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Abstract 
This paper proposes two kinds of nonlinear general integral controllers, that is, one is generic and 
another is practical, for a class of uncertain nonlinear system. By extending equal ratio gain tech-
nique to a canonical interval system matrix and using Lyapunov method, theorems to ensure re-
gionally as well as semi-globally asymptotic stability are established in terms of some bounded 
information. Moreover, for the practical nonlinear integral controller, a real time method to 
evaluate the equal ratio coefficient is proposed such that its value can be chosen moderately. 
Theoretical analysis and simulation results demonstrated that not only nonlinear general integral 
control can effectively deal with the uncertain nonlinear system but also equal ratio gain tech-
nique is a powerful and practical tool to solve the control design problem of dynamics with the 
nonlinear and uncertain actions. 
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1. Introduction 
Integral control [1] plays an important role in practice because it ensures asymptotic tracking and disturbance 
rejection when exogenous signals are constants or planting parametric uncertainties appears. However, nonlinear 
general integral control design is not trivial matter because it depends on not only the uncertain nonlinear actions 
and disturbances but also the nonlinear control actions. Therefore, it is of important significance to develop the 
design method for nonlinear general integral control.  

For general integral control design, there were various design methods, such as general integral control design 
based on linear system theory, sliding mode technique, feedback linearization technique and singular perturba-
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tion technique and so on, were presented by [2]-[5], respectively. In addition, general concave integral control 
[6], general convex integral control [7], constructive general bounded integral control [8] and the generalization 
of the integrator and integral control action [9] were all developed by using Lyapunov method and resorting to a 
known stable control law. Equal ratio gain technique firstly was proposed by [10], and was used to address the 
linear general integral control design for a class of uncertain nonlinear system.  

All these general integral controllers above constitute only a minute portion of general integral control, and 
therefore lack generalization. Moreover, in consideration of the complexity of nonlinear system, it is clear that 
we can not expect that a particular integral controller has the high control performance for all nonlinear system. 
Thus, the generalization of general integral controller naturally appears since for all nonlinear system, we can 
not enumerate all the categories of integral controllers with high control performance. It is not hard to know that 
this is a very valuable and challenging problem, and equal ratio gain technique can be used to deal with this 
trouble since it is a powerful and practical tool to solve the nonlinear control design problem.  

Motivated by the cognition above, this paper proposes a generic nonlinear integral controller and a practical 
nonlinear integral controller for a class of uncertain nonlinear system. The main contributions are that: 1) By de-
fining two function sets, the generalization of general integral controller is achieved; 2) A canonical interval 
system matrix can be designed to be Hurwitz as any row controller gains, or controller and its integrator gains 
increase with the same ratio; 3) Theorems to ensure regionally as well as semi-globally asymptotic stability is 
established in terms of some bounded information. Moreover, for the practical nonlinear integral controller, a 
real time method to evaluate the equal ratio coefficient is proposed such that its value can be chosen moderately. 
Theoretical analysis and simulation results demonstrated that not only nonlinear general integral control can ef-
fectively deal with the uncertain nonlinear system but also equal ratio gain technique is a powerful and practical 
tool to solve the control design problem of dynamics with the nonlinear and uncertain actions. 

Throughout this paper, we use the notation ( )m Aλ  and ( )M Aλ  to indicate the smallest and largest eigenva- 
lues, respectively, of a symmetric positive define bounded matrix ( )A x , for any nx R∈ . The norm of vector x is  

defined as Tx x x= , and that of matrix A is defined as the corresponding induced norm ( )T
MA A Aλ= .  

The remainder of the paper is organized as follows: Section 2 describes the system under consideration, as-
sumption and definition. Sections 3 and 4 present the generic and practical nonlinear integral controllers along 
with their design method, respectively. Example and simulation are provided in Section 5. Conclusions are pre-
sented in Section 6. 

2. Problem Formulation 
Consider the following controllable nonlinear system, 

( ) ( )

1 2

2 3

, ,n

x x
x x

x f x w g x w u

=
 =


 = +









                                   (1) 

where nx R∈  is the state; u R∈  is the control input; lw R∈  is a vector of unknown constant parameters and 
disturbances. The function ( ),f x w  is the uncertain nonlinear action, and the uncertain nonlinear function 
( ),g x w  is continuous in ( ),x w  on the control domain n l

x wD D R R× ⊂ × . We want to design a control law 
u  such that ( ) 0x t →  as t →∞ .   

Assumption 1: There is a unique pair ( )00,u  that satisfies the equation, 

( ) ( ) 00 0, 0,f w g w u= +                                     (2) 

so that 0x =  is the desired equilibrium point and 0u  is the steady-state control that is needed to maintain 
equilibrium at 0x = .  

Assumption 2: Suppose that the functions ( ),f x w  and ( ),g x w  satisfy the following inequalities, 

( ) ( ), 0, x
ff x w f w l x− ≤                                    (3) 

( )0 ,m Mg g x w g< < <                                      (4) 
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( ) ( ), 0, x
gg x w g w l x− ≤                                     (5) 

( ) ( )10, 0, f
gf w g w γ− ≤                                      (6) 

for all xx D∈  and ww D∈ . where x
fl , x

gl , mg , Mg  and f
gγ  are all positive constants. 

Definition 1: ( ), , ,u u uF a b x y  with 0 u ua b< < , n
xx D R∈ ⊂  and 0,y y R∈  denotes the set of all con-

tinuous functions, ( ),u x y  such that  

( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )0 0
, , , ,

, ,
, 0,

x y x yx y z z x y z z

u x y u x y
u x y u y x y y

x y
= =

∂ ∂
− = + −

∂ ∂
 

and 

( ) ( ) ( )
, ,

0 , 1, 2, ,u u
i

u x y u x y
a b i n

x y
∂ ∂

< < < =
∂ ∂

   

hold for all xx D∈  and 0,y y R∈ . Where ( ),x yz z  is a point on the line segment connecting ( ),x y  to 
( )00, y . 

Definition 2: ( ), ,v v vF a b x  with 0 v va b< < , and n
xx D R∈ ⊂  denotes the set of all integrable functions, 

( )v x  such that 

( ) ( )
x z

v x
v x x

x
=

∂
=

∂
  

and 

 
( ) ( )0 1,2, ,v v

i

v x
a b i n

x
∂

< < < =
∂

   

hold for all xx D∈ . Where z  is a point on the line segment connecting x  to the origin. 

3. Generic Nonlinear Integral Control 
The generic nonlinear integral controller is given as, 

( )
( ) ( )

1

1

,u u x

v x
α

β

ε σ

σ ε µ σ

−

−

 = −


= 
                                     (7) 

where ( ),u x σ  and ( )v x  belong to the function sets uF  and vF , respectively, ( )0 m Mµ µ σ µ< < < , αε  
and βε  are all positive constants.  

Thus, substituting (7) into (1), obtain the augmented system, 

( ) ( ) ( )
( ) ( )

1 2

2 3

1

1

, , ,n

x x
x x

x f x w g x w u x

v x
α

β

ε σ

σ ε µ σ

−

−

 =
=



 = −
 =











                               (8) 

By Assumption 1 and choosing 1
αε
−  to be large enough, and then setting 0x =  and 0x =  of the system 

(8), obtain, 

( ) ( ) ( )1
00, 0, 0,g w u f wαε σ− =                                  (9) 

Therefore, we ensure that there is a unique solution 0σ , and then ( )00,σ  is a unique equilibrium point of 
the closed-loop system (8) in the domain of interest. At the equilibrium point, 0x = , irrespective of the value of 
w .  
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Now, by Definition 1, 2 and ( )0 m Mµ µ σ µ< < < , ( ),u x σ  and ( ) ( )v xµ σ  can be written as, 

( ) ( ) ( )0 1 1 2 2 1 0, 0, n n nu x u x x xσ σ α α α α σ σ+− = + + + + −                       (10) 

( ) ( ) 1 1 2 2 n nv x x x xµ σ β β β= + + +                                (11) 

where ( )0 1,2, , 1m M
i i i i nα α α< ≤ ≤ = +  and ( )0 1,2, ,m M

j j j j nβ β β< ≤ ≤ =  . 
Thus, substituting (9)-(11) into (8), obtain, 

( ),A F x wη η= +                                       (12) 

where 
TT

0xη σ σ = −   

1 1 1 1
1 2 1

1 1 1
1 2

0 1 0 0
0 0 0 0
0 0 1 0

0
n n

n

A

α α α α

β β β

ε α ε α ε α ε α
ε β ε β ε β

− − − −
+

− − −

 
 
 
 =
 
− − − − 
  











 

And ( ),F x w  is an 1 1n + ×  matrix, all its elements are equal to zero except for 

( ) ( ) ( ) ( )( ) ( ) ( )1
1 , 0, , 0, 0, 0,nf f x w f w g x w g w f w g w−= − − −  

Moreover, it is worthy to note that the function ( ),g x w  is integrated into αε  via a change of variable. This 
has not influence on the results if the inequality (4) holds and it can be taken as mg  in the design. Therefore, it 
is omitted in all the following demonstrations. 

For analyzing the stability of closed-loop system (12), we must ensure that the matrix A  is Hurwitz for all 
0 m M

i i iα α α< ≤ ≤ , 0 m M
j j jβ β β< ≤ ≤ , 0 α αε ε ∗< <  and 0 β βε ε ∗< < . This can be achieved by Routh’s stabil-

ity criterion. 

3.1. Hurwitz Stability 
Hurwitz stability of the matrix A  can be achieved by Routh’s stability criterion, which is motivated by the 
idea [10], as follows: 

Step 1: the polynomial of the matrix A  with 1α βε ε= =  is, 

( ) ( )1 1
1 1 1 2 1 1 1 0n n n

n n n n n ns s s sα α β α α β α α β+ −
+ − + ++ + + + + + + =                  (13) 

By Routh’s stability criterion, iα  and jβ  can be chosen such that the polynomial (13) is Hurwitz for all 
0 m M

i i iα α α< ≤ ≤  and 0 m M
j j jβ β β< ≤ ≤ . Obviously, if iα  and jβ  are all large to zero, and then the nec-

essary condition, that is, the coefficients of the polynomial (13) are all positive, is naturally satisfied. 
Step 2: based on the gains iα , jβ  and Hurwitz stability condition to be obtained by Step 1, the maximums 

of αε  and βε , that is, αε
∗  and βε

∗ , can be obtained, respectively. Since αε  and βε  interact, there exist 
innumerable αε

∗  and βε
∗ . Thus, two kinds of typical cases are interesting, that is, one is that αε

∗  is evaluated 
with 1βε = ; another is that let α βε ε= , and then α βε ε∗ ∗=  can be obtained together. 

Step 3: by αε
∗  and βε

∗  obtained by Step 2, check Hurwitz stability of the matrix A  for all 0 α αε ε ∗< <  
and 0 β βε ε ∗< < . If it does not hold, redesign iα  and jβ  and repeat the previous steps until the matrix A  is 
Hurwitz for all 0 α αε ε ∗< <  and 0 β βε ε ∗< < . 

It is well known that Hurwitz stability condition is more and more complex as the order of the matrix A  in-
creases. Thus, for clearly illustrating the design method above, we consider two kinds of cases, that is, 2n =  
and 3n = , respectively, as follows: 

Case 1: for 2n = , the polynomial (13) is,  

( )3 2
2 3 2 1 3 1 0s s sα α β α α β+ + + + =                              (14) 

By Routh’s stability criterion, if 3α , 2α , 1α , 2β , and 1β  are all positive numbers, and the following 
inequality, 
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( )2 3 2 1 3 1
m m m m M Mα α β α α β+ >                                    (15) 

holds, and then the polynomial (14) is Hurwitz for all 0 m M
i i iα α α< ≤ ≤  and 0 m M

j j jβ β β< ≤ ≤ . 
Sub-class 1: 3α , 2α  and 1α  are multiplied by 1

αε
− , and then substituting them into (15), obtain, 

( )2 3 2 1 3 1
m m m m M M

αα α β α ε α β+ >                                   (16) 

By the inequality (16), obtain, 

( )2 3 2 1

3 1

m m m m

M Mα

α α β α
ε

α β
∗

+
=  

Sub-class 2: 3α , 2α , 1α , 2β  and 1β  are multiplied by 1
αε
− , and then substituting them into (15), obtain,  

( )2 3 2 3 1 2 1
m m m M M m m

αα α β ε α β α α> −                                 (17) 

For this sub-class, there are two kinds of cases:  
1) if 3 1 2 1 0M M m mα β α α− > , and then by the inequality (17), obtain, 

2 3 2

3 1 2 1

m m m

M M m mα
α α β

ε
α β α α

∗ =
−

 

2) if 3 1 2 1 0M M m mα β α α− ≤ , and then by the inequality (17), obtain, 

αε
∗ = ∞  

Case 2: for 3n = , the polynomial (13) is,  

( ) ( )4 3 2
3 4 3 2 4 2 1 4 1 0s s s sα α β α α β α α β+ + + + + + =                         (18) 

By Routh’s stability criterion, if 4α , 3α , 2α , 1α , 3β , 2β  and 1β  are all positive numbers, and the fol-
lowing inequality, 

( )( ) ( )2

3 4 3 2 4 2 1 4 2 1 3 3 4 1
m m m m m m m M M M M M M Mα α β α α β α α β α α α α β+ + > + +                  (19) 

holds, and then the polynomial (18) is Hurwitz for all 0 m M
i i iα α α< ≤ ≤  and 0 m M

j j jβ β β< ≤ ≤ . 
Sub-class 1: 4α , 3α , 2α  and 1α  are multiplied by 1

αε
− , and then substituting them into (19), obtain, 

( )( ) ( )2

3 4 3 2 4 2 1 3 3 4 1 4 2 1
m m m m m m m M M M M M M M

αα α β α α β α α α α β ε α β α+ + − > +                 (20) 

By the inequality (20), obtain, 

( )( )
( )

3 4 3 2 4 2 1 3 3 4 1

2

4 2 1

m m m m m m m M M M M

M M M
α

α α β α α β α α α α β
ε

α β α
∗

+ + −
=

+
 

Sub-class 2: 4α , 3α , 2α , 1α , 3β , 2β  and 1β  are multiplied by 1
αε
− , and then substituting them into 

(19), obtain,  

( )( ) ( )2

3 4 3 2 4 2 1 4 2 1 3 3 4 1
m m m m m m m M M M M M M M

α α α α αα α β ε α α β ε α ε α β ε α ε α α α β+ + > + +  

For this sub-class, although the situation is complex, a moderate solution can still be obtained, that is, 

( )
3 4 3 4 2

2

4 2 1 3 3 4 1

m m m m m

M M M M M M M
α

α α β α β
ε

α β α α α α β
∗ =

+ +
 

From the demonstration above, it is obvious that for 2n = , 3n =  and 1βε =  or β αε ε=  of the matrix 
A , there all exist αε

∗  such that the matrix A  is Hurwitz for all m M
i i iα α α≤ ≤ , m M

j j jβ β β≤ ≤  and 
0 α αε ε ∗< < . Therefore, for the high order matrix A , the same result can be still obtained with the help of 
computer. Thus, we can conclude that the n+1-order matrix A  can be designed to be Hurwitz for all 

m M
i i iα α α≤ ≤ , m M

j j jβ β β≤ ≤ , 0 α αε ε ∗< <  and 0 β βε ε ∗< < . 
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Theorem 1: There exist 0 m M
i i iα α α< ≤ ≤  and 0 m M

j j jβ β β< ≤ ≤  such that the system matrix A  for 
1α βε ε= =  is Hurwitz, and then it is still Hurwitz for all 0 α αε ε ∗< <  and 0 β βε ε ∗< < . 

Discussion 1: From the statements above, it is easy to see that: 1) the system matrix A  is an interval matrix; 
2) in consideration of the controllable canonical form of linear system, the system matrix A  can be called as 
the controllable canonical interval system matrix; 3) although Theorem 1 is demonstrated by the single variable 
system matrix A , it is easy to extend Theorem 1 to the multiple variable case since Routh’s stability criterion 
applies to not only the single variable system matrix but also the multiple variable one. Thus, the following 
proposition can be established. 

Proposition 1: A canonical interval system matrix can be designed to be Hurwitz as any row controller gains, 
or controller and its integrator gains increase with the same ratio. 

3.2. Closed-Loop Stability Analysis 
The matrix A  can be designed to be Hurwitz for all 0 m M

i i iα α α< ≤ ≤ , 0 m M
j j jβ β β< ≤ ≤ , 0 α αε ε ∗< <  and 

0 β βε ε ∗< < . Thus, by linear system theory, if the matrix A  is Hurwitz, and then for any given positive define 
symmetric matrix Q , there exists positive define symmetric matrix P  that satisfies Lyapunov equation 

TPA A P Q+ = − . Therefore, the solution of Lyapunov equation [11] is, 

( ) 10.5P S Q A−= −                                       (21) 

where  
TS PA A P= − , TS S= −  and T TA S SA A Q QA+ = −  

Thus, using ( ) TV Pη η η=  as Lyapunov function candidate, and then its time derivative along the trajecto-
ries of the closed-loop systems (12) is, 

( ) ( ) ( ) ( )T T T
1, 2 n n

V
V PA A P F x w Q P f

η
η η η η η η

η
∂

= + + = − +
∂

                        (22) 

where 1 2 , 1n n n n nP p p p + =   . 

Now, using the inequalities (3), (5) and (6), obtain, 

1
x

n ff xκ≤                                         (23) 

where x
fκ  is a positive constant. 

Substituting (23) into (22), and using x η≤ , obtain, 

( ) ( )( ) 22 x
m f nV Q Pη λ κ η≤ − −                                (24) 

By proposition proposed by [10], that is, as any row controller gains, or controller and its integrator gains of a 
canonical system matrix tend to infinity with the same ratio, if it is always Hurwitz, and then the same row solu-
tions of Lyapunov equation all tend to zero, we have,  

1) 0n nP Pεα
αε= →  ( )0,β βε ε ∗∀ ∈  as 0αε →  

2) 0n nP Pεαβ
αε= →  as 0β αε ε= →  

where 1 2 , 1n n n n n n nP P P p p pεα εαβ
α αε ε + = = =   . 

Although there is innumerable nP , the maximum n MP  exists and 0n MP →  as 0αε → . Thus, there 
exist αε

∗∗  with 0 β βε ε ∗< < , or α βε ε∗∗ ∗∗=  such that the following inequality,  

( ) 2 x
m f n MQ Pλ κ>                                     (25) 

holds for all 0 α αε ε ∗∗< <  with 0 β βε ε ∗< < , or 0 β α α βε ε ε ε∗∗ ∗∗< = < = . Therefore, we have ( ) 0V η ≤ . 
Using the fact that Lyapunov function ( )V η  is a positive define function and its time derivative is a nega-

tive define function if the inequality (25) holds, we conclude that the closed-loop system (12) is stable. In fact, 
( ) 0V η =  means 0x =  and 0σ σ= . By invoking LaSalle’s invariance principle, it is easy to know that the 

closed-loop system (12) is exponentially stable. As a result, the following theorem can be established. 
Theorem 2: Under Assumptions 1 and 2, if the system matrix A  is Hurwitz for all  
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0 m M
i i iα α α< ≤ ≤ , 0 m M

j j jβ β β< ≤ ≤ , 

0 α αε ε ∗< <  and 0 ,β βε ε ∗< <  

and then the equilibrium points 0x =  and 0σ σ=  of the closed-loop system (12) is an exponentially stable 
for all 

0 α α αε ε ε∗∗ ∗< < ≤  with 0 β βε ε ∗< < , or 0 .β α α β α βε ε ε ε ε ε∗∗ ∗∗ ∗ ∗< = < = ≤ =  

Moreover, if all assumptions hold globally, then it is globally exponentially stable. 
Remark 1: From the statements of Subsections 3.1 and 3.2, it is to see that: by extending equal ratio gain 

technique to a canonical interval system matrix and using Lyapunov method, the asymptotic stability of the un-
certain nonlinear system with generic nonlinear integral control can be ensured in terms of some bounded in-
formation. This shows that not only nonlinear general integral control can effectively deal with the uncertain 
nonlinear system but also equal ratio gain technique is a powerful tool to solve the control design problem of 
dynamics with the nonlinear and uncertain actions. 

Discussion 2: From the statements above, it is obvious that: although the generalization of nonlinear general 
integral control is achieved by defining two function sets, there are two unavoidable drawbacks, that is, one is 
that the controller (7) is too generic such that it is shortage of pertinence; another is that it is difficulty to obtain 
the less conservative ∗∗

αε  or α βε ε∗∗ ∗∗=  such that it is shortage of practicability. All these mean that Theorem 2 
has only theoretical significance and not practical significance. Therefore, a practical nonlinear integral control-
ler along with a new design method is proposed to solve these troubles in the next Section. 

4. Practical Nonlinear Integral Control 
For making up the shortage indicated by Discussion 2, a practical nonlinear integral controller is given as,  

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( )

1
1 1 2 2

1
1 1 2 2

n n

n n

u u x u x u x x

v x v x v x
α σ

β

ε α σ φ ϕ σ

σ ε µ σ

−

−

 = − + + + + − −


= + + +






                     (26) 

where ( ) ( ) ( )( )0 m M
i i i i i i i i iu x x x xα α α α= < ≤ ≤ , ( ) ( ) ( )( )0 m M

i i i i i i i i iv x x x xβ β β β= < ≤ ≤ , 
( )i ixα  and ( )i ixβ  are the slopes of the line segment connecting ix  to the origin ( )1,2, ,i n=  , and they are 

utilized to harmonize the actions of ix  in the controller and integrator, respectively. ( )xφ  ( )( )0 0φ =  is used 
to attenuate the uncertain nonlinear action of ( ) ( ), 0,f x w f w− . ( )ϕ σ  ( )( )0 0ϕ =  is applied to improve  
the performance of integral control action. ( )µ σ  ( )( )0 m Mµ µ σ µ< < <  is used to reorganize the integrator  

output. σα , αε  and βε  are all positive constants, and ( )0 d dm M
σ σ σα α ϕ σ σ α< < + ≤ .  

Assumptions 3: By the definition of the controller (26), it is convenient to suppose that the following ine-
qualities, 

( ) ( ) ( ) ( ), 0, , x
ff x w f w g x w x l xϕϕ− − ≤                            (27) 

( ) ( )0 0lσϕϕ σ ϕ σ σ σ− ≤ −                                  (28) 

hold for all xx D∈ , ww D∈  and 0, Rσ σ ∈ , where x
fl ϕ  and lσϕ  are all positive constants. 

By the same way as Section 3, we have, 

( )0, ,A F x wη η σ σ= + −                                   (29) 

where 
TT

0xη σ σ = −  ,  

1 1 1 1
1 2

1 1 1
1 2

0 1 0 0
0 0 0 0
0 0 1 0

0
n

n

A

α α α α σ

β β β

ε α ε α ε α ε α
ε β ε β ε β

− − − −

− − −

 
 
 
 =
 
− − − − 
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( )0, ,F x wσ σ−  is an 1 1n + ×  matrix, all its elements are equal to zero except for 
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

1

1
0

, 0, , , 0,

0, 0, ,
nf f x w f w g x w x g x w g w

f w g w g x w

φ

ϕ σ ϕ σ−

= − − − −

× − −
 

and the functions ( ),g x w  and ( )µ σ  are integrated into αε  and iβ , respectively. 
By the design method proposed by Subsection 3.1, the system matrix A  can be designed to be Hurwitz for 

all ( )0 m M
i i i ixα α α< ≤ ≤ , ( )0 m M

i i i ixβ β β< ≤ ≤ , σα , 0 α αε ε ∗< <  and 0 β βε ε ∗< <  ( )1,2, ,i n=  . Thus, 
by linear system theory, there exists positive define symmetric matrix P  that satisfies Lyapunov equation 

TPA A P Q+ = −  for any given positive define symmetric matrix Q . Therefore, we can utilize ( ) TV Pη η η=  
as Lyapunov function candidate, and then its time derivative along the trajectories of the closed-loop system (29) 
is, 

( ) ( ) ( ) ( )T T T
0 1, , 2 n n

V
V PA A P F x w Q P f

η
η η η σ σ η η η

η
∂

= + + − = − +
∂

                 (30) 

where 1 2 , 1n n n n nP p p p + =   . 

Now, using the inequalities (4), (5), (6), (27) and (28), obtain, 

1n ff ηκ η≤                                          (31) 

where f
ηκ  is a positive constant. 

Substituting (31) into (30), obtain, 

( ) ( )( ) 22m f nV Q Pηη λ κ η≤ − −                                 (32) 

By proposition proposed by [10] (details see Subsection 3.2), for any moment t , there exists ( )tαε
∗∗  with 

0 β βε ε ∗< < , or ( ) ( )t tβ αε ε∗∗ ∗∗=  such that the inequality,  

( ) ( )2m f nQ P tηλ κ>                                     (33) 

holds for all ( ) ( )0 t tα αε ε ∗∗< <  with 0 β βε ε ∗< < , or ( ) ( ) ( ) ( )0 t t t tβ α α βε ε ε ε∗∗ ∗∗< = < = . Consequently, if  
the inequality (33) holds for all [ )0,t∈ ∞ , and then we conclude that ( ) 0V η ≤  holds uniformly in t . 

Using the fact that Lyapunov function ( )V η  is a positive define function and its time derivative is a nega-
tive define function if the inequality (33) holds for all [ )0,t∈ ∞ , we conclude that the closed-loop system (29)  
is stable. In fact, ( ) 0V η =  means 0x =  and 0σ σ= . By invoking LaSalle’s invariance principle, it is easy  
to know that the closed-loop system (29) is uniformly exponentially stable. As a result, we have the following 
theorem. 

Theorem 3: Under Assumptions 1, 2 and 3, if the system matrix A  is Hurwitz for all 

( )0 m M
i i i ixα α α< ≤ ≤ , ( )0 m M

i i i ixβ β β< ≤ ≤ , σα , 0 α αε ε ∗< <  and 0 ,β βε ε ∗< <  

and then the equilibrium point 0x =  and 0σ σ=  of the closed-loop system (29) is uniformly exponentially 
stable for all 

( ) ( )0 t tα α αε ε ε∗∗ ∗< < ≤  with 0 β βε ε ∗< < , or ( ) ( ) ( ) ( )0 .t t t tβ α α β α βε ε ε ε ε ε∗∗ ∗∗ ∗ ∗< = < = ≤ =  

Moreover, if all assumptions hold globally, and then it is globally uniformly exponentially stable.  
Now, the design task is to provide a method to evaluate the instantaneous value ( )tαε

∗∗  with 0 β βε ε ∗< < , or 
( ) ( )t tβ αε ε∗∗ ∗∗= . To achieve this objective, the procedure can be summarized as follows: 

Firstly, by the definitions of ( )i ixα  and ( )i ixβ , the instantaneous values ( )i tα  and ( )i tβ  can be given 
as,  

( )
( )( )
( ) ( )

( )
( )( )
( )

( )

( )
0

if 0

d
if 0

d
i

i i
i i

i

i i
i i

i x t

u x t
t x t

x t

u x t
t x t

x t

α

α
=


= ≠



 = =
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and 

( )
( )( )
( ) ( )

( )
( )( )
( )

( )

( )
0

if 0

d
if 0

d
i

i i
i i

i

i i
i i

i x t

v x t
t x t

x t

v x t
t x t

x t

β

β
=


= ≠



 = =


 

Secondly, by the inequality (33), the impermissible minimum of ( )nP t  is, 

( ) ( )
2
m

n
f

Q
P t η

λ
κ

=  

Finally, by the limitation conditions, 

( )0 tα αε ε∗∗ ∗< ≤  with 0 β βε ε ∗< < , or ( ) ( )0 t tα β α βε ε ε ε∗∗ ∗∗ ∗ ∗< = ≤ =  

and the iterative method to solve Lyapunov equation, 

( ) ( ) ( ) ( )TP t A t A t P t Q+ = −  

( )tαε
∗∗  with 0 β βε ε ∗< < , or ( ) ( )t tβ αε ε∗∗ ∗∗=  can be obtained.  
Discussion 3: From the statements above, it is easy to see that: 1) all the component of the nonlinear integral 

controller (26) have the clear actions; 2) f
ηκ  is not greater than x

fκ  since ( )xφ  can be used to attenuate the  
uncertain nonlinear action of ( ) ( ), 0,f x w f w−  and ( )ϕ σ  can be designed moderately; 3) ( ) ( )t tα βε ε∗∗ ∗∗=   
or ( )tαε

∗∗  is less conservative since they are all evaluated by the instantaneous values ( )i tα  and ( )i tβ . All 
these not only solve the problem indicated by Discussion 2 but also mean that equal ratio gain technique is a pow-
erful and practical tool to solve the control design problem of dynamics with the nonlinear and uncertain actions. 

5. Example and Simulation 
Consider the pendulum system [1] described by, 

( )sina b cTθ θ θ= − − +   

where , , 0a b c > , θ  is the angle subtended by the rod and the vertical axis, and T  is the torque applied to 
the pendulum. View T  as the control input and suppose we want to regulate θ  to δ . Now, taking 

1x θ δ= − , 2x θ= 

 , the pendulum system can be written as, 

( )
1 2

2 1 2sin
x x
x a x bx cuδ
=

 = − + − +





 

and then it can be verified that ( )0 sinu a cδ=  is the steady-state control that is needed to maintain equilib-
rium at the origin. 

By the practical nonlinear integral controller (26), the control law can be given as, 

( ) ( )( ) ( ) ( )

( ) ( )( )

1
1 1 2 2 1

1
1 1 2 2

42 3sinh 3 4 tanh 8 0.3tanh sin
3

3 sinh 2 tanh

u x x x x x

x x x x

α

β

ε σ σ

σ ε

−

−

 = − + + + + − +

 = + + + 

 

Thus, it is easy to obtain 15 11.1α≤ < , 23 7α≤ ≤ , 8σα = , 14 6.68β≤ <  and 21 3β< ≤ , and then the 
closed-loop system can be written as,  

( )0, ,A F x wη η σ σ= + −  

where [ ]T1 2 0x xη σ σ= − , 

( )1 1 1 1
1 2

1 1
1 2

0 1 0

0

A c c c b cα α α α σ

β β

ε α ε α ε ε α

ε β ε β

− − − −

− −

 
 

= − − + − 
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and 

( ) ( ) ( ) ( ) ( ) ( )( )
T

0 1 1 0
4, , 0 sin sin sin 0.3 tanh tanh
3
cF x w a a x xσ σ δ δ σ σ − = − + + −  

 

The normal parameters are 10a c= =  and 2b = , and in the perturbed case, b  and c  are reduced to 1  
and 5, respectively, corresponding to double the mass. Thus, we have ( )0, , 4.5F x wσ σ η− ≤ . 

Now, with 51 =mα , 2 3mα = , 8σα = , 1 6.68Mβ = , 2 1mβ = , 5c =  and 1b = , the following inequality, 

( )2 2 1 2 1 2 1 0m m m m m m Mc b c bσ α α α σ σα α β ε ε α ε α α α β α β+ + + − >  

holds for all 0 β αε ε< = < ∞ , and then the matrix A  is Hurwitz for all 0 β αε ε< = < ∞ . Consequently, tak-
ing 1.2β αε ε= =  as the initial value, the simulation is implemented under the normal and perturbed cases, re-
spectively. Moreover, in the perturbed case, we consider an additive impulse-like disturbance ( )d t  of magni-
tude 60 acting on the system input between 15 s and 16 s. 

Figure 1 and Figure 2 showed the simulation results under normal (solid line) and perturbed (dashed line) 
cases. The following observations can be made: 1) The instantaneous value ( )29 1P t <  holds for all ( )1 tα , 

( )2 tα , ( )1 tβ , ( )2 tβ  ( )0t > , 8σα = , 5c = , 1b =  and 1.2β αε ε= = . This shows that the closed-loop 
system is uniformly asymptotic stable and the equal ratio coefficient can be used to improve the conservatism. 2) 
The system responses are almost identical before the additive impulse-like disturbance appears. This means that 
by equal ratio gain technique, we can tune a nonlinear general integral controller with good robustness and high 
control performance. All these demonstrate that not only nonlinear general integral control can effectively deal 
with the uncertain nonlinear system but also equal ratio gain technique is a powerful and practical tool to solve 
the control design problem of dynamics with the nonlinear and uncertain actions. 

 

 

Figure 1. The values of ( )29 P t  under normal 
(solid line) and perturbed case (dashed line).                                             

 

 
Figure 2. System output under normal (solid line) 
and perturbed case (dashed line).                         
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6. Conclusions  
This paper proposes a generic nonlinear integral controller and a practical nonlinear integral controller for a 
class of uncertain nonlinear system. The main contributions are that: 1) By defining two function sets, the gen-
eralization of general integral controller is achieved; 2) A canonical interval system matrix can be designed to be 
Hurwitz as any row controller gains, or controller and its integrator gains increase with the same ratio; 3) Theo-
rems to ensure regionally as well as semi-globally asymptotic stability are established in terms of some bounded 
information. Moreover, for the practical nonlinear integral controller, a real time method to evaluate the equal 
ratio coefficient is proposed such that its value can be chosen moderately.  

Theoretical analysis and simulation results demonstrated that not only nonlinear general integral control can 
effectively deal with the uncertain nonlinear system but also equal ratio gain technique is a powerful and practi-
cal tool to solve the control design problem of dynamics with the nonlinear and uncertain actions. 
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