>> —0,6 = —0,0, — +o0
e% +ae
Copyright © 2011 SciRes. AM
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. 1 6 +6,
Ut = | jog—~A%° y = —0,6, +6, ~ 0,0, — —0
1+Dbbe?*?
u= . ) (3.9)
u® 4@ = Iog1+ e’ | Iog1+ azeg2 ’ y = +0,6, = 0,0, > +x
1+be” | 1+be” | 6, ——0,6,~0
Case 2. Substituting e” — A, 'e” into (2.3b), then taking A, — +o we get
g, =1+ae” +aa.et®, f,=1+be* +bb,er"* (3.10)
0, — ~ —
40 1y = Iog1+ ae’ . Iog1+ azeg2 y—>—0,0,20,6, >—x
1+be” 1+h,e” 0, — —0,6, ~0
u= per " (3.11)
. 1+a,a,e%%
Ut =] jog A% y > +0,6 > —06+6,~0
1+bb,e%"
The above asymptotic analysis discusses the 2-soliton ~ so when y — —oo,u =u® +u®® +u®,
solution and it’s two type of resonances, minus reso- Similarly, when y — +o
nance and plus resonance, by which we know that they
all possess three arms, this theory can be illustrated by u=|log l+raet -A,-A,
Figure 2, and furthermore, they show that when reso- 1+be” - A, A, )
nance occurs, interaction of two high and steep waves p
1+a,e™ -A
can produce a new weak one. +] log=—2= 12 (4.2)
We have assumed that v, >v,, the case of v, >v, is 1+be” -A, .
similar, however it is different in the case of v, =v,. Let 1 o
+a,e
X—v,yAZ , then +(Iog %j .
0,=wZ+5, 0,=1,2+5, 1+ae™ ),

(1) (3.12)

2
(14 + 1)
where two soliton lie in parallel, this solution is similar
to 2-soliton solution of the KdV equation.

A, =

4. 3-Solitons

In this section, we analyze the behaviors in asymptotic
regions about typical four types of solutions.
When 0<A,,A; Ay <o and =1, for the limit
y —> —»©,6, > 6, > 0;, the condition 1) and 2) are satis-
fied in three regions:
1+ae” j
X

® _
u”’ = log———
( gl+b1e91

6,=0,60, > —0,0, > —0

%2 _p,
l+a,e 12
u® = {k)g?—j

1+he” e (4.1)

6, —>+0,0, = A,,0, >+
u® = log 1+ asegs —Ap—Ay
1+be® —A, —A,, )

6 = +0,0, > +0,0, ~ A,

Copyright © 2011 SciRes.

The above limit analysis can prove that 3-soliton solu-
tion has 6 arms on theory, Figure 3 can illustrate it too.

The soliton resonance occurs when one or two or even
three of A;; — +o0, we call them 1-, 2-, 3-resonance
solution respectively, each of which include minus reso-
nance and plus resonance, in the following, we will dis-
cuss them all.

4.1. 1-Resonance

In this case, one of A;; — +o0, we suppose A,; — +oo
without lose of generality, that is equal to A, — 0
(minus 1-resonance) and A, — oo (plus 1-resonance).

4.1.1. Minus 1-Resonance
Taking the limit of A, — 0, Equation (2.3c) becomes
g, =1+ae” +a,e” +a,e™
+ alazegl"'gZ_AlZ + a2a3e€2+'937A23
f, =1+be* +be” +b,e”

+ blb3eﬁ1+9z*A12 + b2b3ef92 +03—Az3

, (4.3)

consequently, the asymptotic forms of the solution are
given by

AM
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Figure 2. Minus and plus resonance of 2-soliton solution, (a) 2-soliton minus 1; (b) 2-soliton minus case 2; (c) 2-soliton plus 1;

(d) 2-soliton plus case 2.

1 2} 1 0=,
u(l)+u(2):[log e J +[I09Lj ,

1+be” 1+b,e% "2
y — —oo
1 0p~Az3 1+a.e?
u={u®+u® =] 1og=t25 | 4| jog=t&E |
1+be” s | 1+be” )
y — +00

ERi%P O3-Az3
_ a,e +a,e
u(l 3) = [Iog 02, 3 . j ,X —> +00
be +b,e

(4.4)

So minus 1-resonance of 2-soliton solution has five
arms (See Figure 4(a)).

4.1.2. Plus 1-Resonance

Taking the limit of A, — 40, Equation (2.3c) becomes
— 0 +603-A13 O +0, +03=A1p = A3 —Ag3
= € +a,a,a,e )

03 =948, 88,8, (4.5)

f3 — b1b3e91+93*A13 + blbzbae'9ﬁ'92+'93*A12*A13*A23 ,

Copyright © 2011 SciRes.

0,=Mp—Az3

@ _ l+a2e

u=u _[Iog—1+bze€2AﬂAZ3 . (4.6)
X

It is clearly that plus 1-resonance of 2-soliton solution

0.4

Figure 3. Pure 3-soliton solution.
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only has one arm, and the figure is similar to that of
1-solition solution.

4.2. 2-Resonance

In this case, two of A;; — o0, we suppose A, — *o,
A,, — oo without lose of generality, which are equal
to A, >+0, Aj; > +0 (minus 2-resonance) and

A, > 4o, Ayy —> +oo  (plus 2-resonance).

4.2.1. Plus 2-Resonance

Case 1. Substituting A,e” —e%, Ae* —e” into
Equation (2.3c), and taking the limit of A, and A,,
we get

g, =1+ae* +aa,e?” +aa,aeh % %

4.7
f, =1+ bleal + blb2961+62 + blbzbsegﬁezwsﬂm
Then
1 O3—My3
u® 4+ u® 4y = [Iog #)
1+b,e% s
1+a,e” 1+ae*
u= +| lo 2 +(log———),,y > —x,
{ d 1+hb,e” l ( gl+b1ee1 ¥
0+0,+03 -3
G©2d) [Iog 1+ alazageelm — j Y — +o0.
1+bb,be™ B
(4.8)

Case 2. Substituting Ae” —e” A.e” —e” into
Equation (2.3c), and taking the limit of A, and A,
we get

0, =1+a,e” +a,a,6”"* +a,a,a,e1 % %4

X 0,+03 B +0,+63—-0y3 (4'9)
f, =1+b,e”™ +b,b,e™™™ +bb,b,e™ 2 ="M
Then
2] 2
U@ 4 u® 4y [ jog 2| | Iogl+a2e92
1+b,e* 1+be” )
1+a,e% s
u= +|log———| ,y >+
1+be? - |
61 +6,+03—M3
u(1+2+3) — |Ogl+a1a2a3e - ~ Y > —o
1+bb b,el 02 s
X

(4.10)

Case 3. Substituting A,A.e” —e% into Equation
(2.3c), and taking the limitof A, and A,;, we get

g; =1+ae” +ae” +aaet e
+ a1a2a3e91+92+93_A13

f, =1+be% +b,e” ++hhet %"
+ blb2b3691+92+93-A13

(4.11)

Copyright © 2011 SciRes.

Then
b
u® +u®? =| log 1+a.e
1+be” |
01+6,-A13
+ Iog% , Y>>+
1+bb,e% %
u= ’ "

u® ) = Iogleaiegl
1+be” )

1+a,a,e% % s
+log=—22_——— |, y—>-—o
[ S Tbpersms | Y

4.2.2. Minus 2-Resonance
In the limit of A, »+0, A, - +0, Equation (2.3c)
can be rewritten as
g, =1+ae* +ae” +ae” +aa,eh e
f,=1+be% +h,e” +be® +hbe? s
Then

o )
g a,e” +a,e
u®9 u® =] log 2~ %
b,e” +be® |

(4.13)

og Lt aet e
+ Ogm Y > +©
U= x  (4.14)

03-A13
@ L y® _| g 1T %€
u +u _[Iog L+

+| log L+ae’ y — —0
l+bet )’

The case of condition A, -0, Aj; >0 and
Ay = £, Ay — oo are similar.

By the asymptotic analysis above, we know that two
types of 2-resonance 3-soliton solution possess four arms
(See Figures 4(b)-(d)), the 2-soliton solution has also
four arms, but differently, the behaviors of the former in
the intermediate region are not stationary.

4.3. 3-Resonance

For the plus 3-resonance, substituting A,e% —e%,
Ae” »>e” Ae* »>e* into Equation (2.3c), and
taking the limit of A, — o, A; > 0, A,; — o0, we get

g5 =1+aa,a.et %™

(4.15)
f, =1+bb,b,e? %%

this case is like 1-soliton solution, which only has one
arm.
For the minus 3-resonance, by taking the limit
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Figure 4. Minus and plus resonance of 3-soliton solution, (a) 3-soliton minus 1-resonance; (b) 3-soliton plus 2-resonance case
1; (c) 3-soliton plus 2-resonance case 2; (d) 3-soliton plus 2-resonance case 3; (e) 3-soliton minus 2-resonance; (f) 3-soliton

minus 3-resonance.
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A, »>+0,A; > +0,A,; > +0 of the Equation (2.3c),
we have
=1+ae” +a,e” +a.e”
9 a 2 8 (4.16)
f, =1+be% +b,e” +b,e*

Then

%
u® 4y = Iog—1+2713e
1+h,e” )

% 6
+ Iogw A
b,e” +hb,e*
u= X (4.17)

o,
u(l_z) + u(l) = |OQM
be® +be” )

1+ae*
+| log , y — —0,
1+bet )

which has four arms (See Figure 4(f)).
5. Conclusions

In this work, we have primarily focused on the asymp-
totic behavior of the $2$- and $3$-soliton solution as
X.y —> oo and their interactions in the xy plane.
Generally, in the case of multi-soliton, saying N-soliton
solutions, it has 1-,2-,---,C- resonance N-soliton so-
lutions, and all of them have minus and plus ones. The
condition will be more complicated with the increase of
N. A full characterization of interaction patterns of the
general ones is an important open problem, which is left
for further study. It is pointed out that the amplification
of the amplitude has been experimentally observed and

has practical in maritime security and coastal engineering.

It has been found out that many soliton equations have
resonance phenomenon which will be helpful in making
further investigation on the interaction and energy dis-
tribution of gravity waves, and evaluating the impact on
the ship traffic on the surface of water. We expect that
the results presented in this work will be useful to study
solitonic solutions in a variety of integrable systems.
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