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Abstract 
 
Here we study a problem of stabilization of the flexural vibrations or transverse vibrations of a rectangular 
solar panel. The dynamics of vibrations is governed by the fourth order Euler-Bernoulli beam equation. One 
end of the panel is held by a rigid hub and other end is totally free. Due to attachment of the hub, its dynam-
ics leads to a non-standard equation. The exponential stabilization of the whole system is achieved by apply-
ing an active boundary control force only on the rigid hub. The result of uniform stabilization is obtained by 
means of an explicit form of exponential energy decay estimate. 
 
Keywords: Solar Panel, Hybrid System, Flexural Vibrations, Uniform Exponential Stabilization, Energy  
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1. Introduction 
 
Motivated by ambitious space programs, mathematical 
investigation on stabilization of vibrating space struc- 
tures is an active area of research among others. The 
pioneering work was first started since early seventies in 
a study aimed at achieving energy decay rates for wave 
equation exterior to a bounded obstacle. Later the idea 
has been extended in various mathematical problems 
related to the vibrations of flexible structures like beams, 
plates or slender elements capable of withstanding finite 
deformation. The most important problem for these 
problems is to suppress the vibrations to assure a good 
performance of the overall system. 

During the last few decades, the use of flexible struc- 
tures is on the rise. The vibrations of flexible structures 
are usually non-linear in practice. The vibrations of 
flexible structures are the problem of a dynamical system 
mathematically governed by partial differential equations, 
particularly, the second order wave equation and the 
fourth-order Euler-Bernoulli beam equation. Stabilization 
for the wave equation in a bounded domain have been 
investigated by several authors (cf. G. Chen [1,2], J. 
Lagnese [3,4], J. L. Lions [5], V. Komornik [6] and the 
references therein). Similarly, those governed by the 
fourth-order Euler-Bernoulli beam equation have been 
treated by G. Chen, and J. Zhou [7], O. Morgul [8] and A. 

M. Krall [9]. Hybrid system of flexible structures con- 
sists of a coupled elastic part and a rigid part. The hybrid 
system in which a lumped mass is present at one end, 
have been treated earlier by G. Chen, M. C. Delfour, A. 
M. Krall and G. Payre [10], W. Littman, L. Markus [11] 
and B. Rao [12]. The most usual practical approach to 
stabilize the problems of such type is to apply the control 
force or the stabilizer on the free end of the elastic part 
instead of the rigid part. 

The mathematical theory of stabilization of distributed 
parameter system has become a great interest in view of 
its application in various flexible structures. The energy 
decay estimate has earlier been studied by several 
authors (cf. G. Chen [1,2], J. Lagnese [3,4], J. L. Lions 
[5], V. Komornik and E. Zuazua [13]). Recently, G. C. 
Gorain [14] treated the case of internally damped wave 
equations for the so called Kelvin-Voigt model of vis- 
coelsticity together with undamped boundary conditions 
(without considering any boundary feedback) to obtain a 
uniform exponential energy decay estimate. Several hy- 
brid model of the dynamics of torsional vibrations of a 
flexible structure hoisted by a rigid hub at one end have 
been studied by T. Fukuda, F. Arai, H. Hosogai and N. 
Yajima [15]. In engineering literature, a common app- 
roach to treat the above problems is to decompose the 
vibrations into normal modes and retain the first few 
modes to reduce the problem into a finite dimensional 



P. K. NANDI  ET  AL. 662
 

 

state space representation. The question of uniform 
stabilization or point-wise stabilization of Euler-Ber- 
noulli beams or serially connected beams has been stu- 
died by a number of authors (cf. J. L. Lions [5], G. Chen, 
M. C. Delfour, A. M. Krall and G. Payre [10], K. Ammari 
and M. Tuesnak [16], K. Liu and Z. Liu [17], K. Nagaya 
[18], R. Rebarbery [19] etc.).  
 
2. Mathematical Formulation of the Problem 
 
We consider a uniform rectangular flexible solar panel 
hoisted by a rigid hub at one end. The panel is of length 

, unit width, having uniform mass density  per unit 
length, which is rigidly attached by a lumped mass h  
(hub) at one end and that is totally free at the other end. 
Our aim is to stabilize the vibrations of the overall 
system by applying a suitable stabilizer or damper on the 
rigid hub, when it is initially set in motion. 

L m
m

Referring to the schematic Figure 1, if  hy t  is the 
transverse displacement of the rigid hub and  ,py x t  is 
that of the panel at the position x  along the span of the 
panel relative to the hub at time , then the total trans- 
verse deflection can be written as   

t

     , = , ,  0 ,  0.h py x t y t y x t x L t       (1) 

Let us assume that the vibrations undergo only small 
deformations, that means,  ,y x t L  and  

 ,
y

x t
x




1,  and neglect the gravitational effect and  

rotatory inertia of the panel cross sections. Then  ,y x t  
satisfies fourth order Euler-Bernoulli beam equation 

   
2 4

2 4
, , = 0,  0 ,  

y y
m x t D x t x L t

t x

 
  

 
0,  (2) 

where   13 21
1

12
D Eh 


  .  The constants ,  ,  D E    

and  are the flexural rigidity, the Youngs’s modulus, 
the Poisson’s ratio and the thickness of the panel 
respectively. 

h

The dynamics at the hub end , where a control 
force  is applied, yields the differential equation  

= 0x
 Q t

     
32

2 3
0, = 0,  0.ph

h

yy
m t D t Q t t

t x


 

 
   (3) 

The Equation (3) is not a standard Dirichlet or Neu- 
mann boundary condition, that is generally found in the 
several works of this subject area. Again since  

 0, 0py t  , it follows from (1) that    0, = hy t y t   

and also we have   , = ,pyy x t
x x


 

x t . Hence the Equa-  

tion (3) becomes 

 

Figure 1. Schematic of the solar panel with rigid hub. 
 

     
3 2

3 2
0, 0, = 0,  0,

y y
t t Q t

x t
  

t  
 

    (4) 

where = hm

D
  and 

1
=

D
 . Assuming at , there  = 0x

is no rotational deflection of the panel relative to the hub 
(that means, the panel is built in position with hub at  

= 0x ), we have  0, = 0py
t

x




, implying 

 

 0, = 0,  0.
y

t t
x





            (5) 

Since the panel is assumed to be free at =x L , so at 
this end  

   
2 3

2 3
, = 0 and , = 0,  0,

y y
L t L t t

x x

 


 
  (6) 

Let the panel be set to vibrations with arbitrary initial 
values 

       0 1,0 =  and ,0 = ,  0 .
y

y x y x x y x x L
t


 


 (7) 

Therefore, the mathematical model to be studied for 
flexural or transverse vibrations of a uniform rectangular 
flexible solar panel with a rigid hub at one end, is go- 
verned by the following system of equations :  

   
2 4

2 4
, , = 0,  0 ,  

y y
m x t D x t x L t

t x

 
0,   

 
 (8) 

       
3 2

3 2
0, 0, = 0 and 0, = 0,

y y y
t t Q t t

xx t
   

 
 

(9) 

   
2 3

2 3
, = 0 and , = 0,  0,

y y
L t L t t

x x

 


 
 (10) 

       0 1

 
,0 =  and ,0 = ,  0 .

y
y x y x x y x x L

t


 


 (11) 

Because of the damping character of the control force 
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 Q t , it must be an odd function of velocity, that means,  

   = 0,
y

Q t f t
t


  

,

             (12) 

where f  is an odd function of its argument such that 
 and  for every  0 =f 0   > 0uf u  0 .u   For 

example, if   =f u u , we have a simple viscous dam- 
per. 
 
3. Energy of the System 
 
The total energy  at time  is defined by  E t t

   
22 2

20

1 1
= d

2 2

for 0.

L

h

y y y
E t m D x m t

t x

t

                    



2

0,
t

(13) 

Differentiating this with respect to t  and using the 
governing Equations (8)-(10), we obtain   

   

       

   

2 2 3
2

2 2 20

2

2

3 2

3 2

d
=

d

            0, 0,

      = 0, 0, 0, 0,

      = 0, ,

L

h

E y y y y
c m D x

t t t x x t

y y
m t t

t t

y y y y
D t t t t

t tx

y
D t Q t

t





    
      

 


 
    

    





 d

t

 (14) 

where the integration is performed by parts and the 
boundary conditions (9)-(10) are used. By the help of the 
Equation (12), we get  

     d
= 0, 0, = < 0 for 0,

d

E y y
t f t uf u t

t t t

      
 (15) 

where = 0,
y

u
t




t  is the velocity at the hub end and  

= 1D . The result (15) implies that the energy  E t  
of the system (8)-(12) is a non increasing function of 
time. Integrating (15), we have , where     0E t E

          2 2

1 0 10

1 1
0 = d 0

2

L

hE m y x D y x x m y    
2

2
 

(16) 

is the initial energy of the system. As the energy decays, 
our main interest is whether this decays is uniformly 
exponential or not. An affirmative answer can be found 
in the next section. 
 
4. Uniform Stability Result and Proof 
 
The main result of this paper can be stated in the 

following theorem. 
Theorem 1. Let  ,y x t  be a solution of the system 

(8)-(12) with the initial values  0 1,y y  for which 
 0 <E  , where  0E  is defined in (16). Then the 

total energy of the system decays uniformly exponen- 
tially with time, that means, ,  satisfies the 
relation   

0  E tt 

  e tE t M                  (17) 

for some finite reals > 1M  and > 0 , both being 
independent of the time . t

The theorem will be proved after some preliminary 
steps. First, we require the following inequality. 

For any real number > 0 , we have by the Cauchy- 
Schwartz’s inequality 

 2 21
.

2
f g f g


   2

        (18) 

Next we consider the following lemma: 
Lemma 1. For every solution  of the system 

(8)-(12), the time derivative of the functional  (cf. G. 
C. Gorain [20], G. C. Gorain and S. K. Bose [21]) 
defined by   

),( txy
G

 
0

= d  for 0
L y y

G t m x x t
t x

 


        (19) 

satisfies 

     
2 2

d 1
12 , 0, .

d 2 h

G y y
Lm L t m t E t

t t t

            
  (20) 

Proof: If we differentiate (19) with respect to t  and 
using the governing Equation (8), we obtain   

   

 

2 4

40

2 2

22

20

d
=  d

d

1 1
      =  , 0,

2 2

          d ,

L

h

L

G y y y y
x m D x

t t x t x x

y y
Lm L t m t

t t

y
E t D x

x

    
      

    
      

 
    






   (21) 

where the integration is done by parts and the boundary 
conditions (9)-(10) are used. The Lemma 1 then follows 
immediately from (21). 

Proof of Theorem 1: Proceeding as in G. C. Gorain 
[20] and G. C. Gorain and S. K. Bose [21], we define 
energy like Lyapunov functional  by  V

     =  for 0,V t E t G t t         (22) 

where > 0  is a fixed constant. Differentiating (22) 
with respect to t , and using (15) and (21) we obtain  
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     

   

2

2

d 1
0, 0,  ,

d 2

1
         0, .

2 h

V y y y
t f t Lm L t

t t t t

y
m t E t

t



 

             

    




 (23) 

We choose a feedback controller or stabilizer in such 
way that satisfies mathematically   

   

   

2 2
1 1

 , 0
2 2

0, 0, ,

h

y y
Lm L t m t

t t

y y
t f t

t t


        
      

,


      (24) 

where   is a finite positive constant independent of 
time . t

Hence, using the above relation (24), we can write (23) 
as  

       d
1 0, 0,

d

V y y
t f t E t

t t t
        

.   (25) 

Since   is small, we may assume that   

1
0 < <


                  (26) 

so that the differential relation (25) reduces to  

 d
0 for 0.

d

V
E t t

t
            (27) 

Now applying the Inequality (18), we have from (19),  

 
2 22 2

20

2 π
d ,

π 4

LL m y y
G t m D x

D t xL

              






 (28) 

Again using Wirtinger’s inequality  

2 2 2 2

2 20 0

4
d d

π

L Ly L y
x x

x x

    
       

       (29) 

the above Inequality (28) can be expressed as   

   
24

,
π

L m
G t E t

D
         (30) 

that means,  

     
2 24 4

 for 0.
π π

L m L m
E t G t E t t

D D
     (31) 

So  defined by (22) can be estimated as   V

     
24 4

1 1
π π

L m L m
E t V t E t

D
 

   
         

   

2

.
D

(32) 

Since   is small, we may further assume that   

2

π
0 < < .

4

D

mL
             (33) 

Then it follows from (32) that  for every 
. Invoking the Inequality (32), the relation (27) 

leads to the differential inequality   

  > 0V t
0t 

 d
0,

d

V
V t

t
               (34) 

where  

2
= > 0

4
1

π

L m

D




 
  

 

.          (35) 

Multiplying (34) by e t  and integrating from 0 to , 
we obtain  

t

   e 0  for 0.tV t V t           (36) 

Applying again the Inequality (32) in (36), we get   

  e 0tE t M E   ,             (37) 

where  

2 24 4
= 1 1 > 1.

π

L m L m
M

D D
 


 
   

 





   (38) 

Hence the theorem. 
 
5. Conclusions 
 
Here we have achieved the uniform boundary stabili- 
zation of flexural vibrations of a rectangular solar panel 
which is held by a rigid hub at one end and is totally free 
at the other. We have also estimated directly the ex- 
ponential energy decay rate   that is explicitly found 
in (35). Again, considering   as an explicit function of 
 , we have  

2
2d 4

= 1 > 14,
d π

L m

D

 



 
  

 
       (39) 

in view of (33). Hence the exponential decay rate as a 
function of   will be maximum for largest admissible 
value ,  an upper bound of which can be determined 
by considering the coupled relations (26) and (33) si- 
multaneously. The determination of exact value is 
restricted by the lack of explicit knowledge in general of 
the parameter   appearing in the literature. The mo- 
tivation of considering the vibrations of this type of hy- 
brid system arises from many practical problems such as 
spacecraft with flexible attachment, robot with flexible 
links and thin plates of different mechanical system. The 
significant result in this paper is that the solution of the 
system governed by (8)-(12) converges uniformly to zero 
as time . t  
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